Recognition of Potential Geosites Utilizing a Hydrological Model within Qualitative–Quantitative Assessment of Geodiversity in the Manawatu River Catchment, New Zealand
Abstract
:1. Introduction
2. Overview of Manawatu Basin
2.1. Geology and Geomorphology
2.2. Hydrological System and Climate
3. Methodology
3.1. Assessment of Geodiversity
3.2. Evaluation System
3.2.1. Main Values
3.2.2. Additional Values
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Migoń, P.; Pijet-Migoń, E. The role of geodiversity and geoheritage in tourism and local development. Geol. Soc. Lond. Spec. Publ. 2023, 530, SP530-2022-2115. [Google Scholar] [CrossRef]
- Gray, M. Geodiversity: Developing the paradigm. Proc. Geol. Assoc. 2008, 119, 287–298. [Google Scholar] [CrossRef]
- Kozłowski, S. Geodiversity. The concept and scope of geodiversity. Przegląd Geol. 2004, 52, 833–837. [Google Scholar]
- Serrano, E.; Ruiz-Flaño, P. Geodiversity: A theoretical and applied concept. Geogr. Helv. 2007, 62, 140–147. [Google Scholar] [CrossRef]
- Zakharovskyi, V.; Németh, K. Quantitative-Qualitative Method for Quick Assessment of Geodiversity. Land 2021, 10, 946. [Google Scholar] [CrossRef]
- Zwoliński, Z.; Najwer, A.; Giardino, M. Methods for assessing geodiversity. In Geoheritage; Elsevier: Amsterdam, The Netherlands, 2018; pp. 27–52. [Google Scholar]
- da Silva, M.L.N.; do Nascimento, M.A.L.; Mansur, K.L. Quantitative assessments of geodiversity in the area of the Seridó Geopark Project, Northeast Brazil: Grid and centroid analysis. Geoheritage 2019, 11, 1177–1186. [Google Scholar] [CrossRef]
- Dias, M.C.S.S.; Domingos, J.O.; dos Santos Costa, S.S.; do Nascimento, M.A.L.; da Silva, M.L.N.; Granjeiro, L.P.; de Lima Miranda, R.F. Geodiversity Index Map of Rio Grande do Norte State, Northeast Brazil: Cartography and Quantitative Assessment. Geoheritage 2021, 13, 10. [Google Scholar] [CrossRef]
- Pereira, D.I.; Pereira, P.; Brilha, J.; Santos, L. Geodiversity assessment of Paraná State (Brazil): An innovative approach. Environ. Manag. 2013, 52, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Zakharovskyi, V.; Németh, K. Qualitative-Quantitative Assessment of Geodiversity of Western Samoa (SW Pacific) to Identify Places of Interest for Further Geoconservation, Geoeducation, and Geotourism Development. Geographies 2021, 1, 362–380. [Google Scholar] [CrossRef]
- Silva, J.P.; Pereira, D.I.; Aguiar, A.M.; Rodrigues, C. Geodiversity assessment of the Xingu drainage basin. J. Maps 2013, 9, 254–262. [Google Scholar] [CrossRef] [Green Version]
- Serrano, E.; Ruiz-Flaño, P.; Arroyo, P. Geodiversity assessment in a rural landscape: Tiermes-Caracena area (Soria, Spain). Mem. Descr. Della Carta Geoligica D’italia 2009, 87, 173–180. [Google Scholar]
- Pál, M.; Albert, G. Refinement Proposals for Geodiversity Assessment—A Case Study in the Bakony–Balaton UNESCO Global Geopark, Hungary. ISPRS Int. J. Geo-Inf. 2021, 10, 566. [Google Scholar] [CrossRef]
- Gray, M. Geoheritage 1. Geodiversity: A new paradigm for valuing and conserving geoheritage. Geosci. Can. 2008, 35, 51–59. [Google Scholar]
- Leopold, L.B.; Langbein, W.B. The Concept of Entropy in Landscape Evolution; US Government Printing Office: Washington, DC, USA, 1962; Volume 500, p. 26.
