Spatial Evaluation of Dengue Transmission and Vector Abundance in the City of Dhaka, Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. IUE Zonation by Land Cover and Land Use Data
2.3. Study Design
2.4. Entomological Surveillance
2.5. Blood Sample Collection and Serological Data Processing
3. Data Analysis
4. Results
4.1. Spatial Distribution of Immature Aedes aegypti and Land Cover/Land Use
4.2. Spatial Patterns in Seroprevalence, Serocoversion, and Land Cover/Land Use
4.3. Logistic Regression Modeling of the Presence or Absence of Vector and Seroconversion in Households
5. Discussion
5.1. Land Cover/Land Use Variables Influencing the Distribution of Aedes and Seroprevalence
5.2. Microenvironmental Variables Influencing Presence of Aedes, Human Mobility and Migration, and Dengue Transmission
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Halstead, S.B. Global epidemiology of dengue hemorrhagic fever. Southeast Asian J. Trop. Med. Public Health 1990, 21, 636–641. [Google Scholar] [PubMed]
- Halstead, S.B.; Scanlon, J.E.; Umpaivit, P.; Udomsakdi, S. Dengue and chikungunya virus infection in man in Thailand, 1962–1964. IV. Epidemiologic studies in the Bangkok metropolitan area. Am. J. Trop. Med. Hyg. 1969, 18, 997–1021. [Google Scholar] [CrossRef]
- Getis, A.; Morrison, A.C.; Gray, K.; Scott, T.W. Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. Am. J. Trop. Med. Hyg. 2003, 69, 494–505. [Google Scholar] [CrossRef] [PubMed]
- Leta, S.; Beyene, T.J.; De Clercq, E.M.; Amenu, K.; Kraemer, M.U.G.; Revie, C.W. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int. J. Infect. Dis. 2018, 67, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, M.U.G.; Reiner, R.C., Jr.; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef] [Green Version]
- Kitron, U. Landscape ecology and epidemiology of vector-borne diseases: Tools for spatial analysis. J. Med. Entomol. 1998, 35, 435–445. [Google Scholar] [CrossRef]
- van Benthem, B.H.; Vanwambeke, S.O.; Khantikul, N.; Burghoorn-Maas, C.; Panart, K.; Oskam, L.; Lambin, E.F.; Somboon, P. Spatial patterns of and risk factors for seropositivity for dengue infection. Am. J. Trop. Med. Hyg. 2005, 72, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Vanwambeke, S.O.; Lambin, E.F.; Eichhorn, M.P.; Flasse, S.P.; Harbach, R.E.; Oskam, L.; Somboon, P.; van Beers, S.; van Benthem, B.H.; Walton, C. Impact of land-use change on dengue and malaria in northern Thailand. EcoHealth 2007, 4, 37–51. [Google Scholar] [CrossRef]
- Patz, J.A.; Daszak, P.; Tabor, G.M.; Aguirre, A.A.; Pearl, M.; Epstein, J.; Wolfe, N.D.; Kilpatrick, A.M.; Foufopoulos, J.; Molyneux, D.; et al. Working Group on land use change and disease emergence: Unhealthy landscapes: Policy recommendations on land use change and infectious disease emergence. Environ. Health Perspect. 2004, 112, 1092–1098. [Google Scholar] [CrossRef] [Green Version]
- Ferraguti, M.; Puente, J.M.; Roiz, D.; Ruiz, S.; Soriguer, R.; Figuerola, J. Effects of landscape anthropization on mosquito community composition and abundance. Sci. Rep. 2016, 6, 29002. [Google Scholar] [CrossRef] [Green Version]
- Salinas-Ramos, V.B.; Mori, E.; Bosso, L.; Ancillotto, L.; Russo, D. Zoonotic risk: One more good reason why cats should be kept away from bats. Pathogens 2021, 10, 304. [Google Scholar] [CrossRef]
- Zheng, H.; Li, H. Spatial-temporal evolution characteristics of land use and habitat quality in Shandong Province, China. Sci. Rep. 2022, 12, 15422. [Google Scholar] [CrossRef]
