Perspectives on Advanced Technologies in Spatial Data Collection and Analysis
1. Introduction
- The idea of volunteered geographic information (VGI) [1], which was initially applied to the collection of geometries and labels for maps and a routable street graph, later on led to numerous other application fields such as tourism and travel recommendation systems and analysis [2]; biodiversity modeling [3]; travel pattern analysis [4]; detection, monitoring and the management of natural disasters [5], sentiment analysis [6], and environmental monitoring [7].
- The deployment of social media and networking apps has enabled the rapid dissemination of geographic information and the detection of natural and man-made events [10], monitoring outbreaks of pandemics [11], providing insights into public opinion [12], traffic forecasting and real-time traffic incident detection [13], and tracking people’s whereabouts and movements [14].
- GIS cloud computing enables computations and the sharing of services to be performed in web-based environments instead of local desktop systems and has been used in application areas such as land valuation [15]. Efficient Spatial Data Infrastructure (SDI), including standards, protocols, policies, and guidelines on geospatial data capture, production, and distribution, is a crucial component for sharing a large volume of data over the web and, thus, GIS cloud computing [16].
- Novel types of mobile networks and communication techniques facilitate the seamless interaction of small devices, which provides the foundation and increases the popularity of the Internet of Things (IoT) [17]. These integrated sensors (measuring, e.g., pressure, positions, distances, light, chemicals, radiation, rain, or soil parameters) play a vital role in enabling smart city systems [18] and monitoring our living environments, e.g., regarding indoor air quality [19].
- Recent approaches to GeoAI integrate GIS with AI techniques, such as Artificial Neural Networks (ANNs), deep learning, or large language foundation models [20]. Different types of foundation models, once enhanced with spatial knowledge, e.g., through geospatial knowledge graphs, can lead toward spatially explicit GeoAI models for specific domains, such as urban geography [21].
- Blockchain is a distributed ledger technology that enables secure and transparent transactions within a peer-to-peer network of computers, where any updates to the data are immediately propagated throughout the network [22]. It can be used to create a decentralized system for managing spatial data that ensures integrity and the authenticity of geospatial data [23], e.g., in web-based public participatory GIS [24] or the management of IoT devices [25].
2. New Data Analysis Techniques and Datasets
3. Future Directions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Goodchild, M.F. Citizens as Voluntary Sensors: Spatial Data Infrastructure in the World of Web 2.0 (Editorial). Int. J. Spat. Data Infrastruct. Res. 2007, 2, 24–32. [Google Scholar]
- Kirilenko, A.P.; Ma, S.; Stepchenkova, S.O.; Su, L.; Waddell, T.F. Detecting Early Signs of Overtourism: Bringing Together Indicators of Tourism Development with Data Fusion. J. Travel Res. 2023, 62, 382–398. [Google Scholar] [CrossRef]
- Callaghan, C.T.; Ozeroff, I.; Hitchcock, C.; Chandler, M. Capitalizing on opportunistic citizen science data to monitor urban biodiversity: A multi-taxa framework. Biol. Conserv. 2020, 251, 108753. [Google Scholar] [CrossRef]
- Schirck-Matthews, A.; Hochmair, H.H.; Paulus, G.; Strelnikova, D. Comparison of Cycling Path Characteristics in South Florida and North Holland among Three GPS Fitness Tracker Apps. Int. J. Sustain. Transp. 2022, 16, 804–819. [Google Scholar] [CrossRef]
