Spatiotemporal Dengue Fever Incidence Associated with Climate in a Brazilian Tropical Region
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Collection
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Dengue and Severe Dengue. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 5 November 2021).
- Brady, O.J.; Gething, P.W.; Bhatt, S.; Messina, J.P.; Brownstein, J.S.; Hoen, A.G.; Moyes, C.L.; Farlow, A.W.; Scott, T.W.; Hay, S.I. Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLoS Neglected Trop. Dis. 2012, 6, e1760. [Google Scholar] [CrossRef] [PubMed]
- Saeed, O.; Asif, A. Chapter 2—Dengue Virus Disease; the Origins. In Dengue Virus Disease; Qureshi, A.I., Saeed, O., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 9–16. ISBN 978-0-12-818270-3. [Google Scholar]
- Li, C.; Lu, Y.; Liu, J.; Wu, X. Climate Change and Dengue Fever Transmission in China: Evidences and Challenges. Sci. Total Environ. 2018, 622–623, 493–501. [Google Scholar] [CrossRef]
- Polwiang, S. The Time Series Seasonal Patterns of Dengue Fever and Associated Weather Variables in Bangkok (2003–2017). BMC Infect. Dis. 2020, 20, 208. [Google Scholar] [CrossRef] [PubMed]
- Rathore, A.P.; Farouk, F.S.; St. John, A.L. Risk Factors and Biomarkers of Severe Dengue. Curr. Opin. Virol. 2020, 43, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The Global Distribution and Burden of Dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Cucunawangsih, N.; Lugito, N.P.H. Trends of Dengue Disease Epidemiology. Virology 2017, 8, 1178122X17695836. [Google Scholar] [CrossRef]
- Xiang, J.; Hansen, A.; Liu, Q.; Liu, X.; Tong, M.X.; Sun, Y.; Cameron, S.; Hanson-Easey, S.; Han, G.-S.; Williams, C.; et al. Association between Dengue Fever Incidence and Meteorological Factors in Guangzhou, China, 2005–2014. Environ. Res. 2017, 153, 17–26. [Google Scholar] [CrossRef]
- Xavier, L.L.; Honório, N.A.; Pessanha, J.F.M.; Peiter, P.C. Analysis of Climate Factors and Dengue Incidence in the Metropolitan Region of Rio de Janeiro, Brazil. PLoS ONE 2021, 16, e0251403. [Google Scholar] [CrossRef]
- Li, Y.; Dou, Q.; Lu, Y.; Xiang, H.; Yu, X.; Liu, S. Effects of Ambient Temperature and Precipitation on the Risk of Dengue Fever: A Systematic Review and Updated Meta-Analysis. Environ. Res. 2020, 191, 110043. [Google Scholar] [CrossRef]
- Maciel-de-Freitas, R.; Avendanho, F.C.; Santos, R.; Sylvestre, G.; Araújo, S.C.; Lima, J.B.P.; Martins, A.J.; Coelho, G.E.; Valle, D. Undesirable Consequences of Insecticide Resistance Following Aedes Aegypti Control Activities Due to a Dengue Outbreak. PLoS ONE 2014, 9, e92424. [Google Scholar] [CrossRef]
- Dalpadado, R.; Amarasinghe, D.; Gunathilaka, N. Water Quality Characteristics of Breeding Habitats in Relation to the Density of Aedes Aegypti and Aedes Albopictus in Domestic Settings in Gampaha District of Sri Lanka. Acta Trop. 2022, 229, 106339. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-C.; Lee, F.-J.; Hsu, Y.-T.; Slud, E.V.; Hsiung, C.A.; Chen, C.-H.; Liao, C.-L.; Wen, T.-H.; Chang, C.-W.; Chang, J.-H.; et al. Real-Time Dengue Forecast for Outbreak Alerts in Southern Taiwan. PLoS Neglected Trop. Dis. 2020, 14, e0008434. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Stige, L.C.; Chan, K.-S.; Zhou, J.; Yang, J.; Sang, S.; Wang, M.; Yang, Z.; Yan, Z.; Jiang, T.; et al. Climate Variation Drives Dengue Dynamics. Proc. Natl. Acad. Sci. USA 2017, 114, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Morin, C.W.; Comrie, A.C.; Ernst, K. Climate and Dengue Transmission: Evidence and Implications. Environ. Health Perspect. 2013, 121, 1264–1272. [Google Scholar] [CrossRef]