- Cox, J.; Grillet, M.E.; Ramos, O.M.; Amador, M.; Barrera, R. Habitat segregation of dengue vectors along an urban environmental gradient. Am. J. Trop. Med. Hyg. 2007, 76, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Vanwambeke, S.O.; Bennett, S.N.; Kapan, D.D. Spatially disaggregated disease transmission risk: Land cover, land use and risk of dengue transmission on the island of Oahu. Trop. Med. Int. Health 2011, 16, 174–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinisch, M.R.S.; Diaz-Quijano, F.A.; Chiaravalloti-Neto, F.; Pancetti, F.G.M.; Coelho, R.R.; Andrade, P.D.S.; Urbinatti, P.R.; de Almeida, R.M.M.S.; Lima-Camara, T.N. Seasonal and spatial distribution of Aedes aegypti and Aedes albopictus in a municipal urban park in Sáo Paulo, SP, Brazil. Acta Trop. 2019, 189, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Dhar-Chowdhury, P.; Haque, C.E.; Lindsay, R.; Hossain, S. Socioeconomic and ecological factors influencing Aedes aegypti prevalence, abundance, and distribution in Dhaka, Bangladesh. Am. J. Trop. Med. Hyg. 2016, 94, 1223–1233. [Google Scholar] [CrossRef] [Green Version]
- WHO. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control; Special Programme for Research, Training in Tropical Diseases; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Kolivras, K.N. Mosquito habitat and dengue risk potential in Hawaii: A conceptual framework and GIS application. Prof. Geogr. 2006, 58, 139–154. [Google Scholar] [CrossRef]
- Hayden, M.H.; Uejio, C.K.; Walker, K.; Ramberg, F.; Moreno, R.; Rosales, C.; Gameros, M.; Mearns, L.O.; Zielinski-Gutierrez, E.; Janes, C.R. Microclimate and human factors in the divergent ecology of Aedes aegypti along the Arizona, US/Sonora, MX border. EcoHealth 2010, 7, 64–77. [Google Scholar] [CrossRef]
- Banu, S.; Hu, W.; Hurst, C.; Guo, Y.; Islam, M.Z.; Tong, S. Space-time clusters of dengue fever in Bangladesh. Trop. Med. Inter. Health 2012, 17, 1086–1091. [Google Scholar] [CrossRef] [Green Version]
- Sharmin, S.; Viennet, E.; Glass, K.; Harley, D. The emergence of dengue in Bangladesh: Epidemiology, challenges and future disease risk. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 619–627. [Google Scholar] [CrossRef]
- Dhar-Chowdhury, P.; Haque, C.E.; Driedger, S.M. Dengue disease risk mental models in the city of Dhaka, Bangladesh: Juxtapositions and gaps between the public and experts. Risk Anal. 2015, 36, 874–891. [Google Scholar] [CrossRef] [PubMed]
- Bangladesh Bureau of Statistics. Statistical Pocketbook of Bangladesh 2010; Ministry of Planning, Bangladesh Bureau of Statistics: Dhaka, Bangladesh, 2010. [Google Scholar]
- Pickett, S.T.; Cadenasso, M.L.; Grove, J.M.; Groffman, P.M.; Band, L.E.; Boone, C.G.; Burch, W.R.; Grimmond, C.S.B.; Hom, J.; Jenkins, J.C. Beyond urban legends: An emerging framework of urban ecology, as illustrated by the Baltimore Ecosystem Study. Bioscience 2008, 58, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Pickett, S.T.; Cadenasso, M.; Grove, J.; Nilon, C.; Pouyat, R.; Zipperer, W.; Costanza, R. Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol. Syst. 2001, 32, 127–157. [Google Scholar] [CrossRef] [Green Version]
- Satellite Imaging Corporation. RapidEye Satellite Sensor (5 m). Acquisition Date for 2011: 29 January; for 2012: 25 January; for 2013 15 January. Satellite Imaging Corporation, Houston, TX, USA. Available online: http://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors/rapideye/ (accessed on 4 March 2023).
