Assessing the Coastal Vulnerability by Combining Field Surveys and the Analytical Potential of CoastSat in a Highly Impacted Tourist Destination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Beach Profiles Survey
2.3. Remote Sensing Data Obtention and Image Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burt, J.A.; Killilea, M.E.; Ciprut, S. Coastal Urbanization and Environmental Change: Opportunities for Collaborative Education across a Global Network University. Reg. Stud. Mar. Sci. 2019, 26, 100501. [Google Scholar] [CrossRef]
- Lausch, A.; Pause, M.; Merbach, I.; Zacharias, S.; Doktor, D.; Volk, M.; Seppelt, R. A New Multiscale Approach for Monitoring Vegetation Using Remote Sensing-Based Indicators in Laboratory, Field, and Landscape. Environ. Monit. Assess. 2013, 185, 1215–1235. [Google Scholar] [CrossRef] [PubMed]
- Melet, A.; Teatini, P.; le Cozannet, G.; Jamet, C.; Conversi, A.; Benveniste, J.; Almar, R. Earth Observations for Monitoring Marine Coastal Hazards and Their Drivers. Surv. Geophys. 2020, 41, 1489–1534. [Google Scholar] [CrossRef]
- Perkins, M.J.; Ng, T.P.T.; Dudgeon, D.; Bonebrake, T.C.; Leung, K.M.Y. Conserving Intertidal Habitats: What Is the Potential of Ecological Engineering to Mitigate Impacts of Coastal Structures? Estuar. Coast. Shelf Sci. 2015, 167, 504–515. [Google Scholar] [CrossRef] [Green Version]
- Feagin, R.A.; Figlus, J.; Zinnert, J.C.; Sigren, J.; Martínez, M.L.; Silva, R.; Smith, W.K.; Cox, D.; Young, D.R.; Carter, G. Going with the Flow or against the Grain? The Promise of Vegetation for Protecting Beaches, Dunes, and Barrier Islands from Erosion. Front. Ecol. Environ. 2015, 13, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Lausch, A.; Schaepman, M.E.; Skidmore, A.K.; Truckenbrodt, S.C.; Hacker, J.M.; Baade, J.; Bannehr, L.; Borg, E.; Bumberger, J.; Dietrich, P.; et al. Linking the Remote Sensing of Geodiversity and Traits Relevant to Biodiversity—Part II: Geomorphology, Terrain and Surfaces. Remote Sens. 2020, 12, 3690. [Google Scholar] [CrossRef]
- Kombiadou, K.; Costas, S.; Carrasco, A.R.; Plomaritis, T.A.; Ferreira, Ó.; Matias, A. Bridging the Gap between Resilience and Geomorphology of Complex Coastal Systems. Earth-Sci. Rev. 2019, 198, 102934. [Google Scholar] [CrossRef]
- Ranasinghe, R. Assessing Climate Change Impacts on Open Sandy Coasts: A Review. Earth-Sci. Rev. 2016, 160, 320–332. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.T.; Rangel-Buitrago, N.; Pranzini, E.; Anfuso, G. The Management of Coastal Erosion. Ocean Coast. Manag. 2018, 156, 4–20. [Google Scholar] [CrossRef]
- Łabuz, T.A. A Review of Field Methods to Survey Coastal Dunes—Experience Based on Research from South Baltic Coast. J. Coast. Conserv. 2016, 20, 175–190. [Google Scholar] [CrossRef]
- Franco-Ochoa, C.; Zambrano-Medina, Y.; Plata-Rocha, W.; Monjardín-Armenta, S.; Rodríguez-Cueto, Y.; Escudero, M.; Mendoza, E. Long-Term Analysis of Wave Climate and Shoreline Change along the Gulf of California. Appl. Sci. 2020, 10, 8719. [Google Scholar] [CrossRef]
- Powell, E.J.; Tyrrell, M.C.; Milliken, A.; Tirpak, J.M.; Staudinger, M.D. A Review of Coastal Management Approaches to Support the Integration of Ecological and Human Community Planning for Climate Change. J. Coast. Conserv. 2019, 23, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Eichentopf, S.; Karunarathna, H.; Alsina, J.M. Morphodynamics of Sandy Beaches under the Influence of Storm Sequences: Current Research Status and Future Needs. Water Sci. Eng. 2019, 12, 221–234. [Google Scholar] [CrossRef]
- de Oliveira, J.F.; Barboza, E.G.; Martins, E.M.; Scarelli, F.M. Geomorphological and Stratigraphic Analysis Applied to Coastal Management. J. S. Am. Earth Sci. 2019, 96, 102358. [Google Scholar] [CrossRef]