- Huggett, R. A history of the systems approach in geomorphology. Géomorphol. Relief Process. Environ. 2007, 13, 145–158. [Google Scholar] [CrossRef]
- Zhao, W.; Tang, G.; Ma, L.; Zhao, J.; Zhou, W.; Tian, J.; Huang, X. Digital elevation model-based watershed geomorphic entropy for the study of landscape evolution of a watershed geomorphic system in the loess landforms of China. Prog. Phys. Geogr. 2017, 41, 139–153. [Google Scholar] [CrossRef]
- Ferrando, A.; Faccini, F.; Paliaga, G.; Coratza, P. A quantitative GIS and AHP based analysis for geodiversity assessment and mapping. Sustainability 2021, 13, 10376. [Google Scholar] [CrossRef]
- Perotti, L.; Carraro, G.; Giardino, M.; De Luca, D.A.; Lasagna, M. Geodiversity evaluation and water resources in the Sesia Val Grande UNESCO Geopark (Italy). Water 2019, 11, 2102. [Google Scholar] [CrossRef] [Green Version]
- de la Hera-Portillo, Á.; López-Gutiérrez, J.; Moreno-Merino, L.; Llorente-Isidro, M.; Fensham, R.; Fernández, M.; Ghanem, M.; Salman, K.; Sánchez-Fabián, J.Á.; Gallego-Rojas, N. Geodiversity of Las Loras UNESCO Global Geopark: Hydrogeological Significance of Groundwater and Landscape Interaction and Conceptual Model of Functioning. Resources 2023, 12, 14. [Google Scholar] [CrossRef]
- Hudson, B.J. Waterfalls, science and aesthetics. J. Cult. Geogr. 2013, 30, 356–379. [Google Scholar] [CrossRef] [Green Version]
- Hudson, B.J. Waterfalls, tourism and landscape. Geography 2006, 91, 3–12. [Google Scholar] [CrossRef]
- Wubalem, A.; Reynolds, T.W.; Wodaju, A. Estimating the recreational use value of Tis-Abay Waterfall in the upstream of the Blue Nile River, North-West Ethiopia. Heliyon 2022, 8, e12410. [Google Scholar] [CrossRef]
- Jo, H.; Ikei, H.; Miyazaki, Y. Physiological and Psychological Responses of Viewing a Waterfall Image: A Crossover Study. Int. J. Environ. Res. Public Health 2022, 20, 565. [Google Scholar] [CrossRef]
- Shit, P.K.; Bera, B.; Islam, A.; Ghosh, S.; Bhunia, G.S. Introduction to drainage basin dynamics: Morphology, landscape and modelling. In Drainage Basin Dynamics: An Introduction to Morphology, Landscape and Modelling; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–9. [Google Scholar]
- Broadley, A.; Stewart-Koster, B.; Burford, M.A.; Brown, C.J. A global review of the critical link between river flows and productivity in marine fisheries. Rev. Fish Biol. Fish. 2022, 32, 805–825. [Google Scholar] [CrossRef]
- Miller, B.A.; Juilleret, J. The colluvium and alluvium problem: Historical review and current state of definitions. Earth-Sci. Rev. 2020, 209, 103316. [Google Scholar] [CrossRef]
- Langbein, W.B. Geometry of river channels. J. Hydraul. Div. 1964, 90, 301–312. [Google Scholar] [CrossRef]
- Zakharovskyi, V.; Németh, K. Geomorphological Model Comparison for Geosites, Utilizing Qualitative–Quantitative Assessment of Geodiversity, Coromandel Peninsula, New Zealand. Geographies 2022, 2, 609–628. [Google Scholar] [CrossRef]
- Dymond, J.R.; Herzig, A.; Basher, L.; Betts, H.D.; Marden, M.; Phillips, C.J.; Ausseil, A.-G.E.; Palmer, D.J.; Clark, M.; Roygard, J. Development of a New Zealand SedNet model for assessment of catchment-wide soil-conservation works. Geomorphology 2016, 257, 85–93. [Google Scholar] [CrossRef]
- Dymond, J.R.; Vale, S.S. An event-based model of soil erosion and sediment transport at the catchment scale. Geomorphology 2018, 318, 240–249. [Google Scholar] [CrossRef]
- Manighetti, I.; Perrin, C.; Gaudemer, Y.; Dominguez, S.; Stewart, N.; Malavieille, J.; Garambois, S. Repeated giant earthquakes on the Wairarapa fault, New Zealand, revealed by Lidar-based paleoseismology. Sci. Rep. 2020, 10, 2124. [Google Scholar] [CrossRef] [Green Version]
- Keyes, I. New records of fossil elasmobranch genera Megascyliorhinus, Centrophorus, and Dalatias (Order Selachii) in New Zealand. N. Z. J. Geol. Geophys. 1984, 27, 203–216. [Google Scholar] [CrossRef]
- Lo Re, G.; Fuller, I.C.; Sofia, G.; Tarolli, P. High-resolution mapping of Manawatu palaeochannels. N. Z. Geogr. 2018, 74, 77–91. [Google Scholar] [CrossRef]
- Fuller, I.C.; Macklin, M.G.; Toonen, W.H.; Holt, K.A. Storm-generated Holocene and historical floods in the Manawatu River, New Zealand. Geomorphology 2018, 310, 102–124. [Google Scholar] [CrossRef]
- 1:250,000 Geological Map of New Zealand (QMAP). Available online: https://www.gns.cri.nz/Home/Our-Science/Land-and-Marine-Geoscience/Regional-Geology/Geological-Maps/1-250-000-Geological-Map-of-New-Zealand-QMAP (accessed on 31 August 2021).