- Fukunaga, K. Introduction to Statistical Pattern Recognition; Academic Press: San Diego, CA, USA, 1990. [Google Scholar]
- Consoli, R.A.G.B.; de Oliveira, R.A. Principais Mosquitos de Importância Sanitâria No Brasil; Editora Fiocruz: Rio de Janeiro, Brazil, 1994. [Google Scholar]
- Dhar-Chowdhury, P.; Paul, K.K.; Haque, C.E.; Hossain, S.; Lindsay, I.R.; Dibernardo, A.; Brooks, A.; Drebot, M. Dengue seroprevalence, seroconversion and risk factors in Dhaka, Bangladesh. PLoS Neg. Trop. Dis. 2017, 11, e0005475. [Google Scholar] [CrossRef] [Green Version]
- Arunachalam, N.; Tana, S.; Espino, F.; Kittayapong, P.; Abeyewickrem, W.; Wai, K.T.; Tyagi, B.K.; Kroeger, A.; Sommerfeld, J.; Petzold, M. Eco-bio-social determinants of dengue vector breeding: A multicountry study in urban and periurban Asia. Bull. World Health Organ. 2010, 88, 173–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, W.; Suzuki, M.; Thiem, V.D.; White, R.G.; Tsuzuki, A.; Yoshida, L.; Yanai, H.; Haque, U.; Anh, D.D.; Ariyoshi, K. Population density, water supply, and the risk of dengue fever in Vietnam: Cohort study and spatial analysis. PLoS Med. 2011, 8, e1001082. [Google Scholar] [CrossRef]
- Gleiser, R.; Zalazar, L. Distribution of mosquitoes in relation to urban landscape characteristics. Bull. Entomol. Res. 2010, 100, 153–158. [Google Scholar] [CrossRef]
- Pham, H.V.; Doan, H.T.; Phan, T.T.; Minh, N.N.T. Ecological factors associated with dengue fever in a central highlands province, Vietnam. BMC Infect. Dis. 2011, 11, 172. [Google Scholar] [CrossRef]
- Aouissi, H.A.; Petrisor, A.-I.; Ababsa, M.; Bostenaru-Dan, M.; Tourki, M.; Bouslama, Z. Influence of land use on Avian diversity in North African urban environments. Land 2021, 10, 434. [Google Scholar] [CrossRef]
- Wilcox, B.A.; Gubler, D.J. Disease ecology and the global emergence of zoonotic pathogens. Environ. Health Prev. Med. 2005, 10, 263–272. [Google Scholar] [CrossRef]
- Moloney, J.M.; Skelly, C.; Weinstein, P.; Maguire, M.; Ritchie, S. Domestic Aedes aegypti breeding site surveillance: Limitations of remote sensing as a predictive surveillance tool. Am. J. Trop. Med. Hyg. 1998, 59, 261–264. [Google Scholar] [CrossRef] [Green Version]
- Jacob, B.G.; Arheart, K.L.; Griffith, D.A.; Mbogo, C.M.; Githeko, A.K.; Regens, J.L.; Githure, J.I.; Novak, R.; Beier, J.C. Evaluation of environmental data for identification of Anopheles (Diptera: Culicidae) aquatic larval habitats in Kisumu and Malindi, Kenya. J. Med. Entomol. 2005, 42, 751–755. [Google Scholar] [CrossRef] [Green Version]
- Dhar-Chowdhury, P.; Haque, C.E.; Driedger, S.M.; Hossain, S. Community perspectives on dengue transmission in the city of Dhaka, Bangladesh. Int. Health 2014, 6, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Velásquez, C.M.; Codeço, C.T.; Honório, N.A.; Sabroza, P.S.; Moresco, M.; Cunha, I.C.; Levino, A.; Toledo, L.M.; Luz, S.L. Distribution of dengue vectors in neighborhoods with different urbanization types of Manaus, state of Amazonas, Brazil. Memórias Inst. Oswaldo Cruz 2007, 102, 617–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mammen, M.P., Jr.; Pimgate, C.; Koenraadt, C.J.; Rothman, A.L.; Aldstadt, J.; Nisalak, A.; Jarman, R.G.; Jones, J.W.; Srikiatkhachorn, A.; Ypil-Butac, C.A. Spatial and temporal clustering of dengue virus transmission in Thai villages. PLoS Med. 2008, 5, e205. [Google Scholar] [CrossRef] [Green Version]
- Lloyd-Smith, J.O.; Cross, P.C.; Briggs, C.J.; Daugherty, M.; Getz, W.M.; Latto, J.; Sanchez, M.S.; Smith, A.B.; Swei, A. Should we expect population thresholds for wildlife disease? Trends Ecol. Evol. 2005, 20, 511–519. [Google Scholar] [CrossRef]
