From Crops to Kilowatts: An Empirical Study on Farmland Conversion to Solar Photovoltaic Systems in Kushida River Basin, Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Data Collection
2.2. Model Structures and Simulation Methods
2.2.1. Classification of Farmland with Sentinel-2 Data
2.2.2. Locating the Agricultural Land Converted into PV Systems (2016 to 2021)
2.2.3. Analysis of Motives for Farmland Diversion
3. Results
3.1. Farmland Classification Model Results
3.2. Conversion of Farmland into PV Systems
3.3. Analysis of GEO-Motives for Conversion of Farmland
- (1)
- Water source distance (WD): converted TFs, BFs, and WFs are closer to the average distance to water sources than PF, which is 20% further.
- (2)
- Road distance (RD): converted lands are generally closer to roads, usually less than 25 m away.
- (3)
- Elevation (DEM): both BF and WF conversions seem influenced by elevation, with WF conversions more common in higher-elevation areas.
- (4)
- Slope: WFs show a relationship with slopes, indicating more conversions in steeper areas.
- (5)
- Slope direction (DIRECTION): there is no clear trend, but converted lands often face southeast.
- (6)
- Openness (OPEN): this impacts BF, WF, and TF conversions, with converted lands typically having lower average openness values, affecting factors like sunlight duration.
3.4. Social Factors Related to the Conversion of Farmland
4. Discussion
4.1. Current Land Use after Farmland Conversion
4.2. Relationship between Farmland Conversion and GEO-Motives
4.3. Relationship between Farmland Conversion and Social Detective
4.4. Relative Research about PV Location Character
4.5. The Potential Impacts on the Environment
4.6. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, J.Y.; Koide, D.; Ishihama, F.; Kadoya, T.; Nishihiro, J. Current Site Planning of Medium to Large Solar Power Systems Accelerates the Loss of the Remaining Semi-Natural and Agricultural Habitats. Sci. Total Environ. 2021, 779, 146475. [Google Scholar] [CrossRef]
- Yang, Y.; Hobbie, S.E.; Hernandez, R.R.; Fargione, J.; Grodsky, S.M.; Tilman, D.; Zhu, Y.-G.; Luo, Y.; Smith, T.M.; Jungers, J.M.; et al. Restoring Abandoned Farmland to Mitigate Climate Change on a Full Earth. One Earth 2020, 3, 176–186. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, T.; Feng, Z.; Wu, K. Identifying the Contradiction between the Cultivated Land Fragmentation and the Construction Land Expansion from the Perspective of Urban-Rural Differences. Ecol. Inform. 2022, 71, 101826. [Google Scholar] [CrossRef]
- Goto, S.; Angchaisuksiri, P.; Bassand, J.-P.; Camm, A.J.; Dominguez, H.; Illingworth, L.; Gibbs, H.; Goldhaber, S.Z.; Goto, S.; Jing, Z.-C.; et al. Management and 1-Year Outcomes of Patients with Newly Diagnosed Atrial Fibrillation and Chronic Kidney Disease: Results from the Prospective GARFIELD-AF Registry. J. Am. Heart Assoc. 2019, 8, e010510. [Google Scholar] [CrossRef]
- Nozu, T. Analysis on Farmers’ Willingness of Implement to Combinations of Solar Photovoltaic and Food Crops. J. Rural. Plan. Assoc. 2018, 37, 304–311. [Google Scholar] [CrossRef]
- Pascaris, A.S.; Schelly, C.; Burnham, L.; Pearce, J.M. Integrating Solar Energy with Agriculture: Industry Perspectives on the Market, Community, and Socio-Political Dimensions of Agrivoltaics. Energy Res. Soc. Sci. 2021, 75, 102023. [Google Scholar] [CrossRef]
- Qerimi, D.; Dimitrieska, C.; Vasilevska, S.; Alimehaj, A. Modeling of the Solar Thermal Energy Use in Urban Areas. Civ. Eng. J. 2020, 6, 1349–1367. [Google Scholar] [CrossRef]
- Agostini, A.; Colauzzi, M.; Amaducci, S. Innovative Agrivoltaic Systems to Produce Sustainable Energy: An Economic and Environmental Assessment. Appl. Energy 2021, 281, 116102. [Google Scholar] [CrossRef]
- Kumpanalaisatit, M.; Setthapun, W.; Sintuya, H.; Pattiya, A.; Jansri, S.N. Current Status of Agrivoltaic Systems and Their Benefits to Energy, Food, Environment, Economy, and Society. Sustain. Prod. Consum. 2022, 33, 952–963. [Google Scholar] [CrossRef]
- Carbon Neutrality | Global Issues-JapanGov. Available online: https://www.japan.go.jp/global_issues/carbon_neutrality/ (accessed on 24 January 2024).
