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Abstract: Accurate flood prediction models and effective flood preparedness rely on thoroughly un-
derstanding rainfall–runoff dynamics. Similarly, effective rainfall–runoff models account for multiple
interrelated parameters for robust runoff prediction. Process-based physical models offer valuable
insights into hydrological processes, but their effectiveness can be hindered by data limitations
or difficulties in acquiring specific data. Motivated by the frequent flooding events and limited
data availability in the East Branch DuPage watershed, Illinois, this study addresses a critical gap
in research by investigating effective discharge prediction methods. In this study, two significant
machine learning (ML) models, artificial neural network (ANN) and support vector machine (SVM),
were employed for discharge prediction. Historical data spanning from 2006 to 2021 were utilized
to assess the performance of the models. Hyperparameter tuning was performed on the models to
optimize their performance, and root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE),
percent bias (PBIAS), coefficient of determination (R2), and the normalized root mean squared error
(NRMSE) were used as evaluation metrics. Although both machine learning models demonstrated
strong performance, the analysis revealed that the ANN model emerged as the more reliable option
for predicting discharge in the watershed. Crucially, the ANN model surpassed the SVM model’s
performance, achieving superior accuracy in predicting peak discharge events within the study area.
Our findings have the potential to assist decision-makers and communities in implementing more
dependable flood mitigation strategies, particularly in regions where hydrology data are limited.

Keywords: discharge; SVM; ANN; forecast; machine learning

1. Introduction

Flooding is a natural phenomenon that can have devastating effects on communities
and ecosystems, making it a significant concern for disaster preparedness and manage-
ment [1]. It can cause significant harm to both the environment and human life, resulting in
damage to property and infrastructure. It can occur gradually or suddenly, leading to flash
floods [2]. Various factors such as global warming, changes in land use and land cover, and
urbanization can exacerbate the impact and frequency of flooding events [2]. According to
estimates, the mean annual probability of high property damage in certain regions of the
US could vary from 38% to 80% under the RCP4.5 scenario and from 46% to 95% under
the RCP8.5 scenario by the end of the century (2090s) [3]. The increasing severity of flood-
ing highlights the need for reliable and effective prediction and mitigation methods [4].
Therefore, it is crucial to develop accurate methods for predicting and managing flooding,
particularly in urban areas.

An important aspect of understanding and managing floods is capturing the dynamics
of runoff, which is one of the primary contributors to flooding events [5]. Accurate flood
risk assessment relies on precise peak runoff estimation, which is determined through
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rainfall–runoff simulation [2]. Predicting accurate discharge is a crucial factor in flood con-
trol and reducing damage to the environment and infrastructure [6]. Over time, researchers
have explored various methods for simulating runoff in watersheds. These include empiri-
cal models, such as machine learning algorithms (e.g., ANN and SVM) that utilize historical
data for predictions and physical-based models, specifically distributed hydrological mod-
els, which also possess conceptual characteristics and are used to predict runoff [3]. By
leveraging these diverse approaches, researchers aim to improve our understanding of
hydrological processes and enhance flood prediction and management capabilities.

Over the years, traditional hydrological models such as the Hydrological Engineering
Centre Hydrological Modeling System (HEC-HMS) have played a crucial role in model-
ing the interactions between precipitation, land surface, and river systems to calculate
the runoff of the catchment area [7]. Physically based hydrological models have greatly
contributed to the calculation of complex hydrological processes, providing valuable un-
derstanding for flood risk assessment and hydrological management [7]. However, their
application faces several hurdles. These include the need for diverse, high-quality datasets
encompassing various hydrological parameters and often require significant computational
resources and expertise in interpreting and selecting appropriate hydrological parameters,
especially in short-term predictions [8]. On the other hand, empirical models are used as an
approach for predicting hydrological events, particularly in flood modeling. These models
leverage historical data analysis to establish statistical relationships between observed
variables, offering a valuable tool for flood risk assessment and mitigation strategies [9].
While empirical models offer several advantages, including the ability to handle and learn
from large datasets, flexibility in adapting to new data, and reduced reliance on in-depth
knowledge of the physical system, they also come with limitations. These limitations can
include potential accuracy issues, a steeper learning curve for users compared to traditional
methods, and higher computational demands [4].

