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Abstract: Continuous observation and management of agriculture are essential to estimate crop
yield and crop failure. Remote sensing is cost-effective, as well as being an efficient solution to
monitor agriculture on a larger scale. With high-resolution satellite datasets, the monitoring and
mapping of agricultural land are easier and more effective. Nowadays, the applicability of deep
learning is continuously increasing in numerous scientific domains due to the availability of high-end
computing facilities. In this study, deep learning (U-Net) has been implemented in the mapping
of different agricultural land use types over a part of Punjab, India, using the Sentinel-2 data. As
a comparative analysis, a well-known machine learning random forest (RF) has been tested. To
assess the agricultural land, the major winter season crop types, i.e., wheat, berseem, mustard, and
other vegetation have been considered. In the experimental outcomes, the U-Net deep learning and
RF classifiers achieved 97.8% (kappa value: 0.9691) and 96.2% (Kappa value: 0.9469), respectively.
Since little information exists on the vegetation cultivated by smallholders in the region, this study
is particularly helpful in the assessment of the mustard (Brassica nigra), and berseem (Trifolium
alexandrinum) acreage in the region. Deep learning on remote sensing data allows the object-level
detection of the earth’s surface imagery.

Keywords: ENVINet5-based deep learning; agriculture land; random forest; Sentinel-2 satellite data

1. Introduction

In agricultural land, several factors affect the mapping of smallholder farm plots,
such as the multiple types of land management techniques, the scale of plots, vegetation
variation, and lack of accurate field boundaries among a majority of the land management
system [1,2]. Thus, the mapping of smallholder farmers’ farms, their operation, and the
vegetation area spatial distribution remain the key components in monitoring [3–5]. In
India, small farmers account for approximately 86% of operational landholdings [6,7],
which significantly contributes to the gross domestic product (GDP), as well as achieving
sustainable development goals (SDG) [8–10]. Therefore, it is necessary to monitor the
agricultural land on a regular basis, as crop insurance is also an integral component of
agriculture planning, and estimating crop yields, acreages, and crops at the block/tehsil
level [11,12]. However, there are many challenges involved in conducting field surveys,
such as cost constraints, weather conditions, and topography of the land [13,14].

Currently, remote sensing via space-borne satellite sensors plays an active role in
decision-making support via the delivery of accurate data with temporal and spatial resolu-
tion [15,16]. In contrast to earlier studies, it was difficult to distinguish the smaller plots from
low-or-medium resolution images [16–19]. However, with the integration of deep learning
in moderate-resolution datasets, detailed and accurate information can be extracted in a
more accurate and detailed way. To classify or categorize the vegetation types, numerous
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remote sensing datasets, e.g., Sentinel-1 (microwave-based), Sentinel-2 (optical-based) [20],
Scatterometer [21–23], Landsat-8 [24], and many more were utilized to provide the cloud-
free information [25,26]. Among the various satellite datasets, Sentinel-2 attracts the interest
of many researchers due to its finer spatial resolution, free availability of datasets, and
applicability in vegetation type/area classification and yield forecasting [27–29].

The processing of satellite datasets with advanced models, i.e., object-based classifica-
tion or deep learning, allows the estimation yield data for highly commercial vegetation
types, such as wheat berseem and mustard [30]. Previous literature has shown the effec-
tiveness of different machine learning or deep learning algorithms, such as autoencoder
(AE), stacked AE (SAE), convolutional neural network (CNN), recurrent CNN (R-CNN),
fully convolutional network (FCN), recurrent NN (RNN), graph NN (GNN), and restricted
Boltzmann machine (RBM) [30–33]. Table 1 shows the summary of the applicability of
different satellite datasets on classification algorithms [33]. In addition, various authors
investigated the effectiveness of using deep learning with different satellite datasets, such
as hyperspectral [34], Synthetic Aperture Radar (SAR) [35], POLSAR (Polarimetric SAR)
data [36–39] and many more [33].

Table 1. A brief summary of different classification algorithms.