- Adeh, E.H.; Selker, J.S.; Higgins, C.W. Remarkable Agrivoltaic Influence on Soil Moisture, Micrometeorology and Water-Use Efficiency. PLoS ONE 2018, 13, e0203256. [Google Scholar] [CrossRef]
- Kenyon, W.; Hill, G.; Shannon, P. Scoping the Role of Agriculture in Sustainable Flood Management. Land Use Policy 2008, 25, 351–360. [Google Scholar] [CrossRef]
- Posthumus, H.; Hewett, C.J.M.; Morris, J.; Quinn, P.F. Agricultural Land Use and Flood Risk Management: Engaging with Stakeholders in North Yorkshire. Agric. Water Manag. 2008, 95, 787–798. [Google Scholar] [CrossRef]
- Kehoe, L.; Senf, C.; Meyer, C.; Gerstner, K.; Kreft, H.; Kuemmerle, T. Agriculture Rivals Biomes in Predicting Global Species Richness. Ecography 2017, 40, 1118–1128. [Google Scholar] [CrossRef]
- Wang, C.-J.; Wan, J.-Z.; Fajardo, J. Effects of Agricultural Lands on the Distribution Pattern of Genus Diversity for Neotropical Terrestrial Vertebrates. Ecol. Indic. 2021, 129, 107900. [Google Scholar] [CrossRef]
- Ajiki, K. Changes in the Structure of Industries and Reduction of Agriculture in Mountain Villages of Mie Prefecture, Japan since the 1990s. Jinbun Ronso Bull. Fac. Humanit. Law Econ. 2020, 37, 1–13. [Google Scholar]
- Yamada, S.; Okubo, S.; Kitagawa, Y.; Takeuchi, K. Restoration of Weed Communities in Abandoned Rice Paddy Fields in the Tama Hills, Central Japan. Agric. Ecosyst. Environ. 2007, 119, 88–102. [Google Scholar] [CrossRef]
- Kamigawara, K.; Yuichiro, M. Regulation on Location of Solar Photovoltaic Stations by Local Ordinances to Regulate Location of Renewable Energy Power Stations. Pap. Environ. Inf. Sci. 2020, 34, 323–328. [Google Scholar]
- Kazuki, K.; Kunihiko, M.; Masanori, S. Validity of Ordinances that Control Developments of Solar Panels on the ground for Location and Landscape Conservation. J. City Plan. Inst. Jpn. 2018, 53, 1313–1319. [Google Scholar] [CrossRef]
- Abdulkarim, H.T.; Sansom, C.L.; Patchigolla, K.; King, P. Statistical and Economic Analysis of Solar Radiation and Climatic Data for the Development of Solar PV System in Nigeria. Energy Rep. 2020, 6, 309–316. [Google Scholar] [CrossRef]
- Krishnan, P.; Ramakrishnan, B.; Reddy, K.R.; Reddy, V.R. Chapter Three—High-Temperature Effects on Rice Growth, Yield, and Grain Quality. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 111, pp. 87–206. [Google Scholar]
- Song, Y.; Wang, C.; Linderholm, H.W.; Fu, Y.; Cai, W.; Xu, J.; Zhuang, L.; Wu, M.; Shi, Y.; Wang, G.; et al. The Negative Impact of Increasing Temperatures on Rice Yields in Southern China. Sci. Total Environ. 2022, 820, 153262. [Google Scholar] [CrossRef]
- Alcantara, C.; Kuemmerle, T.; Prishchepov, A.V.; Radeloff, V.C. Mapping Abandoned Agriculture with Multi-Temporal MODIS Satellite Data. Remote Sens. Environ. 2012, 124, 334–347. [Google Scholar] [CrossRef]
- Friedl, M.A.; Brodley, C.E. Decision Tree Classification of Land Cover from Remotely Sensed Data. Remote Sens. Environ. 1997, 61, 399–409. [Google Scholar] [CrossRef]
- Minghua, W.; Yueming, H.; Hongmei, W.; Guangsheng, L.; Liying, Y. Remote Sensing Extraction and Feature Analysis of Abandoned Farmland in Hilly and Mountainous areas: A Case Study of Xingning, Guangdong. Remote Sens. Appl. Soc. Environ. 2020, 20, 100403. [Google Scholar] [CrossRef]