- Gatrell, A.C.; Bailey, T.C.; Diggle, P.J.; Rowlingson, B.S. Spatial point pattern analysis and its application in geographical epidemiology. Trans. Inst. Br. Geogr. 1996, 21, 256–274. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Raffini, F.; Bertorelle, G.; Biello, R.; D’Urso, G.; Russo, D.; Bosso, L. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 2020, 12, 4508. [Google Scholar] [CrossRef]
- Honório, N.A.; Nogueira, R.M.R.; Codeço, C.T.; Carvalho, M.S.; Cruz, O.G.; Magalhães Mafra, M.D.A.F.; Araújo, J.M.G.; de Araújo, E.S.M.; Gomes, M.Q.; Pinheiro, L.S. Spatial evaluation and modeling of dengue seroprevalence and vector density in Rio de Janeiro, Brazil. PLoS Negl. Trop. Dis. 2009, 3, e545. [Google Scholar] [CrossRef]
- Chadee, D.D.; Martinez, R. Landing periodicity of Aedes aegypti with implications for dengue transmission in Trinidad, West Indies. J. Vector Ecol. 2000, 25, 158–163. [Google Scholar]
- Pandian, R.; Dwarakanath, S. The biting activity rhythm in Aedes mosquitoes of Madurai. Comp. Physiol. Ecol. 1992, 17, 66–70. [Google Scholar]
- De Souza, S.J.P.; Guaraldo, A.D.C.; Honório, N.A.; Cámara, D.C.P.; Sukow, N.M.; Machado, S.T.; dos Santos, C.N.D.; da Costa-Ribeiro, M.C.V. Spatial and temporal distribution of Aedes aegypti and Aedes albopictus oviposition on the coast of Paraná, Brazil, a recent area of dengue virus transmission. Trop. Med. Infect. Dis. 2022, 7, 246. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei, S.M.; Metanat, M. Mass gatherings and infectious diseases epidemiology and surveillance. Int. J. Infect. 2016, 2, e22833. [Google Scholar] [CrossRef]
- Hernandez-Suarez, C.M.; Mendoza-Cano, O. Empirical evidence of the effect of school gathering on the dynamics of dengue epidemics. Glob. Health Action 2016, 9, 28026. [Google Scholar] [CrossRef]
- World Health Organization. Global Strategy for Dengue Prevention and Control, 2012–2020; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Achee, N.L.; Gould, F.; Perkin, T.A.; Relner, R.C., Jr.; Morrison, C.; Ritchie, S.A.; Gubler, D.J.; Teyssou, R.; Scott, T.W. A critical assessment of vector control for dengue prevention. PLoS Neg. Trop. Dis. 2015, 9, e0003655. [Google Scholar] [CrossRef] [Green Version]
- Bertolino, S.; Sciandra, C.; Bosso, L.; Russo, D.; Lurz, P.W.; Di Febbraro, M. Spatially explicit models as tools for implementing effective management strategies for invasive alien mammals. Mammal Rev. 2020, 50, 187–199. [Google Scholar] [CrossRef]
- Câmara, F.P.; Theophilo, R.L.G.; Santos, G.T.D.; Pereira, S.R.F.G.; Câmara, D.C.P.; de Matos, R.R.C. Regional and dynamics characteristics of dengue in Brazil: A retrospective study. Rev. Soc. Bras. Med. Trop. 2007, 40, 192–196. [Google Scholar] [CrossRef] [Green Version]
- Luz, P.M.; Mendes, B.V.; Codeco, C.T.; Struchiner, C.J.; Galvani, A.P. Time series analysis of dengue incidence in Rio de Janeiro, Brazil. Am. J. Trop. Med. Hyg. 2008, 79, 933–939. [Google Scholar] [CrossRef]
- Souza, I.C.A.d.; Vianna, R.P.d.T.; Moraes, R.M.d. Modeling of dengue incidence in Paraíba State, Brazil, using distributed lag models. Cad. Saúde Pública 2007, 23, 2623–2630. [Google Scholar] [CrossRef] [Green Version]
- Kroeger, A.; Lenhart, A.; Ochoa, M.; Villegas, E.; Levy, M.; Alexander, N.; McCall, P.J. Effective control of dengue vectors with curtains and water container covers treated with insecticide in Mexico and Venezuela: A cluster randomized trials. BMJ 2006, 332, 1247–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiter, P.; Lathtop, S.; Bunning, M.; Biggerstaff, B.; Singer, D.; Tiwari, T.; Baber, L.; Amador, M.; Thirion, J.; Hayes, J.; et al. Texas lifestyle limits transmission of dengue virus. Emerg. Infect. Dis. 2003, 9, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Figueroa, L.; Rigau-Perez, J.G.; Suarez, E.L.; Reiter, P. Risk factors for dengue infection during an outbreak in Yanes, Puerto Rico in 1991. Am. J. Trop. Med. Hyg. 1995, 52, 496–502. [Google Scholar] [CrossRef] [PubMed]