- Havas, C.; Resch, B. Portability of semantic and spatial–temporal machine learning methods to analyse social media for near-real-time disaster monitoring. Nat. Hazards 2021, 108, 2939–2969. [Google Scholar] [CrossRef]
- Jain, P.K.; Pamul, R.; Srivastava, G. A systematic literature review on machine learning applications for consumer sentiment analysis using online reviews. Comput. Sci. Rev. 2021, 41, 100413. [Google Scholar] [CrossRef]
- Ghermandi, A.; Sinclair, M. Passive crowdsourcing of social media in environmental research: A systematic map. Glob. Environ. Chang. 2019, 55, 36–47. [Google Scholar] [CrossRef]
- Dzedzickis, A.; Kaklauskas, A.; Bucinskas, V. Human Emotion Recognition: Review of Sensors and Methods. Sensors 2020, 20, 592. [Google Scholar] [CrossRef]
- Zeile, P.; Resch, B.; Loidl, M.; Petutschnig, A.; Dörrzapf, L. Urban Emotions and Cycling Experience—Enriching Traffic Planning for Cyclists with Human Sensor Data. GI_Forum 2016, 1, 204–216. [Google Scholar] [CrossRef]
- Hasan, M.; Orgun, M.A.; Schwitter, R. A survey on real-time event detection from the Twitter data stream. J. Inf. Sci. 2018, 44, 443–463. [Google Scholar] [CrossRef]
- Tang, L.; Bie, B.; Park, S.-E.; Zhi, D. Social media and outbreaks of emerging infectious diseases: A systematic review of literature. Am. J. Infect. Control 2018, 46, 962–972. [Google Scholar] [CrossRef]
- Gorodnichenko, Y.; Pham, T.; Talavera, O. Social media, sentiment and public opinions: Evidence from #Brexit and #USElection. Eur. Econ. Rev. 2021, 136, 103772. [Google Scholar]
- Gu, Y.; Qian, Z.; Chen, F. From Twitter to detector: Real-time traffic incident detection using social media data. Transp. Res. Part C Emerg. Technol. 2016, 67, 321–342. [Google Scholar] [CrossRef]
- Zhong, C.; Morphet, R.; Yoshida, M. Twitter mobility dynamics during the COVID-19 pandemic: A case study of London. PLoS ONE 2023, 18, e0284902. [Google Scholar] [CrossRef]
- Mete, M.O.; Yomralioglu, T. Implementation of serverless cloud GIS platform for land valuation. Int. J. Digit. Earth 2021, 14, 836–850. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Agrawal, S.; Gupta, R.D. Cloud enabled SDI architecture: A review. Earth Sci. Inform. 2020, 13, 211–231. [Google Scholar] [CrossRef]
- Jamshed, M.A.; Ali, K.; Abbasi, Q.H.; Imran, M.A.; Ur-Rehman, M. Challenges, Applications, and Future of Wireless Sensors in Internet of Things: A Review. IEEE Sens. J. 2022, 22, 5482–5494. [Google Scholar] [CrossRef]
- Kim, T.-h.; Ramos, C.; Mohammed, S. Smart City and IoT. Future Gener. Comput. Syst. 2017, 76, 159–162. [Google Scholar] [CrossRef]
- Marques, G.; Pitarma, R. Monitoring Health Factors in Indoor Living Environments Using Internet of Things. In World Conference on Information Systems and Technologies; Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S., Eds.; Springer: Cham, Switzerland, 2017; pp. 785–794. [Google Scholar]
- Mai, G.; Huang, W.; Sun, J.; Song, S.; Mishra, D.; Liu, N.; Gao, S.; Liu, T.; Cong, G.; Hu, Y.; et al. On the opportunities and challenges of foundation models for geospatial artificial intelligence. arXiv 2023, arXiv:2304.06798. [Google Scholar]
- Liu, P.; Biljecki, F. A review of spatially-explicit GeoAI applications in Urban Geography. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102936. [Google Scholar] [CrossRef]
- Shen, C.; Pena-Mora, F. Blockchain for Cities—A Systematic Literature Review. IEEE Access 2018, 6, 76787–76819. [Google Scholar] [CrossRef]