- Anusha, B.N.; Babu, K.R.; Kumar, B.P.; Kumar, P.R.; Rajasekhar, M. Geospatial Approaches for Monitoring and Mapping of Water Resources in Semi-Arid Regions of Southern India. Environ. Chall. 2022, 8, 100569. [Google Scholar] [CrossRef]
- Gautam, V.K.; Gaurav, P.K.; Murugan, P.; Annadurai, M. Assessment of Surface Water Dynamicsin Bangalore Using WRI, NDWI, MNDWI, Supervised Classification and K-T Transformation. Aquat. Procedia 2015, 4, 739–746. [Google Scholar] [CrossRef]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Mcfeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Townshend, J.R.G.; Justice, C.O. Analysis of the Dynamics of African Vegetation Using the Normalized Difference Vegetation Index. Int. J. Remote Sens. 1986, 7, 1435–1445. [Google Scholar] [CrossRef]
- M, S.K.; Jayagopal, P. Delineation of Field Boundary from Multispectral Satellite Images through U-Net Segmentation and Template Matching. Ecol. Inform. 2021, 64, 101370. [Google Scholar] [CrossRef]
- Toosi, A.; Javan, F.D.; Samadzadegan, F.; Mehravar, S.; Kurban, A.; Azadi, H. Citrus Orchard Mapping in Juybar, Iran: Analysis of NDVI Time Series and Feature Fusion of Multi-Source Satellite Imageries. Ecol. Inform. 2022, 70, 101733. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, Q.; Lu, A. Spatiotemporal Variation in Vegetation Coverage and Its Driving Factors in the Guanzhong Basin, NW China. Ecol. Inform. 2021, 64, 101371. [Google Scholar] [CrossRef]
- Ghosh, A.; Sharma, R.; Joshi, P.K. Random Forest Classification of Urban Landscape Using Landsat Archive and Ancillary Data: Combining Seasonal Maps with Decision Level Fusion. Appl. Geogr. 2014, 48, 31–41. [Google Scholar] [CrossRef]
- Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.M.; Gräler, B. Random Forest as a Generic Framework for Predictive Modeling of Spatial and Spatio-Temporal Variables. PeerJ 2018, 6, e5518. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Yang, S.; Liu, Z.; Xu, Y.; Xiong, Y.; Qi, S.; Pang, Q.; Xu, J.; Liu, F.; Xu, T. Coupling Machine Learning and Weather Forecast to Predict Farmland Flood Disaster: A Case Study in Yangtze River Basin. Environ. Model. Softw. 2022, 155, 105436. [Google Scholar] [CrossRef]
- Nussbaum, M.; Spiess, K.; Baltensweiler, A.; Grob, U.; Keller, A.; Greiner, L.; Schaepman, M.E.; Papritz, A. Evaluation of Digital Soil Mapping Approaches with Large Sets of Environmental Covariates. Soil 2018, 4, 1–22. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Gao, M.; Dong, J. The Use of Random Forest to Identify Climate and Human Interference on Vegetation Coverage Changes in Southwest China. Ecol. Indic. 2022, 144, 109463. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Probst, P.; Boulesteix, A.-L. To Tune or Not to Tune the Number of Trees in Random Forest. J. Mach. Learn. Res. 2018, 18, 18. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. arXiv 2014, arXiv:1412.7062. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef]
- Afaq, Y.; Manocha, A. Fog-Inspired Water Resource Analysis in Urban Areas from Satellite Images. Ecol. Inform. 2021, 64, 101385. [Google Scholar] [CrossRef]
- Liu, Z.; Li, N.; Wang, L.; Zhu, J.; Qin, F. A Multi-Angle Comprehensive Solution Based on Deep Learning to Extract Cultivated Land Information from High-Resolution Remote Sensing Images. Ecol. Indic. 2022, 141, 108961. [Google Scholar] [CrossRef]