- Boak, E.H.; Turner, I.L. Shoreline Definition and Detection: A Review. J. Coast. Res. 2005, 214, 688–703. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, R.M.; Saleem, A.; Queiroz, H.A.A.; Awange, J.L. A Fuzzy Model Integrating Shoreline Changes, NDVI and Settlement Influences for Coastal Zone Human Impact Classification. Appl. Geogr. 2019, 113, 102093. [Google Scholar] [CrossRef]
- Apostolopoulos, D.N.; Nikolakopoulos, K.G. Assessment and Quantification of the Accuracy of Low- and High-Resolution Remote Sensing Data for Shoreline Monitoring. ISPRS Int. J. Geo-Inf. 2020, 9, 391. [Google Scholar] [CrossRef]
- Román-Rivera, M.A.; Ellis, J.T. A Synthetic Review of Remote Sensing Applications to Detect Nearshore Bars. Mar. Geol. 2019, 408, 144–153. [Google Scholar] [CrossRef]
- Nazeer, M.; Waqas, M.; Shahzad, M.I.; Zia, I.; Wu, W. Coastline Vulnerability Assessment through Landsat and Cubesats in a Coastal Mega City. Remote Sens. 2020, 12, 749. [Google Scholar] [CrossRef] [Green Version]
- Purkis, S.J.; Gardiner, R.; Johnston, M.W.; Sheppard, C.R.C. A Half-Century of Coastline Change in Diego Garcia–The Largest Atoll Island in the Chagos. Geomorphology 2016, 261, 282–298. [Google Scholar] [CrossRef]
- Cellone, F.; Carol, E.; Tosi, L. Coastal Erosion and Loss of Wetlands in the Middle Río de La Plata Estuary (Argentina). Appl. Geogr. 2016, 76, 37–48. [Google Scholar] [CrossRef]
- INEGI. Anuario Estadístico del Estado de Sinaloa; INEGI: Ciudad de México, Mexico, 2018.
- Brito-Rodríguez, M.; Cánoves-Valiente, G. Tourism Development in Mazatlan, Mexico: An Analysis of the Conditions of Sustainability. Cuad. Tur. 2019, 43, 579–583. [Google Scholar]
- Vos, K.; Splinter, K.D.; Harley, M.D.; Simmons, J.A.; Turner, I.L. CoastSat: A Google Earth Engine-Enabled Python Toolkit to Extract Shorelines from Publicly Available Satellite Imagery. Environ. Model. Softw. 2019, 122, 104528. [Google Scholar] [CrossRef]
- Vos, K.; Harley, M.D.; Splinter, K.D.; Simmons, J.A.; Turner, I.L. Sub-Annual to Multi-Decadal Shoreline Variability from Publicly Available Satellite Imagery. Coast. Eng. 2019, 150, 160–174. [Google Scholar] [CrossRef]
- Lennert, M. Addon. v.Centerline.Py 2017. Available online: https://grass.osgeo.org/grass78/manuals/addons/v.centerline.html (accessed on 1 March 2021).
- Thieler, E.R.; Danforth, W.W. Historical Shoreline Mapping (II): Application of the Digital Shoreline Mapping and Analysis Systems (DSMS/DSAS) to Shoreline Change Mapping in Puerto Rico. J. Coast. Res. 1994, 10, 600–620. [Google Scholar]
- Bheeroo, R.A.; Chandrasekar, N.; Kaliraj, S.; Magesh, N.S. Shoreline Change Rate and Erosion Risk Assessment along the Trou Aux Biches–Mont Choisy Beach on the Northwest Coast of Mauritius Using GIS-DSAS Technique. Environ. Earth Sci. 2016, 75, 444. [Google Scholar] [CrossRef]
- Gens, R. Remote Sensing of Coastlines: Detection, Extraction and Monitoring. Int. J. Remote Sens. 2010, 31, 1819–1836. [Google Scholar] [CrossRef]
- Nel, R.; Campbell, E.E.; Harris, L.; Hauser, L.; Schoeman, D.S.; McLachlan, A.; du Preez, D.R.; Bezuidenhout, K.; Schlacher, T.A. The Status of Sandy Beach Science: Past Trends, Progress, and Possible Futures. Estuar. Coast. Shelf Sci. 2014, 150, 1–10. [Google Scholar] [CrossRef]
- Valderrama-Landeros, L.; Flores-de-Santiago, F. Assessing Coastal Erosion and Accretion Trends along Two Contrasting Subtropical Rivers Based on Remote Sensing Data. Ocean Coast. Manag. 2019, 169, 58–67. [Google Scholar] [CrossRef]
- Valderrama-Landeros, L.; Blanco y Correa, M.; Flores-Verdugo, F.; Álvarez-Sánchez, L.F.; Flores-de-Santiago, F. Spatiotemporal Shoreline Dynamics of Marismas Nacionales, Pacific Coast of Mexico, Based on a Remote Sensing and GIS Mapping Approach. Environ. Monit. Assess. 2020, 192, 123. [Google Scholar] [CrossRef] [PubMed]