- Wu, Y.; Dai, H.-N.; Wang, H.; Choo, K.-K.R. Blockchain-Based Privacy Preservation for 5G-Enabled Drone Communications. IEEE Netw. 2021, 35, 50–56. [Google Scholar] [CrossRef]
- Farnaghi, M.; Mansourian, A. Blockchain, an enabling technology for transparent and accountable decentralized public participatory GIS. Cities 2020, 105, 102850. [Google Scholar] [CrossRef]
- Huh, S.; Cho, S.; Kim, S. Managing IoT devices using blockchain platform. In Proceedings of the 19th International Conference on Advanced Communication Technology (ICACT), PyeongChang, Republic of Korea, 19–22 February 2017; pp. 464–467. [Google Scholar]
- Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P.J. Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows. Remote Sens. 2018, 10, 1091. [Google Scholar] [CrossRef]
- Kandris, D.; Nakas, C.; Vomvas, D.; Koulouras, G. Applications of Wireless Sensor Networks: An Up-to-Date Survey. Appl. Syst. Innov. 2020, 4, 14. [Google Scholar] [CrossRef]
- Becker, J.K.; Li, D.; Starobinski, D. Tracking Anonymized Bluetooth Devices. Proc. Priv. Enhancing Technol. 2019, 3, 50–65. [Google Scholar] [CrossRef]
- Blasco, J.; Chen, T.M.; Tapiador, J.; Peris-Lopez, P. A Survey of Wearable Biometric Recognition Systems. ACM Comput. Surv. 2016, 49, 43. [Google Scholar] [CrossRef]
- Harari, G.M.; Müller, S.R.; Aung, M.S.H.; Rentfrow, P.J. Smartphone sensing methods for studying behavior in everyday life. Curr. Opin. Behav. Sci. 2017, 18, 83–90. [Google Scholar] [CrossRef]
- Lim, K.L.; Whitehead, J.; Jia, D.; Zheng, Z. State of data platforms for connected vehicles and infrastructures. Commun. Transp. Res. 2021, 1, 100013. [Google Scholar] [CrossRef]
- Gupta, B.B.; Quamara, M. An overview of Internet of Things (IoT): Architectural aspects, challenges, and protocols. Concurr. Comput. Pract. Exp. 2020, 32, e4946. [Google Scholar] [CrossRef]
- See, L.; Mooney, P.; Foody, G.; Bastin, L.; Comber, A.; Estima, J.; Fritz, S.; Kerle, N.; Jiang, B.; Laakso, M.; et al. Crowdsourcing, Citizen Science or Volunteered Geographic Information? The Current State of Crowdsourced Geographic Information. ISPRS Int. J. Geo-Inf. 2016, 5, 64. [Google Scholar] [CrossRef]
- Lukyanenko, R.; Wiggins, A.; Rosser, H.K. Citizen Science: An Information Quality Research Frontier. Inf. Syst. Front. 2020, 22, 961–983. [Google Scholar] [CrossRef]
- Huang, H.; Yao, X.A.; Krisp, J.M.; Jiang, B. Analytics of location-based big data for smart cities: Opportunities, challenges, and future directions. Comput. Environ. Urban Syst. 2021, 90, 101712. [Google Scholar] [CrossRef]
- Han, S.; Chung, I.-H.; Jiang, Y.; Uwakweh, B. PCIer: Pavement Condition Evaluation Using Aerial Imagery and Deep Learning. Geographies 2023, 3, 132–142. [Google Scholar] [CrossRef]
- Gbagir, A.-M.G.; Ek, K.; Colpaert, A. OpenDroneMap: Multi-Platform Performance Analysis. Geographies 2023, 3, 446–458. [Google Scholar] [CrossRef]
- Avalon Cullen, C.; Al Suhili, R. Assessing Rainfall Variability in Jamaica Using CHIRPS: Techniques and Measures for Persistence, Long and Short-Term Trends. Geographies 2023, 3, 375–397. [Google Scholar] [CrossRef]
- Al-Shaar, M.; Gérard, P.-C.; Faour, G.; Al-Shaar, W.; Adjizian-Gérard, J. Comparison of Earthquake and Moisture Effects on Rockfall-Runouts Using 3D Models and Orthorectified Aerial Photos. Geographies 2023, 3, 110–129. [Google Scholar] [CrossRef]
- Geyer, N.R.; Lengerich, E.J. LionVu: A Data-Driven Geographical Web-GIS Tool for Community Health and Decision-Making in a Catchment Area. Geographies 2023, 3, 286–302. [Google Scholar] [CrossRef]
- Cao, J.; Hochmair, H.H.; Basheeh, F. The effect of Twitter app policy changes on the sharing of spatial information through Twitter users. Geographies 2022, 2, 549–562. [Google Scholar] [CrossRef]