- Brown, G.; Rhodes, J.; Dade, M. An Evaluation of Participatory Mapping Methods to Assess Urban Park Benefits. Landsc. Urban Plan. 2018, 178, 18–31. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, F.; Luo, S.; Lu, T.; Zheng, J.; He, L. Three-Dimensional Landscape Pattern Characteristics of Land Function Zones and Their Influence on PM2.5 Based on LUR Model in the Central Urban Area of Nanchang City, China. Int. J. Environ. Res. Public Health 2022, 19, 11696. [Google Scholar] [CrossRef] [PubMed]
- Leul, Y.; Assen, M.; Damene, S.; Legass, A. Effects of Land Use Types on Soil Quality Dynamics in a Tropical Sub-Humid Ecosystem, Western Ethiopia. Ecol. Indic. 2023, 147, 110024. [Google Scholar] [CrossRef]
- Pandey, R.; Rawat, M.; Singh, R.; Bala, N. Large Scale Spatial Assessment, Modelling and Identification of Drivers of Soil Respiration in the Western Himalayan Temperate Forest. Ecol. Indic. 2023, 146, 109927. [Google Scholar] [CrossRef]
- Grünauer, A.; Vincze, M. Using Dimension Reduction to Improve the Classification of High-Dimensional Data. arXiv 2015, arXiv:1505.06907. [Google Scholar]
- Omer Fadl Elssied, N.; Ibrahim, O.; Hamza Osman, A. A Novel Feature Selection Based on One-Way ANOVA F-Test for E-Mail Spam Classification. Res. J. Appl.Sci. Eng. Technol. 2014, 7, 625–638. [Google Scholar] [CrossRef]
- Dutta, R.; Chanda, K.; Maity, R. Future of Solar Energy Potential in a Changing Climate across the World: A CMIP6 Multi-Model Ensemble Analysis. Renew. Energy 2022, 188, 819–829. [Google Scholar] [CrossRef]
- Bradbury, K.; Saboo, R.; Johnson, T.L.; Malof, J.M.; Devarajan, A.; Zhang, W.; Collins, M.L.; Newell, R.G. Distributed Solar Photovoltaic Array Location and Extent Dataset for Remote Sensing Object Identification. Sci. Data 2016, 3, 160106. [Google Scholar] [CrossRef]
- Hasti, F.; Mamkhezri, J.; McFerrin, R.; Pezhooli, N. Optimal Solar Photovoltaic Site Selection Using Geographic Information System–Based Modeling Techniques and Assessing Environmental and Economic Impacts: The Case of Kurdistan. Sol. Energy 2023, 262, 111807. [Google Scholar] [CrossRef]
- Singh, S.; Powar, S. Putting into Practice a Decision-Making Framework for a Thorough Performance and Location Evaluation of Solar Photovoltaic Plants in India from Distinctive Climate Zones. Energy Strategy Rev. 2023, 50, 101202. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, D.; Li, Y.; Wang, R.; Ma, R. Spatial Modelling the Location Choice of Large-Scale Solar Photovoltaic Power Plants: Application of Interpretable Machine Learning Techniques and the National Inventory. Energy Convers. Manag. 2023, 289, 117198. [Google Scholar] [CrossRef]
- Kocabaldır, C.; Yücel, M.A. GIS-Based Multicriteria Decision Analysis for Spatial Planning of Solar Photovoltaic Power Plants in Çanakkale Province, Turkey. Renew. Energy 2023, 212, 455–467. [Google Scholar] [CrossRef]
Year | Population | Farmland Area | Agricultural Output | Annual Rainfall |
---|---|---|---|---|
2010 | 218,000 | 116.5 km2 | 8,840,000,000 ¥ | 1794 mm |
2015 | 209,000 | 114.2 km2 | 8,630,000,000 ¥ | 1757 mm |
2020 | 196,000 | 109.2 km2 | 8,190,000,000 ¥ | 1839 mm |