In hydrology research, ML has gained significant attention because of its ability to
facilitate accurate predictions by training and testing datasets. ML has been developed over
the past few years to better understand real-world problems by using current and observed
data and experiences to generate accurate predictive outputs [10]. These approaches are
advantageous, particularly in scenarios where process-based models may be constrained
by high modeling costs, data scarcity, or the need for supplementary analytical capabilities
to interpret complex datasets [11]. Several water and hydrology studies have already used
ML for research applications such as sediment transport, rainfall-runoff simulation, water
distribution networks, water quality analysis, and flood inundation mapping [12–14]. The
use of machine learning models like ANN, SVM, and Random Forests (RFs) has increased
in hydrology and water resource modeling. Many researchers use these models to forecast
water levels, streamflow, and rainfall–runoff in time series problems [15–17].

ANNs are artificial intelligence models that mimic the information-processing capa-
bilities of biological neural networks. These networks are trained using algorithms to
recognize patterns and relationships in data, making them useful for various tasks [15].
Bekele and Nicklow [18] explore the application of ANNs, trained using a hybrid evolu-
tionary approach, to simulate various hydrological responses such as flow, sediment, and
nutrient dynamics. Ghorbani et al. [19] compared ANNs and SVMs to model the discharge
of the Big Cypress River in Texas, USA, utilizing time series data. They found that both
ANN and SVM models were more reliable than conventional models for modeling the
river discharge. Tamiru et al. [20] employed an ANN model for flood inundation mapping
in the lower Baro Akobo River Basin, Ethiopia. Their study revealed that the ANN model
exhibited good performance during both training and testing periods. Another study
conducted in two reservoirs in Illinois, USA, aimed to compare the performance of various
machine learning models in predicting reservoir outflow. The research demonstrated that
ML models are an effective approach for reservoir management. Additionally, the study
found that the ANN model outperformed RF and SVM models in predicting reservoir
outflow [21]. Riad et al. [22] modelled the rainfall–runoff relationship in a semiarid area in
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Morocco using an ANN. They found that this method predicted more reliable data than
classical regression models. Comparing ANNs with other ML models, especially SVMs,
provides valuable insights into their relative performance and informs the selection of the
most effective modeling technique for a particular problem domain.

SVMs offer a flexible and powerful approach to modeling hydrological processes
and can complement other techniques such as empirical models, distributed hydrological
models, and conceptual models in watershed management studies [23]. They utilized the
SVM method to forecast streamflow in the Western United States, and they found the model
to be highly accurate. Asefa et al. [6] utilized SVM models for multi-time scale streamflow
predictions, which yielded promising results. By leveraging local climatological data, the
SVM model effectively forecasted streamflow with minimal input requirements compared
to traditional physical models. In a study focused on predicting the discharge of the
Mahanadi River in India, researchers applied SVM models and found them to outperform
the traditional Box–Jenkins approach [24]. Lin et al. [25] conducted a study where SVM
was employed to analyze long-term observations of monthly river flow discharges in a
watershed in China. This highlights the SVM’s effectiveness as a viable option for long-term
discharge prediction in hydrological studies. Guo et al. [26] endeavoured to enhance the
performance of the SVM model for predicting monthly streamflow by eliminating noise
from runoff time series. The study aimed to verify whether the refined SVM model could
effectively handle complex hydrological data series. Finding the best ML method for each
basin based on available data enables tailored and optimized flood forecasting models,
leading to more accurate and reliable predictions.

