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Abstract: Research on hurricane impacts in Florida’s coastal regions has been extensive, yet
there remains a gap in comparing the effects and potential damage of different hurricanes
within the same geographical area. Additionally, there is a need for reliable discussions on
how variations in storm surges during these events influence evacuation accessibility to
hurricane shelters. This is especially significant for rural areas with a vast number of aging
populations, whose evacuation may require extra attention due to their special needs (i.e.,
access and functional needs). Therefore, this study aims to address this gap by conducting a
comparative assessment of storm surge impacts on the evacuation accessibility of southwest
Florida communities (e.g., Lee and Collier Counties) affected by two significant hurricanes:
Irma in 2017 and Ian in 2022. Utilizing the floating catchment area method and examining
Replica’s OD Matrix data with Geographical Information Systems (GISs)-based technical
tools, this research seeks to provide insights into the effectiveness of evacuation plans
and identify areas that need enhancements for special needs sheltering. By highlighting
the differential impacts of storm surges on evacuation accessibility between these two
hurricanes, this assessment contributes to refining disaster risk reduction strategies and
has the potential to inform decision-making processes for mitigating the impacts of future
coastal hazards.

Keywords: hurricane evacuation; transportation accessibility; coastal inundation; special
needs shelters; replica data

1. Introduction
Between 2000 and 2019, hurricanes and tropical storms, many times followed by

events like coastal flooding, occurred substantially in the United States compared to other
types of hazards such as landslides and earthquakes [1]. Unfortunately, the increasing
intensity and frequency of natural disasters exacerbated by climate change are likely to
increase, and vulnerabilities will rise dramatically [2,3]. This will result in greater physical
damage to infrastructure, significant economic losses, and heightened risks to human life
and safety.

As a state surrounded by coastlines on three sides, as shown in Figure 1, Florida
faces an average of three or more destructive and potentially devastating hurricanes
each hurricane season [4]. With climate change causing global warming and rising sea
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levels, an increasing number of tropical storms have the potential to intensify into major
hurricanes [5,6]. Given the high likelihood of hurricane occurrences and the increasing
frequency of such events, it is unsurprising that multiple hurricanes impact similar regions
of Florida within a relatively short time frame. For example, Hurricanes Irma and Ian
struck Lee and Collier Counties in southwest Florida five years apart.
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Hurricane Irma made landfall on Cudjoe Key in Monroe County, Florida, as a Category
4 hurricane on 10 September 2017. After its landfall, it weakened to a Category 3 hurricane
as it moved north through Collier and Lee Counties [9]. In 2022, five years after Hurricane
Irma hit southwest Florida, Hurricane Ian, which moved northwest and continued to
rapidly intensify over warm waters, struck the region of Collier and Lee Counties again
with the destructive force of a Category 4 storm. Importantly, it intensified faster than any
other hurricane in the 2022–2023 Atlantic hurricane season. On the morning of September
28, Hurricane Ian strengthened to a Category 4 hurricane over the Gulf of Mexico, with
maximum sustained winds of 155 mph, just shy of a Category 5 storm [10]. At 3:05 p.m., Ian
made landfall near Cayo Costa, Florida, delivering a devastating blow to multiple coastal
cities in southwest Florida, including Cape Coral. It tied the record for the fifth-strongest
hurricane to hit the United States and became the strongest hurricane to strike Florida since
Hurricane Michael (2018). The storm surge was the deadliest aspect, causing 41 deaths,
36 of which occurred in Lee County, Florida. Freshwater flooding in central and eastern
Florida resulted in 12 direct deaths, with 8 related to the sea, 4 wind-related, and 1 surge
wave-related [11,12].