- Alves, L.D.; Lana, R.M.; Coelho, F.C. A Framework for Weather-Driven Dengue Virus Transmission Dynamics in Different Brazilian Regions. Int. J. Environ. Res. Public Health 2021, 18, 9493. [Google Scholar] [CrossRef] [PubMed]
- Castro, L.A.; Generous, N.; Luo, W.; Piontti, A.P.Y.; Martinez, K.; Gomes, M.F.C.; Osthus, D.; Fairchild, G.; Ziemann, A.; Vespignani, A.; et al. Using Heterogeneous Data to Identify Signatures of Dengue Outbreaks at Fine Spatio-Temporal Scales across Brazil. PLoS Neglected Trop. Dis. 2021, 15, e0009392. [Google Scholar] [CrossRef]
- Correia Filho, W.L.F. Influence of Meteorological Variables on Dengue Incidence in the Municipality of Arapiraca, Alagoas, Brazil. Rev. Soc. Bras. Med. Trop. 2017, 50, 309–314. [Google Scholar] [CrossRef]
- McGough, S.F.; Clemente, L.; Kutz, J.N.; Santillana, M. A Dynamic, Ensemble Learning Approach to Forecast Dengue Fever Epidemic Years in Brazil Using Weather and Population Susceptibility Cycles. J. R. Soc. Interface 2021, 18, 20201006. [Google Scholar] [CrossRef]
- Viana, D.V.; Ignotti, E. The Ocurrence of Dengue and Weather Changes in Brazil: A Systematic Review. Rev. Bras. Epidemiol. 2013, 16, 240–256. [Google Scholar] [CrossRef]
- Gomes, A.F.; Nobre, A.A.; Cruz, O.G. Temporal Analysis of the Relationship between Dengue and Meteorological Variables in the City of Rio de Janeiro, Brazil, 2001–2009. Cad. Saúde Pública 2012, 28, 2189–2197. [Google Scholar] [CrossRef]
- Johansen, I.C.; do Carmo, R.L.; Correia Alves, L.; Bueno, M.D.C.D. Environmental and Demographic Determinants of Dengue Incidence in Brazil. Rev. Salud Pública 2018, 20, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Biudes, M.S.; Vourlitis, G.L.; Machado, N.G.; Arruda, P.H.Z.; Neves, G.A.R.; Lobo, F.A.; Neale, C.M.U.; Nogueira, J.S. Patterns of energy exchange for tropical ecosystems across a climate gradient in Mato Grosso, Brazil. Agric. For. Meteorol. 2015, 202, 112–124. [Google Scholar] [CrossRef]
- Biudes, M.S.; Geli, H.M.E.; Vourlitis, G.L.; Machado, N.G.; Pavão, V.M.; dos Santos, L.O.F.; Querino, C.A.S. Evapotranspiration Seasonality over Tropical Ecosystems in Mato Grosso, Brazil. Remote Sens. 2022, 14, 2482. [Google Scholar] [CrossRef]
- Toloi, M.N.V.; Toloi, R.C.; Bonilla, S.H.; Silva, H.R.O.; Reiner, J.N. Influence of the agricultural sector on the economic and social development of the municipalities of the state of Mato Grosso/Brazil. Rev. Agrar. 2019, 12, 237–247. [Google Scholar] [CrossRef]
- Machado, N.G.; dos Santos, G.T.; Biudes, M.S.; da Silva, J.L.; Bacarji, A.G.; da Costa, M.E.L.; Bilio, R.D.S. Sustainable development index of municipalities in Mato Grosso. Rev. Bras. Gestão E Desenvolv. Reg. 2020, 16, 222–234. [Google Scholar]
- de Lima, L.D.; de Albuquerque, M.V.; Scatena, J.H.G.; de Melo, E.C.P.; de Oliveira, E.X.G.; Carvalho, M.S.; Pereira, A.M.M.; de Oliveira, R.A.D.; Martinelli, N.L.; de Oliveira, C.F. Arranjos regionais de governança do Sistema Único de Saúde: Diversidade de prestadores e desigualdade espacial na provisão de serviços. Cad. Saúde Pública 2019, 35, e00094618. [Google Scholar] [CrossRef]
- Martinelli, N.L.; Costa, A.A.S.; Scatena, J.H.G.; Soares, N.R.F.; Charbel, S.C.; Castro, M.D.L.; Spinelli, M.A.D.S.; Mota, V.D.A.; Silva, L.M.D.Á. Regionalização e Rede de Atenção à Saúde em Mato Grosso. Saude Soc. 2022, 31, e210195pt. [Google Scholar] [CrossRef]
- dos Santos, A.M.; Giovanella, L. Regional Governance: Strategies and Disputes in Health Region Management. Rev. Saúde Pública 2014, 48, 622–631. [Google Scholar] [CrossRef]
- IBGE Mato Grosso|Cidades e Estados|IBGE. Available online: https://www.ibge.gov.br/cidades-e-estados/mt.html (accessed on 6 November 2021).