While ML offers a promising path for discharge prediction, a key challenge lies in
identifying the most effective model for specific watersheds. The novelty of this study
is to evaluate the efficacy of ANN and SVM models for rainfall-runoff simulation in
a region with limited hydrological data availability. These models can predict runoff
from rainfall by identifying complex patterns and correlations within limited and diverse
datasets, without relying on detailed physical processes like antecedent soil moisture and
infiltration rate [10]. This study also leveraged global precipitation measurement (GPM)
data from Climate Engine since the East Branch DuPage watershed lacks precipitation
gauging stations. The subsequent sections of this paper delve into the following aspects.
The Materials and Methods section encompasses the study area description, data pre-
processing techniques, and performance evaluation methods employed. The Results
section then presents the findings obtained from the model application. A comprehensive
discussion follows, comparing these results with existing research in this field. Finally, the
concluding section summarizes the key takeaways and potential implications of this study.

2. Materials and Methods
2.1. Study Area

The East Branch DUPAGE watershed is located on the northern side of Illinois, USA.
The region’s watershed area is approximately 62.2 square kilometres and is located at an
elevation of 204 to 250 m above sea level (Figure 1). The study area extends from latitude
41◦50′ N to 41◦57′ N and longitude 87◦59′ W to 88◦6′ W. The average soil permeability
of the study area is 6.24 cm/h [27]. The outlet of the watershed consists of USGS gauge
station 05540160 downstream of the study area (https://earthexplorer.usgs.gov/, accessed
on 25 October 2023). In 1996, 2008, 2013, and 2020, the area experienced major flooding
events [3]. This study area does not possess any rainfall gauging stations; therefore, for the
current research purpose, gridded precipitation data were used.

https://earthexplorer.usgs.gov/
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Figure 1. The East Branch DuPage watershed, Illinois.

2.2. Precipitation Data

Precipitation is an important dataset used in the current study. As the study watershed
does not have any gauging stations to measure the precipitation data, global precipitation
measurements (GPMs) from Climate Engine were used. The GPM is a next-generation
system that measures snow and rain using satellite technology. The high spatial resolution
of the GPM method, typically 0.1◦ by 0.1◦, enables detailed and precise monitoring of
precipitation patterns and distribution worldwide [28]. Gridded precipitation data for
2006–2021 were converted into daily time series data using Python.

2.3. Data

Selecting significant input variables is crucial in developing time series forecasting
models as it enhances model performance by eliminating irrelevant and redundant vari-
ables that introduce noise and diminish accuracy and speed [29]. This study employed a
brute force feature selection method, similar to previous studies, to identify the most signif-
icant input variables from the available meteorological data for the region [3,30]. This study
uses gauge height (https://earthexplorer.usgs.gov/, accessed on 25 October 2023), mete-
orological model data such as precipitation (https://www.climateengine.org/, accessed
on 26 October 2023), and climatic data such as humidity, temperature, and evapotran-
spiration for machine learning simulation (https://power.larc.nasa.gov/, accessed on
26 October 2023) inputs. In addition, as the seasonal variations play a vital role in rainfall–
runoff dynamics, seasonality is also incorporated as a feature. This study utilized a 15-year
data series from 2006 to 2021 obtained from measurement gauges to investigate rainfall–
runoff dynamics within the East Branch DuPage watershed. This timeframe was chosen
considering the recommended minimum of a decade of data for reliable hydrological pre-
dictions [10]. Additionally, the period encompasses a history of significant flooding events
in the region potentially offering valuable data points for model training. While the analysis
suggests a possible biennial pattern of high rainfall–runoff events, the data also reveal
inconsistencies [3]. Years with substantial precipitation and runoff are interspersed with
periods of drought characterized by minimal rainfall and low streamflow. This variability

https://earthexplorer.usgs.gov/
https://www.climateengine.org/
https://power.larc.nasa.gov/
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in the data series presents a potential challenge for machine learning models [25]. Models
primarily trained on data rich in high-flow events might struggle to accurately predict
discharge during low-flow periods. However, the extensive 15-year daily data allow the
models to benefit from a large and diverse dataset, potentially improving their ability to
learn complex hydrological behavior and ultimately predict flood events [25]. These data
were used to calculate and predict the hydrology and hydraulic parameters for the ANN
and SVM models. Based on previous research, the data were split into training and testing
sets [31,32]. In the study period from 2006 to 2021, 80% of the entire daily stage discharge
dataset was randomly selected for training purposes. The other 20% of the dataset was
reserved specifically for evaluating the models’ performance.