In the literature, researchers have mostly focused on emergency planning and response
efforts for Hurricane Irma (2017) [13–15] and Hurricane Michael (2018) [16–19], respectively,
and there are not many research studies focusing on understanding the impact of the
“young” Hurricane Ian (2022) on infrastructure resilience. In addition, there is a lack of
studies looking into comprehensive assessments of evacuation accessibility of vulnerable
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populations in the same area or group of counties impacted by different hurricanes. Current
research has also not been conducted such as comparative analyses focusing on how storms
expose the vulnerabilities of key infrastructure systems (e.g., transportation networks and
utility services). Without such analyses, it would be difficult for decision-makers to develop
more robust infrastructure design and retrofit strategies to cope with the unique challenges
posed by future hurricanes of similar magnitudes and trajectories.

Although agencies’ evacuation orders have been given 2 to 5 days in advance generally,
the experience of Hurricane Irma in 2017 taught us many painful lessons. A significant
portion of this population resides in rural areas, which often face challenges such as
difficulties related to evacuation procedures, staffing of emergency operations centers,
debris cleanup after the hurricane passed [20], and a lack of nearby hurricane shelters
equipped to accommodate individuals with disabilities or medical needs. Also, as of 2021,
Florida has the third-highest percentage of elderly residents in the United States, with
individuals aged 65 and older making up 21.3% of the population [21]. The mentioned
limitations can result in increased fatalities in the week following a hurricane, particularly in
vulnerable communities (e.g., senior communities and low-income areas), and communities
with poor access to public healthcare during emergencies [22]. More importantly, as a state
with a high density of elderly residents and extensive rural areas, the allocation of special
needs facilities and supplies for evacuation, such as special needs shelters (SpNS) [17,23,24],
is critical for the efficiency and reliability of evacuations in affected areas. In response
to these concerns, this study chooses the elderly population (those that are 65 and over)
in Collier and Lee Counties to represent the scenario demand to evaluate evacuation
accessibility to special needs shelters.

Hence, this research aims to bridge the knowledge gap regarding the differing impacts
of storm surges that occurred due to hurricanes Irma and Ian on evacuation accessibil-
ity in Collier and Lee Counties, focusing on rural communities with elderly populations
that often require special needs sheltering [17,25]. With the help of GIS-based tools, an
appropriate floating catchment area method, and Replica’s OD Matrix data, this study will
perform a comparative analysis of the evacuation challenges brought by these hurricanes.
The ultimate goal is to provide practical insights into the effectiveness of current evacu-
ation plans and support the improvement of disaster risk reduction strategies, ensuring
better preparedness for future hurricanes that may hit the same region with similar and
higher intensities.

2. Study Area
To begin with, a key component to generate scenarios of this analysis is mapping the

tracks of both Hurricane Irma and Ian to identify possible overlaps and variations in their
impacted zones. Based on the tracks and landfall details shown in Figure 2, Hurricane
Irma primarily caused storm surge flooding in the southern region, submerging the road
networks in densely populated cities in southwest Florida, such as Cape Coral and Naples.
Hurricane Ian approached from the southwest, intersecting perpendicularly with the
coastline, resulting in more severe and prominent flooding along the southwest coast. It
gains one part of the value of comparative analysis by examining how differences in storm
paths—Irma’s southward surge versus Ian’s perpendicular coastal intersection—amplified
flooding in distinct areas. The major similarity is that both hurricanes led to mandatory
evacuations in Lee and Collier Counties in southwest Florida [26].
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Figure 2. The tracks and wind fields of two hurricanes in this research [7].

These two counties share the following characteristics of 2020 Census Tracts in Florida
according to the U.S. Census Bureau’s data [27] (as shown in Figure 3a,b): (1) Excluding
areas designated as nature reserves and non-residential land, both counties have high
total populations, with significant residential populations in both coastal cities and inland
rural areas. (2) The elderly population is concentrated near the coastline, at a considerable
distance from the only SpNS located in the northeastern part of the region [28].
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Special needs populations primarily consist of the elderly, disabled, other vulnerable
individuals, and certain young groups [17]. These vulnerable communities, especially the
elderly population who make up a significant portion of individuals with special needs,
face added challenges due to limited transportation options and a lack of accessible, safe
service destinations. The time required to reach safety before the hurricane hits is further
complicated by health issues and specific access and functional needs that these individuals
may have. The scenario of each county has large elderly populations concentrated near the
coastline and situated far from the only SpNS, presenting unique challenges of evacuation.
Analyzing these factors can help improve and prepare effective future evacuation plans,
including the maintenance and proper allocation of transportation, medical services, and
shelter facilities, to maximize safety and efficiency.