- Clement, A.J.; Fuller, I.C. Influence of system controls on the Late Quaternary geomorphic evolution of a rapidly-infilled incised-valley system: The lower Manawatu valley, North Island New Zealand. Geomorphology 2018, 303, 13–29. [Google Scholar] [CrossRef]
- Gray, M. Geodiversity and geoconservation: What, why, and how? Georg. Wright Forum 2005, 22, 4–12. [Google Scholar]
- Gray, M. Geodiversity: Valuing and Conserving Abiotic Nature, 2nd ed.; Wiley-Blackwell: Chichester, UK, 2013. [Google Scholar]
- Gordon, J.E.; Barron, H.F. The role of geodiversity in delivering ecosystem services and benefits in Scotland. Scott. J. Geol. 2013, 49, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Bétard, F.; Peulvast, J.-P. Geodiversity hotspots: Concept, method and cartographic application for geoconservation purposes at a regional scale. Environ. Manag. 2019, 63, 822–834. [Google Scholar] [CrossRef]
- Zakharovskyi, V.; Németh, K. Scale Influence on Qualitative–Quantitative Geodiversity Assessments for the Geosite Recognition of Western Samoa. Geographies 2022, 2, 476–490. [Google Scholar] [CrossRef]
- Blatt, H.; Jones, R.L. Proportions of exposed igneous, metamorphic, and sedimentary rocks. Geol. Soc. Am. Bull. 1975, 86, 1085–1088. [Google Scholar] [CrossRef]
- Davis, W.M. The geomorphic cycle. Geomorph. J. 1899, 14, 481–504. [Google Scholar] [CrossRef]
- Davis, W.M. Peneplains and the geographical cycle. Bull. Geol. Soc. Am. 1922, 33, 587–598. [Google Scholar] [CrossRef]
- Davis, W.M. The geographical cycle. In Climatic Geomorphology; Springer: Berlin/Heidelberg, Germany, 1973; pp. 19–50. [Google Scholar]
- Zevenbergen, L.W.; Thorne, C.R. Quantitative analysis of land surface topography. Earth Surf. Process. Landf. 1987, 12, 47–56. [Google Scholar] [CrossRef]
- Riley, S.J.; DeGloria, S.D.; Elliot, R. Index that quantifies topographic heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Abbas, M.R.; Hason, M.M.; Ahmad, B.B.; Abbas, T.R. Surface roughness distribution map for Iraq using satellite data and GIS techniques. Arab. J. Geosci. 2020, 13, 839. [Google Scholar] [CrossRef]
- Meten, M.; Bhandary, N.P.; Yatabe, R. GIS-based frequency ratio and logistic regression modelling for landslide susceptibility mapping of Debre Sina area in central Ethiopia. J. Mt. Sci. 2015, 12, 1355–1372. [Google Scholar] [CrossRef]
- Stepinski, T.F.; Jasiewicz, J. Geomorphons-a new approach to classification of landforms. Proc. Geomorphom. 2011, 2011, 109–112. [Google Scholar]
- Jasiewicz, J.; Stepinski, T.F. Geomorphons—A pattern recognition approach to classification and mapping of landforms. Geomorphology 2013, 182, 147–156. [Google Scholar] [CrossRef]
- Al-Hashemi, H.M.B.; Al-Amoudi, O.S.B. A review on the angle of repose of granular materials. Powder Technol. 2018, 330, 397–417. [Google Scholar] [CrossRef]
- Jenks, G.F. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Earth Resources Observation and Science (EROS) Center. USGS EROS Archive—Digital Elevation—Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global; Earth Resources Observation and Science (EROS) Center: Reston, VA, USA, 2015. [CrossRef]
- Mir, J.A.; Bhat, I.M.; Murtaza, K.O.; Qader, W.; Dar, R.A. Geological Heritage of the Kashmir Valley, North-Western Himalaya, India. Geoheritage 2023, 15, 26. [Google Scholar] [CrossRef]
- Kil, Y.; Ahn, K.S.; Woo, K.S.; Lee, K.C.; Jwa, Y.-J.; Jung, W.; Sohn, Y.K. Geoheritage values of the Quaternary Hantangang river volcanic field in the central Korean Peninsula. Geoheritage 2019, 11, 765–782. [Google Scholar] [CrossRef]
- Udomsak, S.; Choowong, N.; Choowong, M.; Chutakositkanon, V. Thousands of Potholes in the Mekong River and Giant Pedestal Rock from North-eastern Thailand: Introduction to a Future Geological Heritage Site. Geoheritage 2021, 13, 5. [Google Scholar] [CrossRef]