2.4. Pre-Processing Data

Choosing the best inputs is crucial in developing time series models. This step en-
hances model performance by eliminating irrelevant and redundant variables that introduce
noise, thereby improving accuracy and computational efficiency [31,33]. Correlated input
variables can obscure the true relationships between important variables, which can nega-
tively impact the prediction ability of the model [34]. For this purpose, the identification
and management of outliers play a crucial role in ensuring the integrity and accuracy
of statistical inferences [35,36]. Outliers, defined as data points significantly deviating
from the average, can distort the results of analyses and compromise the robustness of
models [37]. Addressing outliers requires careful consideration and a systematic approach.
Several strategies exist for replacing outliers, each catering to different data characteristics
and the underlying reasons behind the outlier presence [36,37]. The methodical approach
utilized in this study involved identifying outliers based on a criterion related to their
deviation from the mean. Specifically, values that exceeded three standard deviations were
flagged for correction [38]. Subsequently, a strategy of imputation through interpolation
was employed to replace these outlier values with contextually inferred data points, pre-
serving the overall trend of the dataset [38]. This approach seeks to mitigate the impact
of extreme observations while maintaining the continuity and coherence of the dataset.
The resulting corrected dataset, represented through a box plot, reflects the application of
a judicious outlier-handling technique [37]. Such systematic outlier correction processes
are essential in research and analysis, contributing to the refinement of datasets for more
accurate and reliable statistical interpretations [38]. This study employs the corrected data
derived through this method. Figure 2a,b present a box plot depicting the flood events of
the DuPage River dataset before and after the removal of outliers, respectively.
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2.5. ANN Model

The development of the ANN algorithm and its interconnected nodes is influenced
by the intricate neural network present in the human brain and body [39,40]. ANNs with
similar network structures and interconnected neuron units enable efficient modeling of
mathematical systems. The accuracy of ANN algorithms in modeling flood prediction
has been proven [41–43]. ANNs are recognized as effective machine learning models for
capturing complex relationships between variables, particularly in the context of predicting
rainfall, flood occurrences, and discharge levels [44,45]. ANNs are also noted for their
computational efficiency compared to other models, allowing for faster processing of data
and predictions [46]. Previous researchers have also utilized this model for predicting
streamflow, rainfall, and runoff, demonstrating its versatility and effectiveness across vari-
ous hydrological applications [47–49]. This study employed a feedforward neural network
for regression tasks, leveraging the TensorFlow and Keras libraries. This architecture is
commonly referred to as a “Multilayer Perceptron” (MLP), which serves as a fundamental
model in artificial neural networks [50]. The MLP architecture comprises input layers,
hidden layers, and an output layer. Based on the selected input parameters (gauge height,
precipitation, temperatures, humidity, and evapotranspiration) and the output (discharge),
a neural network configuration was chosen with 5 input nodes, 3 hidden layers, and 1 out-
put node. The selection of the number of hidden nodes was guided by insights from the
research conducted by Lv et al. [30]. Three hidden layers with 100, 50, and 20 neurons,
respectively, are added with the ReLU activation function. The neural network architecture
includes an output layer with a neuron optimized for regression analysis. The model is
constructed utilizing the RMSprop optimizer with a rate of learning 0.001 and employs
the mean squared error loss function [30]. To prevent overfitting, the training procedure
includes the EarlyStopping callback, which evaluates the validation error and stops train-
ing if no enhancement is observed for 20 consecutive epochs. The training dataset was
used to train and validate the model on a separate validation dataset, with a maximum
of 5000 epochs specified for the training process. Equation (1) was used to prepare the
inputs and normalized to a range between 0 and 1 [51]. Random initial weights were
established for the connections between input, hidden, and output nodes within the ANN
networks [52]. Commencing the modeling process requires the meticulous collection of
essential input parameters, documented daily and spanning the temporal domain from
2006 to 2021.