3. Methodology
In this study, we used the regional OD Matrix data provided by Kimley–Horn Asso-

ciates and Replica, which was incorporated into the geodatabase and interpolated with
socioeconomic information from U.S. Census data using the Geographic Information Sys-
tem (GIS). Replica is a data platform that assists public and private sector organizations
in making informed decisions about transportation, infrastructure, and urban planning.
By integrating data from diverse sources, such as GPS, mobile devices, and public records,
their models offer valuable insights into travel patterns, destinations, and the factors influ-
encing mobility. The platform’s capability to produce high-fidelity, granular data makes it
an indispensable tool for optimizing transportation networks, enhancing land use planning,
and improving public service delivery.
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With the output obtained from Replica, the next step of research involved applying
population data, congested travel times, and SpNS capacity to calculate accessibility indices
using the enhanced two-step floating catchment area (E2SFCA) method. Utilizing ArcGIS
Pro to process the aging population of each grid, the congested travel time of each travel
unit, and barriers selected and generated based on inundation, we graphed the results
in combination with potential storm surge inundation data from the National Hurricane
Center (NHC) [29,30] for an evacuation accessibility assessment. This assessment aims to
contribute to the field by addressing accessibility challenges that special needs populations
might have faced during two hurricane evacuations.

As shown in Figure 4, the research workflow began with screening census tract in-
formation to calculate population density for each tract using the population and acreage
values from the U.S. Census Bureau dataset [27]. This step was validated by comparing it
with more detailed block-level population distribution data. Next, we exported the OD
Matrix, which included trips on specified dates stored on the Replica platform. These
data featured various departure times at a 0.5-mile resolution [31] and used GIS tools to
interpolate population information for each origin. After filtering the OD Matrix based on
departure times, destination endpoints, and route connectivity, we retained trips concen-
trated in the selected counties for further analysis. The statewide shelter plan mentioned
earlier provided the locations and capacities of SpNS, which were used in the E2SFCA
method to calculate the demand–supply ratio. Additionally, with GIS visualization, the
hurricane storm surge flooding (inundation mapping) was filtered to show waves that
would have the largest possibility to be as high as 9 feet above the ground when each
hurricane was approaching to hit the coastline.
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3.1. Literature Review of Floating Catchment Area Methods

The complexity of “spatial accessibility (SA)” to service facilities is influenced by
numerous factors. Key factors include the capacity of supply points, such as the number of
available sheltering spaces, and the size of the demand, represented by the population [32].
Therefore, SA varies significantly across different regions, particularly between urban and
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rural areas. Rural areas often face challenges due to service facilities being located miles
away in denser urban centers. This scarcity of services and opportunities in rural areas
can be perceived as a severe provider shortage [33]. For instance, in Northwest Florida,
hurricane shelters are predominantly located in counties with larger cities [34]. In contrast,
counties characterized by rural areas and lower population densities typically have few
shelters, often ranging from none to at most two [3,14,19,35]. Therefore, it is crucial to
investigate the challenges that rural areas face regarding transportation accessibility to
shelters, particularly SpNS. Rural areas often experience longer travel times and distances,
fewer sheltering facilities, and limited service availability, making it imperative to address
these issues to improve evacuation efficiency and support for vulnerable populations.

The floating catchment area (FCA) method [36], derived from a gravity-based ap-
proach, has been utilized to evaluate the service areas of medical physicians. This method
not only considers a predefined travel time threshold but also factors in the availability of
physicians relative to the surrounding population’s demand [37]. It provided simplification
of the distance impedance factor β in gravity models [38]. Various FCA methods have been
developed to improve SA analysis by incorporating more comprehensive constraints and
assessments, such as the two-step floating catchment area (2SFCA), the enhanced two-step
floating catchment area (E2SFCA), the three-step floating catchment area (3SFCA), and
other advanced ratio calculation techniques [39].