- Searle, G.; Wang, S.; Batty, M.; Liu, Y. The Choice of Actor Variables in Agent-Based Cellular Automata Modelling Using Survey Data. Geographies 2022, 2, 145–160. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Z.; Ding, N.; Gu, Y.; Liu, X.; Huo, Y.; Qiu, J.; Yao, Y.; Zhang, A.; Zhang, L.; et al. Pre-trained models: Past, present and future. AI Open 2021, 2, 225–250. [Google Scholar] [CrossRef]
- Juhász, L.; Mooney, P.; Hochmair, H.H.; Guan, B. ChatGPT as a mapping assistant: A novel method to enrich maps with generative AI and content derived from street-level photographs. In Proceedings of the Fourth Spatial Data Science Symposium, Online, 5 September 2023. [Google Scholar]
- Hu, Y.; Mai, G.; Cundy, C.; Choi, K.; Lao, N.; Liu, W.; Lakhanpal, G.; Zhou, R.Z.; Joseph, K. Geo-knowledge-guided GPT models improve the extraction of location descriptions from disaster-related social media messages. Int. J. Geogr. Inf. Sci. 2023, 37, 2289–2318. [Google Scholar] [CrossRef]
- Marcel, W. Overture Places Quality Analysis. Available online: https://observablehq.com/d/9847c08c46f56ed6 (accessed on 16 October 2023).
- Mai, G.; Hu, Y.; Gao, S.; Cai, L.; Martins, B.; Scholz, J.; Gao, J.; Janowicz, K. Symbolic and subsymbolic GeoAI: Geospatial knowledge graphs and spatially explicit machine learning. Trans. GIS 2022, 26, 3118–3124. [Google Scholar] [CrossRef]
- Lunga, D.; Hu, Y.; Newsam, S.; Gao, S.; Martins, B.; Yang, L.; Deng, X. GeoAI at ACM SIGSPATIAL: The New Frontier of Geospatial Artificial Intelligence Research. SIGSPATIAL Spec. 2022, 13, 21–32. [Google Scholar] [CrossRef]
- Gao, S.; Hu, Y.; Li, W.; Zou, L. Special issue on geospatial artificial intelligence. GeoInformatica 2023, 27, 133–136. [Google Scholar] [CrossRef]
- Scheider, S.; Richter, K.-F. GeoAI. KI—Künstliche Intell. 2023, 37, 5–9. [Google Scholar] [CrossRef]
Analysis Type | Theme | SI Topic | Ref. |
---|---|---|---|
Deep Learning | Pavement condition evaluation using aerial imagery | AI | [10] |
Measuring image processing time | OpenDroneMap performance analysis | Open-source software | [11] |
Time series analysis | Assess rainfall persistence from CHIRPS satellite observations | Innovative data collection platforms | [12] |
3D simulation | Assess rockfall hazards using 3D models and aerial photos | Advanced geospatial technologies | [13] |
Web map development | Web-GIS Tool for community health | Open-source software | [14] |
Pre/post-statistical comparison | Assess the effects of Twitter’s app policy changes on data sharing | Big data | [15] |
Questionnaire analysis | Choice of actor variables in agent-based cellular automata modeling | Location-based questions | [16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hochmair, H.H.; Navratil, G.; Huang, H. Perspectives on Advanced Technologies in Spatial Data Collection and Analysis. Geographies 2023, 3, 709-713. https://doi.org/10.3390/geographies3040037
Hochmair HH, Navratil G, Huang H. Perspectives on Advanced Technologies in Spatial Data Collection and Analysis. Geographies. 2023; 3(4):709-713. https://doi.org/10.3390/geographies3040037
Chicago/Turabian StyleHochmair, Hartwig H., Gerhard Navratil, and Haosheng Huang. 2023. "Perspectives on Advanced Technologies in Spatial Data Collection and Analysis" Geographies 3, no. 4: 709-713. https://doi.org/10.3390/geographies3040037
APA StyleHochmair, H. H., Navratil, G., & Huang, H. (2023). Perspectives on Advanced Technologies in Spatial Data Collection and Analysis. Geographies, 3(4), 709-713. https://doi.org/10.3390/geographies3040037