X_normalized =
x − min_val

max_val − min_val
(1)

2.6. SVM Model

Established on the Structural Risk Minimization (SRM) principle, the SVM uses a
training set of sample objects to find a hyperplane in the data space with the largest
minimum distance between the sample objects [26]. This hyperplane separates the two
different classes of sample objects with the largest minimum distance [53]. The sample
objects on the edges of the hyperplane, called support vectors, are used to separate the
objects into different classes. The object samples (support vectors) provide the basis for
the hyperplane, and thus the algorithm is named support vector machines [44]. One of
the supervised learning methods, SVR predicts the future data based on the underlying
dependency of the known observations (training samples) [53].

Various kernel functions (linear kernel, polynomial kernel, RBF kernel, sigmoid kernel)
in the SVM operate in their own way depending on kernel parameters. These parameters
define the regression model complexity, and the kernel functions give the option of input
space dimensions. Noise in input data is also significantly supressed by parameter settings.
Here are some popular kernel functions [24].

1. Linear kernel: k
(
xi, xj

)
= xT

i xj;

2. Polynomial kernel: k
(

xi, xj
)
=

(
γxT

i xj + r
)d, γ > 0;

3. RBF kernel: k
(

xi, xj
)
= exp

(
−γ ∥ xi − xj ∥

)2, γ > 0;
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4. Sigmoid kernel: k
(

xi, xj
)
= tanh,(−γxT

i xj + r
)
γ > 0.

C, γ, r, and d are kernel parameters. These parameters define the regression model
complexity, and the kernel functions give us the option of input space dimensions.

The linear kernel function serves as the foundation of the SVM method, primarily
because the target variable (discharge) exhibits a linear relationship with the features. The
dataset used comprises discharge ( Q), gauge height ( f gh), precipitation ( f p), humidity
( f h), temperature ( f t), and evapotranspiration ( f e) of the years 2006 to 2020. Data
preprocessing steps included handling missing values, removing outliers, and scaling
features. The resources for the data were derived from creditable sources, which are
mentioned above in the materials section. Based on the parameters that have influences on
the discharge, Equation (2) is modeled. To ensure consistent and effective model training,
the features were standardized using the Standard Scaler.

Q = f
(

fgh, fp, fh, ft, fe

)
, (2)

where fgh, fp, fh, ft, fe are the input parameters and fd is the output. The SVR model
with a linear kernel was initialized. In this study, we employed the grid search method to
estimate the hyperparameters in the SVM model, as performed in previous research [23].
The hyperparameters C (regularization parameter) and epsilon (insensitivity parameter)
were set based on a preliminary hyperparameter tuning process, Grid Search, where the
values [C = 100 and epsilon = 1.0] were found to yield optimal performance. Figure 3a,b
illustrate the architecture of both the ANN and SVM models, respectively.
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Figure 3. The architecture of (a) ANN model and (b) SVM model.

2.7. Performance Evaluation

The evaluation of the models was conducted using various evaluation methods. These
metrics provide a detailed evaluation of the models and can help determine which models
perform better in terms of accuracy, reliability, and predictive power. In this study, the five
evaluation metrics root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), percent
bias (PBIAS), coefficient of determination (R2), and the normalized root mean squared error
(NRMSE) were utilized to evaluate the performance of the model [3,54]. Table 1 displays all
the evaluation methods utilized. Qo,i = observed data, Qs,i = simulated data, Qo,i = mean
value of real data, and N = total data.
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Table 1. List of evaluation methods for assessing the performance of models.