References Classes Accuracy Satellite Dataset Classifiers

[40] 10 77% WV-2 1 ANN 2

[41] 22 86.2% Colour Plant Images DCNN 3

[42] 11 85% Sentinel-1 CNN 4

[25] 11 96% Sentinel-1 RNN 5, K-NN 6, RF 7 and
VSM 8

[43] 5 87.3% Landsat-8, Sentinel-2 ML 9

[44] 14 92% Sentinel-2 ML 9 and DL 10

[45] 8 94.94% Sentinel-1, Sentinel-2 TWINNS 11

[46] 3 97.53% Digital images R-CNN 12

[47] 4 94.85% Landsat-8, Sentinel-2 FCNs 13

[48] 15 96.5% Sentinel-2 R-CNN 12

[49] 10 98.7% Sentinel-2 CNN 4 and R-CNN 12

[50] 2 91% Landsat-8, Sentinel-2 DL 10

[27] 5 88% Sentinel-2 DL 10

[17] 21 77.6% Sentinel-2 RF 7, SVM 14

[15] 8 90.33% Sentinel-1, Sentinel-2 RF 7

[6] 5 97.2%, Sentinel-2 DLCD 15, RF 7, CNN 4,
SVM 14

[8] 6 96.7% Landsat-5, Landsat-8 CA-ANN 16, SVM 14

[3] 9 97.22% Sentinel-2 KNN 17, RF 7

[1] 6 95.48% Landsat-8, Sentinel-2 RF 7, SVM 14

1 WV-2: World View-2, 2 ANN: Artificial Neural Network, 3 DCNN: Deep Convolutional NN, 4 CNN: Convolu-
tional NN, 5 RNN: Recurrent NN, 6 K-NN: K-Nearest Neighbors, 7 RF: Random Forest, 8 VSM: Vector Support
Machines, 9 ML: Machine Learning, 10 DL: Deep Learning, 11 TWINS: TWIn NN for Sentinel Dataset, 12 R-CNN:
Recurrent-Convolutional NN, 13 FCN: Fully Convolutional Network, 14 SVM: Support Vector Machines, 15 DLCD:
Deep Learning Change Detection, 16 CA-ANN: Cellular Automata-ANN, 17 KNN: K-Nearest Neighbour.

Deep learning is dependent on the trained model for reducing user intervention
and making the process semiautonomous or autonomous [51,52]. On the other hand,
deep learning models require more computational power compared to machine learn-
ing algorithms [21,53,54]. Furthermore, the extraction of different land-use types from a
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medium-resolution satellite dataset is a challenging task in deep learning. This may be due
to the impact of the atmospheric/radiometric influence on the medium-resolution satellite
dataset. Thus, analysis of the impact of deep learning in the identification of land-use types
from medium-resolution satellite datasets is essential.

In this study, deep learning (U-Net) has been implemented to map the different agricul-
tural land use types using Sentinel-2. The objectives of the study included: (a) Implementation
of U-Net-based deep learning over a region of Punjab, India; (b) detection of major agricul-
ture land use types, i.e., wheat, berseem, mustard, other vegetation, water, and buildup;
(c) validation and comparative analysis with RF classifier. This area was selected because of its
agriculture-intensive zone, where vegetation lands have been divided into small holdings [55].
In addition, it contains a healthy mix of various types of land use and contains significant
areas under both edible vegetation, most of which is wheat, and cash crops, which are mostly
mustard. Furthermore, the area also contains several large species of fish as a result of the
conversion of former fields into aquaculture ponds.

2. Study Area and Dataset

The region-of-interest (ROI) has been acquired from Fatehgarh Sahib (Punjab) India at
geographic coordinates of 30◦33′ N to 30◦35′ N and 76◦29′ E to 76◦32′ E, with a coverage
of 443 hectares, as shown in Figure 1. The study area includes various class categories,
such as wheat, berseem, mustard, other vegetation (unable to separate using medium
resolution imagery due to very small land holding), water, and buildup. The Punjab region
(India) is an important food grain state of India that contributes the greatest portion of
the wheat and rice stock. The ROI was acquired during the winter season on a cloud-free
day, i.e., 19 February 2018, from Sentinel-2 (https://earthexplorer.usgs.gov/, accessed
date: 15 September 2022). During this period, the different crops, i.e., wheat, berseem, and
mustard are in the budding/flowering stage and the atmosphere is nearly clear, which
helps in the acquisition of imagery with the least impact of clouds on remote sensing
images. The spatial resolution of the Sentinel-2 data varies from 10 m to 60 m with respect
to thirteen spectral wavelengths (0.443–2.190 µm). Moreover, the high-resolution dataset
has been utilized from the Pléiades constellation for accuracy assessment and training
purposes.
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Figure 1. Location of the study: (a) Punjab state map (India), (b) Sentinel-2 satellite data from 19
February 2018 in Red-Green-Blue 4-3-2 color bands (for the natural color), (c) Color infrared imagery
from 19 February 2018 in Red-Green-Blue 8-4-3 color bands (color infrared highlighting the unhealthy
and healthy vegetation).