Integrated Urban Ecological (IUE) Zones | House Index (HI) (%) | 95% Confidence Interval | Conatiner Index (%) | 95% Confidence Interval (CI) | Breteau Index (BI) (%) | 95% Confidence Interval |
---|---|---|---|---|---|---|
Central Business Residential (CBR) | 28.4 | (0.24–0.33) | 29.9 | (0.25–0.35) | 34.2 | (0.29–0.39) |
Established Residential (ER) | 22.0 | (0.18–0.26) | 22.6 | (0.18–0.27) | 25.5 | (0.21–0.30) |
Newly Built Residential (NBR) | 22.2 | (0.16–0.28) | 22.5 | (0.16–0.29) | 23.3 | (0.17–0.30) |
IUE Zone | Serum Sample (IgG) Surveys | Serum Sample (IgM) Surveys | |||||
---|---|---|---|---|---|---|---|
Pre-monsoon 2012 | Post-monsoon 2012 | Seroconversion paired sample (IgG) | Pre-monsoon 2012 | Post-monsoon 2012 | Seroconversion paired sample (IgM) | ||
CBR | n | 466 | 448 | 29 | 466 | 448 | 29 |
Positives | 378 | 397 | 15 | 8 | 30 | 16 | |
Median age * | 43 (0.6–85) | 28 (3–76) | 34 (7–66) | 43 | 28 (3–76) | 34 (7–66) | |
ER | n | 502 | 481 | 61 | 502 | 481 | 61 |
Positives | 403 | 426 | 37 | 12 | 42 | 27 | |
Median age * | 30 (2–80) | 28 (2–97) | 25 (2–78) | 30 (2–80) | 28 (2–97) | 25 (2–78) | |
NBR | n | 157 | 139 | 5 | 157 | 139 | 5 |
Positives | 118 | 119 | 1 | 3 | 16 | 4 | |
Median age * | 28 (1–92) | 27 (2–92) | 30 (24–43) | 28 (1–92) | 27 (2–92) | 30 (24–43) | |
Total | Positive/total | 899/1125 | 942/1068 | 38/95 | 23/1125 | 88/1068 | 0/95 |
Risk Factor | CBR | ER | NBR | |||||||
---|---|---|---|---|---|---|---|---|---|---|
n | OR | p-Value | n | OR | p-Value | n | OR | p-Value | ||
Sex | Male | 171 | 1 | 178 | 1 | 48 | 1 | |||
Female | 226 | 1.07 | 0.8 | 215 | 1.37 | 0.16 | 60 | 0.98 | 0.96 | |
Age (in years) | 0–11 | 41 | 1 | 19 | 1 | 5 | 1 | |||
12–34 | 199 | 0.4 | 0.83 | 197 | 0.22 | 0.22 | 66 | 0.24 | 0.56 | |
≥35 | 157 | 0.14 | <0.0001 * | 177 | 0.09 | <0.0001 * | 37 | 0.09 | 0.001 * | |
Febrile illness during last 6 months | No | 1945 | 1 | 213 | 1 | 64 | 1 | |||
Yes | 203 | 1.27 | 0.35 | 180 | 1.38 | 0.15 | 44 | 1.18 | 0.63 | |
Travel during last 6 months | No | 111 | 1 | 348 | 1 | 4 | 1 | |||
Yes | 286 | 0.85 | 0.55 | 45 | 3.30 | 0.03 * | 104 | 0.59 | 0.50 |
Variables | Adjusted Risk Ratio | p-Value |
---|---|---|
Have indoor potted plants (have no potted plants vs. have potted plants) | 0.86 (0.76–0.98) | 0.020 * |
Attendance in public/mass gathering (no attendance vs. attendance) | 8.69 (1.80–4.2) | 0.007 * |
Travel during the last 6 months (no vs. yes) | 2.49 (0.91–6.85) | 0.077 |
Febrile illness during the last 6 months (no vs. yes) | 0.34 (0.11–1.01) | 0.052 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haque, C.E.; Dhar-Chowdhury, P.; Hossain, S.; Walker, D. Spatial Evaluation of Dengue Transmission and Vector Abundance in the City of Dhaka, Bangladesh. Geographies 2023, 3, 268-285. https://doi.org/10.3390/geographies3020014
Haque CE, Dhar-Chowdhury P, Hossain S, Walker D. Spatial Evaluation of Dengue Transmission and Vector Abundance in the City of Dhaka, Bangladesh. Geographies. 2023; 3(2):268-285. https://doi.org/10.3390/geographies3020014
Chicago/Turabian StyleHaque, C. Emdad, Parnali Dhar-Chowdhury, Shakhawat Hossain, and David Walker. 2023. "Spatial Evaluation of Dengue Transmission and Vector Abundance in the City of Dhaka, Bangladesh" Geographies 3, no. 2: 268-285. https://doi.org/10.3390/geographies3020014
APA StyleHaque, C. E., Dhar-Chowdhury, P., Hossain, S., & Walker, D. (2023). Spatial Evaluation of Dengue Transmission and Vector Abundance in the City of Dhaka, Bangladesh. Geographies, 3(2), 268-285. https://doi.org/10.3390/geographies3020014