Indices Mathematical Expression Satisfactory Range

RMSE RMSE =

√
∑N

i=1(Qs,i−Qo,i)
2

N

NSE NSE = 1 −
[

∑N
i=1(QO,i−QS,i)

2

∑N
i=1

(
Qo,i−Qo)

2

]
0.5 < NSE ≤ 1

R2
R2 =

(
∑N

i=1 (Qo,i−Qo,i)∗(Qs,i−Qo,i))
2

∑N
i=1 (Qa,i−Qo,i)

2∗∑N
i=1(Qs,i−Qo,i)

2
>0.5

PBIAS PBIAS = ∑N
i=1(Qo,i−Qs,i)

∑N
i=1 Qo,i

∗100 −25% < PBIAS < +25%

NRMSE NRMSE =
1
N ∑N

i=1(Qs,i−Qo,i)
2

Mean
0 ≤

3. Results and Discussion

This study focuses on evaluating the performance of runoff modeling using ANN and
SVM models in the East Branch DUPAGE watershed, Illinois, USA. As mentioned earlier,
the five key inputs selected for this study include gauge height, precipitation, humidity,
temperature, and evapotranspiration for both ML models, based on insights drawn from
previous research [3,21]. These variables include past and current information from 2006
to 2021. The irrelevant and redundant data, which reduce the accuracy and speed of the
model, were not included in the model. The precipitation data utilized in this study were
derived from satellite-based rainfall products spanning from 2006 to 2021, similar to the
approach employed in Bhusal et al.’s research [3]. They showed that the model matches
the observed daily discharge data and can be considered completely reliable. Figure 4a,b
display the observed runoff plotted against the calculated runoff of the watershed for
testing the ANN and SVM models, respectively. For both models, the data indicate a strong
correlation between predicted values and the corresponding daily discharge, demonstrating
a good match across the board. The evaluation metrics for the ANN model are as follows:
PBIAS = 0.15%, RMSE (Cfs) = 7.01, NSE = 0.97, and NRMSE = 0.91. In comparison, the
evaluation metrics for the SVM model are PBIAS = −0.39%, RMSE (Cfs) = 10.41, NSE = 0.94,
and NRMSE = 0.0328. These results confirm that the ANN model outperforms the SVM
model in predicting runoff for the watershed, consistent with findings from previous
studies [19,21]. Additionally, Bafitlhile et al. [31] compared the performance of these two
models for flood forecasting in humid, semi-humid, and semi-arid basins in China. They
found that SVM generally outperformed ANN in streamflow simulation. This difference in
results could be attributed to the shorter time-series data and using only 60% of the data
for training the model.

The scatter plots for both ANN and SVM models are depicted in Figure 5a,b, respec-
tively, showcasing the goodness of fit and performance. The coefficient of determination
(R2) remains unchanged under linear transformations of the independent variables’ distri-
bution, making it a robust metric in regression analysis, and provides more informative
insights compared to other metrics [55]. In this context, R2 ratings were calculated for both
models in training and testing data, and it indicates excellent performance, with R2 values
0.94 and 0.97 for testing SVM and ANN results, respectively. In a study by Bhusal [3],
they employed RFs in the watershed and reported an R2 value of 0.72 for their model.
Additionally, they utilized the HEC-HMS model, known as one of the top-performing
physical methods for discharge prediction, yielding an R2 value of 0.99. This observation
underscores the ANN model’s superior performance compared to the SVM and RF models
in predicting runoff data, aligning closely with the results obtained from HEC-HMS.
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This study evaluated the accuracy of SVM and ANN models for streamflow fore-
casting in the basin using the cumulative non-exceedance probability error, specifically
calculated as the LEPS SK score. A perfect forecast would result in an SK score of 100%,
while a random forecast would have an SK score of 0. Higher SK scores indicate better
model performance [56]. Figure 5c,d illustrates the probabilistic cumulative error between
measured and predicted flow rates. Both models achieved high SK scores exceeding 80%,
suggesting good overall performance. However, the ANN model exhibited a slight advan-
tage, with scores consistently exceeding those of the SVM model. Furthermore, the ANN
model results achieved a higher proportion of predictions with low errors (around 10%).
This means a potentially more reliable forecasting tool for water managers in the basin.