https://earthexplorer.usgs.gov/
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3. Methodology

As shown in Figure 2, the proposed methodology involves the acquisition of Sentinel-2
satellite data of ROI, preprocessing of the data to overcome atmospheric and radiometric
errors, implementation of deep learning-based U-Net and machine learning based RF clas-
sifier to detect the different land use types from ROI, and validation or accuracy assessment
procedures. This framework solves geographic problems in detection of agricultural land
(the average size of the landholdings in India was 1.08 hectares as per the Agriculture
Census) with the help of deep learning-based U-Net [22,56]. It requires training the model
using input label rasters that indicate known feature samples [36,57].
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Figure 2. An operational model for the mapping of agricultural land using ENVINet5-based deep
learning.

3.1. Preprocessing of the Input Data

The Sentinel-2 data needs to be preprocessed to overcome atmospheric and radiometric
errors. The Sen2Cor v2.9 module (for Sentinel-2 Level 2A, Sentinel application platform
(SNAP) version) has been utilized to perform the atmospheric and radiometric corrections.
In addition, it effectively corrects sun angle variations, daytime haze effects, and smaller
haze effects, but it does not remove clouds. Hence, cloud-free images are recommended
when processing the Sentinel-2 data via Sen2Cor. Once the data is preprocessed, deep
learning or machine learning can be implemented to generate classified maps.

3.2. Deep Learning and Machine Learning

As an essential part of machine learning, deep learning models work on the principle
of neural networks to learn and recognize data [58]. It can be defined as (a) supervised,
(b) unsupervised, and (c) transfer-based [8,59,60]. A supervised learning process associates
a target subject with a class affiliation explicitly; in an unsupervised learning process,
data structures are used to associate class affiliation with the target concept [15]. In the
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third category, information is utilized across different activities in a coordinated manner to
increase efficiency [17]. The object-level detection accuracy of the model generally depends
on the depth of the neural network, as in CNN and GNN [31,52]. The U-Net, which evolved
from the CNN, was utilized in many other applications, such as glacier research [58],
biomedical imaging [61], sea-ice or ice shelf mapping [57], land boundaries [56], and big
data remote sensing for next-generation mapping [62].

The U-Net as a supervised semantic segmentation network has been implemented
in the present work to map agricultural land use types [61]. To implement the U-Net,
deep learning (Ver. 1.1) in ENVI’s software v5.6 has been utilized. This architecture is
encoder-decoder and mask-based to classify the satellite data into different land use types.
To perform the classification, an open-source software library, named TensorFlow model, is
utilized as a main part of the deep learning procedure. The TensorFlow model provides
flexibility, portability, and optimization of performance [63]. As shown in Figure 2, there are
two major parts of the U-Net architecture, i.e., downscaling (used to increase the robustness
with respect to the distortion in the imagery) and upscaling (used for restoration and
decoding of the object features with respect to the input imagery).

In ENVI’s deep learning model, there are two options, i.e., ENVINet5 (single class
classification) and ENVI Net-Multi (multiple classes categorization), to classify input
data [64]. To train the TensorFlow model, multiple samples have been selected for each
class category, i.e., wheat, berseem, mustard, other vegetation, water, and buildup. In
the training process, the TensorFlow model converts the spatial/spectral information in
input imagery into a class activation or thematic map. Once the model is trained, the
georeferenced activation and classified maps are generated. The activation maps are the
fractional maps generated for each class category and they help improve the classified
maps with the selection of manual or automatic threshold methods [6]. For the comparative
analysis, a machine learning-based RF classifier has also been implemented. The RF
classifier as a random decision forest allows the construction of multiple decision trees at
training time to classify the datasets.