- Serrano, D.; Flores-Verdugo, F.; Ramírez-Félix, E.; Kovacs, J.M.; Flores-de-Santiago, F. Modeling Tidal Hydrodynamic Changes Induced by the Opening of an Artificial Inlet within a Subtropical Mangrove Dominated Estuary. Wetl. Ecol. Manag. 2020, 28, 103–118. [Google Scholar] [CrossRef]
- Jiménez-Illescas, Á.R.; Zayas-Esquer, M.M.; Espinosa-Carreón, T.L. Integral Management of the Coastal Zone to Solve the Problems of Erosion in Las Glorias Beach, Guasave, Sinaloa, Mexico. In Coastal Management; Elsevier: Amsterdam, The Netherlands, 2019; pp. 141–163. [Google Scholar]
- Serrano, D.; Valle-Levinson, A. Effects of River Discharge and the California Current on Pycnocline Depth at the Eastern Entrance to the Gulf of California. Cont. Shelf Res. 2021, 215, 104356. [Google Scholar] [CrossRef]
- Vizcaya-Martínez, D.A.; Flores-de-Santiago, F.; Valderrama-Landeros, L.; Serrano, D.; Rodríguez-Sobreyra, R.; Álvarez-Sánchez, L.F.; Flores-Verdugo, F. Monitoring Detailed Mangrove Hurricane Damage and Early Recovery Using Multisource Remote Sensing Data. J. Environ. Manag. 2022, 320, 115830. [Google Scholar] [CrossRef] [PubMed]
- Schlacher, T.A.; Schoeman, D.S.; Jones, A.R.; Dugan, J.E.; Hubbard, D.M.; Defeo, O.; Peterson, C.H.; Weston, M.A.; Maslo, B.; Olds, A.D.; et al. Metrics to Assess Ecological Condition, Change, and Impacts in Sandy Beach Ecosystems. J. Environ. Manag. 2014, 144, 322–335. [Google Scholar] [CrossRef] [PubMed]
- García-Rubio, G.; Huntley, D.; Russell, P. Evaluating Shoreline Identification Using Optical Satellite Images. Mar. Geol. 2015, 359, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Dean, R.G.; Houston, J.R. Determining Shoreline Response to Sea Level Rise. Coast. Eng. 2016, 114, 1–8. [Google Scholar] [CrossRef]
- Han, X.; Feng, L.; Hu, C.; Kramer, P. Hurricane-Induced Changes in the Everglades National Park Mangrove Forest: Landsat Observations Between 1985 and 2017. J. Geophys. Res. Biogeosc. 2018, 123, 3470–3488. [Google Scholar] [CrossRef]
- Montgomery, J.M.; Bryan, K.R.; Mullarney, J.C.; Horstman, E.M. Attenuation of Storm Surges by Coastal Mangroves. Geophys. Res. Lett. 2019, 46, 2680–2689. [Google Scholar] [CrossRef] [Green Version]
- Godwyn-Paulson, P.; Jonathan, M.P.; Roy, P.D.; Rodríguez-Espinosa, P.F.; Muthusankar, G.; Muñoz-Sevilla, N.P.; Lakshumanan, C. Evolution of Southern Mexican Pacific Coastline: Responses to Meteo-Oceanographic and Physiographic Conditions. Reg. Stud. Mar. Sci. 2021, 47, 101914. [Google Scholar] [CrossRef]
- Xu, C.; Liu, W. The Spatiotemporal Characteristics and Dynamic Changes of Tidal Flats in Florida from 1984 to 2020. Geographies 2021, 1, 292–314. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valderrama-Landeros, L.; Flores-Verdugo, F.; Flores-de-Santiago, F. Assessing the Coastal Vulnerability by Combining Field Surveys and the Analytical Potential of CoastSat in a Highly Impacted Tourist Destination. Geographies 2022, 2, 642-656. https://doi.org/10.3390/geographies2040039
Valderrama-Landeros L, Flores-Verdugo F, Flores-de-Santiago F. Assessing the Coastal Vulnerability by Combining Field Surveys and the Analytical Potential of CoastSat in a Highly Impacted Tourist Destination. Geographies. 2022; 2(4):642-656. https://doi.org/10.3390/geographies2040039
Chicago/Turabian StyleValderrama-Landeros, Luis, Francisco Flores-Verdugo, and Francisco Flores-de-Santiago. 2022. "Assessing the Coastal Vulnerability by Combining Field Surveys and the Analytical Potential of CoastSat in a Highly Impacted Tourist Destination" Geographies 2, no. 4: 642-656. https://doi.org/10.3390/geographies2040039
APA StyleValderrama-Landeros, L., Flores-Verdugo, F., & Flores-de-Santiago, F. (2022). Assessing the Coastal Vulnerability by Combining Field Surveys and the Analytical Potential of CoastSat in a Highly Impacted Tourist Destination. Geographies, 2(4), 642-656. https://doi.org/10.3390/geographies2040039