Figure 6a shows the violin plot for the distribution of measured and forecasted dis-
charge values obtained with SVM and ANN models in the watershed. The wider, violin-
shaped areas depict the probability density of the discharge values [57]. The SVM model
exhibits a broader range of predicted discharge values, whereas the ANN model demon-
strates a distribution more closely aligned with the measured values. The Taylor diagram
(Figure 6b) [58] summarizes the performance of two machine learning models, ANN and
SVM, in predicting streamflow discharge. Ideal model performance is represented by a
point at the centre of the diagram, where the correlation coefficient is 1 and the standard
deviation matches the observed data [58]. The plot depicts the output of both models
for a randomly selected 20% of the entire dataset as discharge. Both models exhibit a
high correlation coefficient. However, the ANN model notably surpasses the SVM model,
indicating a superior alignment between predicted and observed discharge values. Overall,
these plots suggest that the ANN model provides more precise discharge forecasts for
the basin.
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Table 2 presents the results of the evaluation of the ANN and SVM models using
various statistical indices. The RMSE is commonly employed to assess the accuracy of
predictions [59]. During the ANN training phase, the RMSE was found to be 9.56 Cfs,
while during the testing phase, it was 7.01 Cfs. These values indicate a satisfactory level
of accuracy in the model’s predictions. The NSE is a widely used metric for evaluating
hydrological models with values between 0.5 and 1, typically considered optimal. These
values indicate a good agreement between observed and simulated values, suggesting
that the model performs well in replicating the observed data [54]. For the ANN model,
the NSE was found to be 0.95 during training and 0.97 during testing. These values
are close to 1, indicating a high level of agreement between the predictions and the real
data. The PBIAS indicates the typical trend of the predicted data. In a model, PBIAS
values should be zero or fall within the range of ±25% [60]. The ANN model exhibited
a slight underestimation of peak discharge, with underestimation percentages of 1.34%
during training and 0.15% during testing. NRMSE serves as a robust standardization
technique to assess the relationship between RMSE and a baseline data range. It normalizes
RMSEs across various magnitudes in time series, thereby generating a standardized value
for comparison [61]. According to Table 2, the NRMSE values for training and testing
results in the ANN model are 1.68 and 0.91, respectively. These values show that the
model’s predictions are relatively accurate, especially during the testing phase when the
NRMSE value is lower than 1. Furthermore, the statistical index analyses consistently
indicated that the SVM performed well in predicting daily discharge data. This clustering
indicates the model’s ability to accurately capture and predict discharge under these specific
flow conditions. Nonetheless, it is worth mentioning that the SVM model, like the ANN
model, exhibited an underestimation of high discharge values. These underestimations are
particularly notable during extreme events. During the training period, the RMSE, NSE,
PBIAS, R2, and NRMSE values were 13.15 m3/s, 0.92, −1.49%, 0.91, and 0.036, respectively.
For the testing period, the corresponding values were 10.41 m3/s, 0.94, −0.39%, 0.94, and
0.033, respectively. It was noted that the SVM model exhibited more noticeable deviations,
especially for higher discharge values. This suggests that the SVM model’s effectiveness in
estimating peak discharge was relatively lower compared to its performance with other
discharge values.

Table 2. Comparison between ANN and SVM models for runoff estimation.