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Tasca, B.F.D.C. Time Space Analysis of Morbidities Due to Respiratory Diseases and Their Relationship with Meteorological Variables. Master´s Thesis, Universidade Federal de Mato Grosso, Cuiabá, Brazil, 2023. [Google Scholar]
- Junior, A.L.P.; Biudes, M.S.; Machado, N.G.; Vourlitis, G.L.; Geli, H.M.E.; dos Santos, L.O.F.; Querino, C.A.S.; Ivo, I.O.; Neto, N.L. Assessment of Remote Sensing and Re-Analysis Estimates of Regional Precipitation over Mato Grosso, Brazil. Water 2021, 13, 333. [Google Scholar] [CrossRef]
- SES-MT, M.G. Plano Estadual de Saúde—PES, de Saúde—PES. MT 2016–2019; Secretaria de Estado de Saúde de Mato Grosso: Cuiabá, Brazil, 2017; p. 129.
- Spronk, I.; Korevaar, J.C.; Poos, R.; Davids, R.; Hilderink, H.; Schellevis, F.G.; Verheij, R.A.; Nielen, M.M.J. Calculating Incidence Rates and Prevalence Proportions: Not as Simple as It Seems. BMC Public Health 2019, 19, 512. [Google Scholar] [CrossRef] [PubMed]
- de Siqueira, R.V.; Martins, P.T.D.A. Casos de dengue em Planaltina-DF: Análise espacial e fatores socioambientais em um ano epidêmico/Cases of dengue in Planaltina-DF: Spatial analysis and socio-environmental factors in an epidemic year. Cad. Geogr. 2019, 29, 705–725. [Google Scholar] [CrossRef]
- Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 2 March 2023).
- Nuraini, N.; Fauzi, I.S.; Fakhruddin, M.; Sopaheluwakan, A.; Soewono, E. Climate-Based Dengue Model in Semarang, Indonesia: Predictions and Descriptive Analysis. Infect. Dis. Model. 2021, 6, 598–611. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.A.; Wollmann, C.A. A influência climática na proliferação do mosquito aedes aegypti em Santa Maria—RS, em 2012. CeN 2016, 38, 1246. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Anselin, L.; Rey, S.J. Perspectives on Spatial Data Analysis. In Perspectives on Spatial Data Analysis; Anselin, L., Rey, S.J., Eds.; Advances in Spatial Science; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–20. ISBN 978-3-642-01976-0. [Google Scholar]
- Kowe, P.; Mutanga, O.; Odindi, J.; Dube, T. A Quantitative Framework for Analysing Long Term Spatial Clustering and Vegetation Fragmentation in an Urban Landscape Using Multi-Temporal Landsat Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102057. [Google Scholar] [CrossRef]
- de Oliveira-Júnior, J.F.; Gois, G.; da Silva, E.B.; Teodoro, P.E.; Johann, J.A.; Junior, C.A.S. Non-Parametric Tests and Multivariate Analysis Applied to Reported Dengue Cases in Brazil. Environ. Monit. Assess. 2019, 191, 473. [Google Scholar] [CrossRef]
- Andrioli, D.C.; Busato, M.A.; Lutinski, J.A. Spatial and Temporal Distribution of Dengue in Brazil, 1990–2017. PLoS ONE 2020, 15, e0228346. [Google Scholar] [CrossRef]
- Hutyra, L.R.; Munger, J.W.; Saleska, S.R.; Gottlieb, E.; Daube, B.C.; Dunn, A.L.; Amaral, D.F.; Camargo, P.B.; Wofsy, S.C. Seasonal Controls on the Exchange of Carbon and Water in an Amazonian Rain Forest. J. Geophys. Res. Biogeosci. 2007, 112, 112. [Google Scholar] [CrossRef]
- Machado, N.G.; Biudes, M.S.; Querino, C.A.S.; Danelichen, V.H.D.M.; Velasque, M.C.S. Seasonal and Interannual Pattern of Meteorological Variables in Cuiabá, Mato Grosso State, Brazil. Rev. Bras. Geofis. 2015, 33, 477–488. [Google Scholar] [CrossRef]