- Álvarez-Vázquez, M.Á.; De Uña-Álvarez, E. Inventory and assessment of fluvial potholes to promote geoheritage sustainability (Miño River, NW Spain). Geoheritage 2017, 9, 549–560. [Google Scholar] [CrossRef]
- Ruban, D.A.; Mikhailenko, A.V.; Zorina, S.O.; Yashalova, N.N. Geoheritage Resource of a Small Town: Evidence from Southwestern Russia. Geoheritage 2021, 13, 82. [Google Scholar] [CrossRef]
- Heitzmann, P. The Rhine Falls. In Landscapes and Landforms of Switzerland; Springer: Berlin/Heidelberg, Germany, 2020; pp. 337–350. [Google Scholar]
- Guerra, V.; Lazzari, M. Geomorphological mapping as a tool for geoheritage inventory and geotourism promotion: A case study from the middle valley of the Marecchia River (northern Italy). Géomorphol. Relief Process. Environ. 2021, 27, 127–145. [Google Scholar] [CrossRef]
- Taha, M.M.; Al-Hashim, M.H.; El-Asmar, H.M. Geoarcheomorphosites under strong urbanization pressure at the Tineh Plain, NE of the Nile Delta, Egypt. Geoheritage 2020, 12, 24. [Google Scholar] [CrossRef]
- Kharbish, S.; Henaish, A.; Zamzam, S. Geodiversity and geotourism in Greater Cairo area, Egypt: Implications for geoheritage revival and sustainable development. Arab. J. Geosci. 2020, 13, 451. [Google Scholar] [CrossRef]
- Testa, B.; Aldighieri, B.; D’Alberto, L.; Lucianetti, G.; Mazza, R. Hydrogeology and hydromorphology: A proposal for a dual-key approach to assess the geo-hydrological heritage site of the San Lucano Valley (Belluno Dolomites, Italy). Geoheritage 2019, 11, 309–328. [Google Scholar] [CrossRef]
- Muda, J.; Tongkul, F. Geoheritage resources of the Baliajong River: Potential for geotourism development. Bull. Geol. Soc. Malays. 2008, 54, 139–145. [Google Scholar] [CrossRef]
- Mikhailenko, A.V.; Mamiev, M.B.; Hanow, T.; Kashkovskaya, I.M.; Yashalova, N.N.; Ruban, D.A. River Beaches in Russian Cities: Examples of Soviet Legacy. Heritage 2022, 5, 1974–1987. [Google Scholar] [CrossRef]
Main Values of Geodiversity | Additional Value | ||
---|---|---|---|
Values (8-point system) | Elements of Geodiversity | ||
Geomorphology | Geology | Hydrology | |
Slope | Rock type and ages | Strahler order | |
1 (the lowest) | 0–11.25 | Sedimentary Cenozoic | Non required |
2 (low) | 11.25–22.5 | Sedimentary Mesozoic | |
3 (low to middle) | 22.5–33.75 | Sedimentary Paleozoic | |
4 (middle) | 33.75–45 | Metamorphic Precambrian | |
5 (middle to high) | 45–56.25 | Intrusive Precambrian | |
6 (high) | 56.25–67.5 | Extrusive Cenozoic | |
7 (the highest) | 67.5–78.75 | Extrusive Mesozoic | |
8 (the rarest) | 78.75–90 | Sed. (Precambrian), Met. and Intr. (Cenozoic, Mesozoic, Paleozoic), Extr. (Paleozoic, Precambrian) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakharovskyi, V.; Németh, K. Recognition of Potential Geosites Utilizing a Hydrological Model within Qualitative–Quantitative Assessment of Geodiversity in the Manawatu River Catchment, New Zealand. Geographies 2023, 3, 178-196. https://doi.org/10.3390/geographies3010011
Zakharovskyi V, Németh K. Recognition of Potential Geosites Utilizing a Hydrological Model within Qualitative–Quantitative Assessment of Geodiversity in the Manawatu River Catchment, New Zealand. Geographies. 2023; 3(1):178-196. https://doi.org/10.3390/geographies3010011
Chicago/Turabian StyleZakharovskyi, Vladyslav, and Károly Németh. 2023. "Recognition of Potential Geosites Utilizing a Hydrological Model within Qualitative–Quantitative Assessment of Geodiversity in the Manawatu River Catchment, New Zealand" Geographies 3, no. 1: 178-196. https://doi.org/10.3390/geographies3010011
APA StyleZakharovskyi, V., & Németh, K. (2023). Recognition of Potential Geosites Utilizing a Hydrological Model within Qualitative–Quantitative Assessment of Geodiversity in the Manawatu River Catchment, New Zealand. Geographies, 3(1), 178-196. https://doi.org/10.3390/geographies3010011