Statistical Index
ANN Model SVM Model

Training Testing Training Testing

RMSE (Cfs) 9.56 7.01 13.15 10.41
NSE 0.95 0.97 0.92 0.94

PBIAS (%) 1.34 0.15 −1.49 −0.39
R2 0.96 0.97 0.92 0.94

NRMSE 1.68 0.91 0.036 0.0328

This study shows that both the ANN and SVM models demonstrated accurate recre-
ation of discharge characteristics, including flood peaks and time, throughout the study
area. The evaluation indices, encompassing both training and testing outcomes of the mod-
els, reinforce the successful utilization of machine learning models in predicting discharge
at the watershed outlet. ML models, particularly ANN and SVM, can be highly dependable
for predicting runoff, especially in areas where limited data are available. These findings
are consistent with a prior study that similarly highlighted the effectiveness of ANN and
SVM models as prediction methods in hydrology projects [3,31,40]. ANNs are particularly
adept at capturing non-linear relationships between various hydrological factors influenc-
ing discharge due to their multi-layered structure. Unlike the SVM model, which often
relies on a linear kernel for classification or regression, ANNs have a flexible architecture
that includes activation functions. These activation functions enable the model to learn
and represent complex, non-linear interactions within the data, enhancing their predictive
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capabilities [10]. This study suggests that these models exhibit satisfactory performance
in predicting discharge during non-flooding periods but tend to underestimate discharge
when flooding events are substantial. Tis indicates that both models may have limitations
in accurately predicting discharge during extreme flood conditions. However, considering
the effective performance of the machine learning models in generating discharge data
under non-flooding conditions, integrating these models with HEC-RAS can be valuable
for water resource planning and flood control in the study area. To enhance reliability, it is
essential to evaluate dependent factors such as precision, robustness, and applicability to
different site conditions. It is recommended to test and analyze the proposed approaches
across various locations to ensure their effectiveness in different contexts. Overall, the ANN
model outperformed the predictions made by the SVM model. The comprehensive findings
of this research work strongly support the effectiveness of machine learning models in
accurately predicting rainfall–runoff and floods in regions where data availability is limited.
These models have demonstrated their potential to overcome data scarcity challenges and
provide valuable insights for effective water resource management and flood mitigation
strategies in such areas.

4. Conclusions

This study aimed to compare the accuracy of ANN and SVM methods in predicting
the discharge of a watershed that is prone to significant flooding events. To achieve the
most precise runoff prediction, the models utilized a combination of daily gauge height,
precipitation, humidity, temperature, and evapotranspiration inputs. The study used a
long time series of data from 2006 to 2021; 80% of the data were used to train the models,
while the remaining 20% were reserved for testing purposes. The results revealed that
both the ANN and SVM models were highly effective in estimating daily discharge at
watershed outlets. However, it is worth noting that the accuracy of the ANN model
surpassed that of the SVM model, particularly during extreme flood conditions. This study
demonstrated that ML models, unlike the HEC-HMS model, do not require a large number
of input variables for flood prediction. This is particularly beneficial in data-scarce regions
where comprehensive input data may not always be available. This dataset served as
the primary source of information for analyzing and simulating the relationship between
precipitation and runoff in the study area. According to the reasonably strong performance
of the models, it can be concluded that the precipitation, temperature, humidity, and gauge
height data used in this study are reliable for discharge prediction. The data utilized in
this study have demonstrated their dependability and accuracy, making them suitable for
hydrology investigations. In both the ANN and SVM models, the peak flows were found
to be underestimated. However, when an integrated approach combining physical-based
models and ML models was employed, it yielded promising results in accurately predicting
the runoff flood depth downstream of the watershed. To enhance the accuracy models in
predicting discharge, it is recommended to remove outliers from the dataset.

This study demonstrates that ML methods, particularly the ANN, offer a reliable
and cost-effective approach for discharge prediction in regions with limited data avail-
ability, with high accuracy. Also, ML models, when trained on remotely sensed data,
can significantly improve the accuracy of rainfall–runoff simulations compared to tradi-
tional methods.

In future research, there are several potential areas that researchers could explore.
Firstly, to enhance the accuracy of precipitation data, incorporating precipitation stations
alongside the PERSIANN precipitation product utilized in this study would be beneficial.
Additionally, exploring the use of other precipitation products and considering additional
input variables in machine learning models, such as curve number, infiltration, land
use/land cover, and radiation, may contribute to improved predictions. Conducting feature
selection to identify the most influential input variables would also make more accurate
models. Several considerations must be addressed when applying the ANN model to other
hydrological contexts with similar data limitations, including environmental parameters
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like anthropogenic land cover changes and climate conditions. Relevant feature selection,
hyperparameter optimization, cross-validation, and hydrological patterns must be checked
to ensure its successful application. Our models were not completely able to capture the
behavior of some of the extreme events; this can be the result of the data imbalance. Various
sampling techniques can be explored to increase the efficiency of the models. Future
research should target larger and more diverse basins with unique meteorological patterns
to broaden our understanding of runoff prediction in different environmental contexts.
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