4. Results and Discussion

Initially, the Sentinel-2 data was acquired and preprocessed through the Sen2Cor
v2.8 module to generate the reflectance imagery, as shown in Figure 1 [65,66]. To im-
plement the deep learning classifier, the model needs to be trained for different class
categories. A total of 30–35 polygons are repeated throughout the image as inputs for
this training for classifying rabi season crops with deep learning and random forest clas-
sifiers [20,67]. The 100–150 pixels were considered in each polygon segment during the
training process [7,68,69]. Afterwards, the activation (fractional) maps (i.e., wheat, berseem,
mustard, other vegetation, water, and buildup area) are generated via ENVI’s U-Net-based
deep learning, as shown in Figure 3. The intensity level of the activation maps varies from
the maximum (represented by pure white) to the minimum (represented by pure black).
Activation maps allow the reproduction of classified maps with improved accuracy while
dealing with medium-resolution data. Furthermore, the different threshold methods could
also be tested to generate the accuracy of classified maps in ENVI’s U-Net-based deep
learning. Reference [6] highlighted the significance of activation maps in the detection of
seasonal agricultural variations.
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Figure 4 represents the visual interpretation of classified outputs generated from U-
Net-based deep learning and RF-based machine learning. To perform the statistical analysis,
the various parameters have been computed, i.e., producer’s accuracy (PA), user’s accuracy
(UA), overall accuracy (OA), kappa coefficient (k), Reference Total (RT); Classified Total
(CT); and Number of correct (NC). Table 2 represents the accuracy assessment computed
from U-Net-based deep learning and RF-based machine learning. It was observed that
U-Net-based deep learning performed better (OA = 97.8% and k = 0.9691), as compared to
RF-based machine learning (OA = 96.8% and k = 0.9691).
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Table 2. Accuracy assessment computed from U-Net and RF classification algorithms.

Total No. of Class
Categories

Parameters of Accuracy Assessment

RT (%) CT (%) NC (%) PA (%) UA (%) k

U-Net

Wheat 38.6 39.2 39.4 98.9 97.4 0.95
Berseem 12.6 12.4 12.4 96.8 98.3 0.98
Mustard 5 5.2 5.1 100 96.1 0.95

Other vegetation 33.6 34.2 34.3 100 98.2 0.97
Water 5 4.6 4.4 88 95.6 0.95

Buildup 5.2 4.4 4.4 84.6 100 1.00

OA = 97.8%; k = 0.9691

RF

Wheat 38.2 39.2 39 98.9 95.9 0.93
Berseem 12.4 12.4 12.4 95.1 95.1 0.94
Mustard 5.8 5.2 5.6 89.6 100 1.00

Other vegetation 33.6 34.2 33.8 98.7 95.3 0.93
Water 5.2 4.6 4.7 88.4 100 1.00

Buildup 4.8 4.4 4.5 91.6 100 1.00

OA = 96.2%; k = 0.9469

Note: For accuracy assessment, 500 samples have been selected from each class category.

In the previous studies [6], the authors attempted to assess ENVI’s U-Net architecture
in the detection of seasonal variation with limited class categories. As an objective of the
present work, the performance of ENVI’s U-Net architecture was evaluated over agricul-
tural land in the mapping of different vegetation class categories, i.e., wheat, berseem,
mustard, and other vegetation using medium-resolution Sentinel-2 satellite imagery. From
the results, it is depicted that ENVI’s U-Net architecture has the potential for the extraction
of different vegetation class categories. As compared to many other versions of the U-Net
model architecture, ENVI’s U-Net is easy to implement without any explicit program-
ming [56,58]. It also included a greater number of features for different applications, such
as boundary mapping, threshold algorithms, and an easy user interface [64].

As ENVI’s U-Net (deep learning v1.1, ENVI v5.6) is in the initial stage of develop-
ment, the major challenges involved in its use included the lack of full customization of
various model parameters, inability to classify the entire input raster when least values
of parameters were selected, and lack of accuracy in object-level detection. However, the
accuracy of classification could be improved by applying the in-built manual or automatic
threshold algorithms (e.g., Otsu, empirical, etc.) on the activation maps in ENVI’s U-Net.
This procedure allows the regeneration of thematic maps without the re-computation of
the entire deep learning model. Furthermore, the outcomes of ENVI’s U-Net could also be
improved in terms of more customization and integration with other models. As far as the
cloud problem is concerned [70], microwave data can be utilized or infused with optical
datasets to get accurate outcomes.

5. Conclusions

In this work, ENVI’s deep learning (U-Net) has been evaluated in the estimation and
mapping of different vegetation class categories, i.e., wheat, berseem, mustard, and other
vegetation, using medium-resolution Sentinel-2 satellite data. As part of the comparative
analysis, a well-known and commonly used RF classifier has also been implemented and it
was concluded that U-Net-based deep learning performed marginally better compared to
RF-based machine learning. Although it performed well in the automatic identification of
land-use features, many challenges are still involved in ENVI’s deep learning, which need
to be addressed with more flexibility in the selection of parameter values and integration
with self-designed programming models. It also needs to be improved by the addition of
features with respect to different scientific domains. As far as agriculture is concerned, it is
necessary to correctly identify different seasonal crops on land plots to successfully update
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images to provide an up-to-date inventory of crops across seasons, making agriculture
policy and mapping more accurate. Further studies may comprise the deep learning of the
multisource data fusion in the cloud-free monitoring of agricultural land types.
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