- Dieng, H.; Rahman, G.M.S.; Hassan, A.A.; Che Salmah, M.R.; Satho, T.; Miake, F.; Boots, M.; Sazaly, A. The Effects of Simulated Rainfall on Immature Population Dynamics of Aedes Albopictus and Female Oviposition. Int. J. Biometeorol. 2012, 56, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Lang, L.; Ma, W.; Song, T.; Kang, M.; He, J.; Zhang, Y.; Lu, L.; Lin, H.; Ling, L. Non-Linear Effects of Mean Temperature and Relative Humidity on Dengue Incidence in Guangzhou, China. Sci. Total Environ. 2018, 628–629, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Goellner, E.; Neckel, A.; Bodah, B.W.; Maculan, L.S.; de Almeida Silva, C.C.O.; Piccinato, D.; Grub, J.; Cambrussi, L.P.; Korcelski, C.; Oliveira, M.L.S. Geospatial Analysis of Ae. Aegypti Foci in Southern Brazil. J. Environ. Chem. Eng. 2021, 9, 106645. [Google Scholar] [CrossRef]
- Whitmire, R.E.; Burke, D.S.; Nisalak, A.; Harrison, B.A.; Watts, D.M. Effect of Temperature on the Vector Efficiency of Aedes Aegypti for Dengue 2 Virus. Am. J. Trop. Med. Hyg. 1987, 36, 143–152. [Google Scholar] [CrossRef]
- Fan, J.; Wei, W.; Bai, Z.; Fan, C.; Li, S.; Liu, Q.; Yang, K. A Systematic Review and Meta-Analysis of Dengue Risk with Temperature Change. Int. J. Environ. Res. Public Health 2015, 12, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Imai, C.; Hashizume, M. Systematic Review on Methodology: Time Series Regression Analysis for Environmental Factors and Infectious Diseases. Trop. Med. Health 2014, 43, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sang, S.; Gu, S.; Bi, P.; Yang, W.; Yang, Z.; Xu, L.; Yang, J.; Liu, X.; Jiang, T.; Wu, H.; et al. Predicting Unprecedented Dengue Outbreak Using Imported Cases and Climatic Factors in Guangzhou, 2014. PLoS Neglected Trop. Dis. 2015, 9, e0003808. [Google Scholar] [CrossRef]
- Vu, H.H.; Okumura, J.; Hashizume, M.; Tran, D.N.; Yamamoto, T. Regional Differences in the Growing Incidence of Dengue Fever in Vietnam Explained by Weather Variability. Trop. Med. Health 2014, 42, 25–33. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, B.; Fan, J.; Wang, F.; Liu, Q. A Study of the Dengue Epidemic and Meteorological Factors in Guangzhou, China, by Using a Zero-Inflated Poisson Regression Model. Asia Pac. J. Public Health 2014, 26, 48–57. [Google Scholar] [CrossRef]
- dos Santos, L.O.F.; Machado, N.G.; Biudes, M.S.; Geli, H.M.E.; Querino, C.A.S.; Ruhoff, A.L.; Ivo, I.O.; Lotufo Neto, N. Trends in Precipitation and Air Temperature Extremes and Their Relationship with Sea Surface Temperature in the Brazilian Midwest. Atmosphere 2023, 14, 426. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, N.G.; Lotufo Neto, N.; da Silva Lotufo, J.B.; dos Santos, L.O.F.; Biudes, M.S. Spatiotemporal Dengue Fever Incidence Associated with Climate in a Brazilian Tropical Region. Geographies 2023, 3, 673-686. https://doi.org/10.3390/geographies3040035
Machado NG, Lotufo Neto N, da Silva Lotufo JB, dos Santos LOF, Biudes MS. Spatiotemporal Dengue Fever Incidence Associated with Climate in a Brazilian Tropical Region. Geographies. 2023; 3(4):673-686. https://doi.org/10.3390/geographies3040035
Chicago/Turabian StyleMachado, Nadja Gomes, Névio Lotufo Neto, Juliana Barbosa da Silva Lotufo, Luiz Octavio Fabrício dos Santos, and Marcelo Sacardi Biudes. 2023. "Spatiotemporal Dengue Fever Incidence Associated with Climate in a Brazilian Tropical Region" Geographies 3, no. 4: 673-686. https://doi.org/10.3390/geographies3040035
APA StyleMachado, N. G., Lotufo Neto, N., da Silva Lotufo, J. B., dos Santos, L. O. F., & Biudes, M. S. (2023). Spatiotemporal Dengue Fever Incidence Associated with Climate in a Brazilian Tropical Region. Geographies, 3(4), 673-686. https://doi.org/10.3390/geographies3040035