Data from government statistical offices website: http//:www.e-stat.go.jp (accessed on 10 March 2024) |
Predicted | ||||
---|---|---|---|---|
TFs | BFs | WFs | ||
Actual | TFs | 44 | 2 | 0 |
BFs | 5 | 47 | 2 | |
WFs | 1 | 4 | 48 |
PFs | TFs | BFs | WFs | Total | |
---|---|---|---|---|---|
Total Number | 58,197 | 4862 | 24,110 | 19,339 | 106,508 |
Total Area (ha) | 9646.8 | 393.3 | 1177.7 | 1019.7 | 11,237.5 |
Conv Number | 437 | 32 | 246 | 337 | 1052 |
Conv Area (ha) | 45.52 | 2.13 | 9.56 | 20.72 | 77.93 |
Conv Number % | 0.75% | 0.66% | 1.02% | 1.74% | 0.98% |
Conv Area % | 0.47% | 0.54% | 0.81% | 0.93% | 0.64% |
WD | RD | DEM | SLOPE | OPEN | DIRECTION | |
---|---|---|---|---|---|---|
2 PF—PFc_Sig | <0.001 | 0 | 0.972 | 0.996 | 0.709 | 0.025 |
4 WF—WFc_Sig | <0.001 | 0 | 0 | 0 | 0 | 0.02 |
3 BF—BFc_Sig | <0.001 | 0 | 0 | 0.106 | 0 | 0.144 |
1 TF—TFc_Sig | 0.998 | 0 | 0.498 | 1 | 0 | 1 |
F | 184.16 | 159.1 | 2380.92 | 3096.87 | 568.67 | 159.71 |
DF | 7 | 7 | 7 | 7 | 7 | 7 |
WD (m) | RD (m) | DEM (m) | SLOPE | OPEN | DIRECTION | ||
---|---|---|---|---|---|---|---|
PFs | PF | 209.6 | 60.1 | 43.8 | 2.21 | 0.241 | 125.8 |
PF-conv | 262.03 | 21.5 | 49.3 | 1.96 | 0.211 | 144.1 | |
WFs | WF | 246.7 | 45 | 41.2 | 1.93 | 0.3 | 127 |
WF-conv | 172.8 | 14.9 | 126.4 | 5.08 | 0.051 | 146.3 | |
BFs | BF | 187.1 | 108.6 | 93.7 | 5.5 | 0.152 | 149 |
BF-conv | 138.4 | 17 | 162.7 | 6.35 | 0.012 | 163.9 | |
TFs | TF | 154.6 | 130.9 | 144 | 9.1 | 0.034 | 161.7 |
TF-conv | 129.7 | 22.1 | 152.8 | 10 | <0.001 | 169.5 |
WD | RD | DEM | SLOPE | OPEN | DIRECTION | |
---|---|---|---|---|---|---|
PFs | NGT | PST | / | / | / | / |
WFs | PST | PST | NGT | NGT | NGT | / |
BFs | PST | PST | NGT | / | NGT | / |
TFs | / | PST | / | / | NGT | / |
Study Area | All PV System | Conv PV System | All Farmland | |
---|---|---|---|---|
Solar Radiation Avg | 1,916,778 W/m2/year | 1,959,251 W/m2/year | 2,265,092 W/m2/year | 1,961,580 W/m2/year |
Direction | Openness | DEM | Angle | WD | RD | PFR | |
---|---|---|---|---|---|---|---|
P* | 0.014 | 0.316 | 0 | 0.05 | 0.613 | 0.084 | 0.517 |
B | 0.005 | 0.002 | 0.016 | −0.007 | −0.001 | −0.003 | 0.001 |
Beta | 0.180 | 0.069 | 0.578 | −0.244 | −0.034 | −0.112 | 0.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.; Ullah, S.M.A.; Takatori, C. From Crops to Kilowatts: An Empirical Study on Farmland Conversion to Solar Photovoltaic Systems in Kushida River Basin, Japan. Geographies 2024, 4, 216-230. https://doi.org/10.3390/geographies4020014
Xie Z, Ullah SMA, Takatori C. From Crops to Kilowatts: An Empirical Study on Farmland Conversion to Solar Photovoltaic Systems in Kushida River Basin, Japan. Geographies. 2024; 4(2):216-230. https://doi.org/10.3390/geographies4020014
Chicago/Turabian StyleXie, Zhiqiu, S M Asik Ullah, and Chika Takatori. 2024. "From Crops to Kilowatts: An Empirical Study on Farmland Conversion to Solar Photovoltaic Systems in Kushida River Basin, Japan" Geographies 4, no. 2: 216-230. https://doi.org/10.3390/geographies4020014
APA StyleXie, Z., Ullah, S. M. A., & Takatori, C. (2024). From Crops to Kilowatts: An Empirical Study on Farmland Conversion to Solar Photovoltaic Systems in Kushida River Basin, Japan. Geographies, 4(2), 216-230. https://doi.org/10.3390/geographies4020014