3.2. Why Chose E2SFCA?

Most of the basic FCA methods can be implemented using ArcGIS Pro 2.9. However,
they have limitations, such as assuming equal access for all population locations within the
catchment area without considering distance impedance. Additionally, basic FCA methods
unrealistically assign zero spatial accessibility to locations outside the catchment [37]. To
overcome these drawbacks, the proposed enhancement to the enhanced two-step floating
catchment area (E2SFCA) method involves incorporating distance decay by applying
weights during both the first and second steps of the 2SFCA analysis. This approach
distinguishes travel time zones by dividing them into sub-time zones according to research
scales, travel mode, and network function, with weights assigned according to the Gaussian
function [32].

While researchers are continuing to develop 2SFCA, the E2SFCA method is widely
utilized and highly effective in healthcare accessibility analysis. Numerous research studies
have employed E2SFCA or compared it with other FCAs to evaluate healthcare acces-
sibility [3,40–42], and it is also particularly popular in many developing countries. Its
application in these regions has proven valuable for identifying disparities and improving
the distribution of healthcare services [43]. E2SFCA is well suited for analyzing both urban
and rural areas due to its ability to incorporate reliable distance-based weighting, which
accounts for variations in accessibility across different geographic contexts. Additionally,
according to the literature, the E2SFCA method has consistently demonstrated effectiveness
in evaluating accessibility at smaller scales, making it an appropriate choice for this study’s
focus on community-level evacuation accessibility. Its flexibility and proven reliability
ensure robust results in diverse spatial scenarios.

However, E2SFCA is not always the best solution for every scenario, and researchers
utilized more advanced FCA methods for more complex accessibility analysis, such as
Hierarchical 2SFCA (H2SFCA) [44,45], integrating a Variable Distance Decay Function
with FCA [38], and Multi-Modal 2SFCA [46,47]. Nevertheless, many of these bring com-
plexities such as longer computational time, increased data requirements, or overfitting
contexts for certain study areas or small rural scenarios. Compared to other variations
of the FCAs, the E2SFCA model offers simplicity and greater applicability for analyzing
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transportation networks and demographic data in our research: specified demand (i.e.,
aging population), limited destinations (i.e., SpNS outside of inundation), and only two
counties under distance consideration. This suitability makes it an ideal choice for studying
the selected region.

3.3. Accessibility Index Calculation

A high accessibility index (AI) for the critical facility typically signifies that a large
portion of the region’s population can easily access the supply. This suggests that most
residents can reach shelters quickly with minimal transportation barriers during hurricane
evacuations. Conversely, a low AI indicates that a significant portion of the population
may struggle to access shelters. Contributing factors may include the location of shelters,
inadequate transportation options, or physical obstacles such as storm surges and flooding.

In this assessment, E2SFCA [32] was applied as the key role in the SpNS accessibility
analysis part. This method is well suited for evaluating “global” AI compared to other
floating catchment area methods within our research scope, providing a broad assessment
of accessibility that typically overlooks variations in demand and supply competition in
which rural areas and an aging population present a unique challenge. It is especially
effective for assessing emergency accessibility during hurricanes and evacuations because it
comprehensively measures both spatial and temporal factors affecting access. In our case, it
captures the interactions between distance, congested travel time from Replica, population
density from U.S. Census Bureau, and shelter capacity from Florida Division of Emergency
Management (FDEM) [35], reflecting how these variables influence accessibility.

To begin with, the model for this study is built on the following assumptions:

• Using the 2020 census data for accessibility calculations related to 2017 and 2022
assumes that demographic changes over this period are minimal and unlikely to
significantly impact overall accessibility outcomes. Since our scenarios aggregate
situational travel data rather than focusing on individual year-to-year variations; addi-
tionally, the population migration of rural counties declined more with the COVID-19
pandemic [48], and the use of 2020 data provides a stable and representative basis for
analysis during this timeframe.

• The SpNS established in 2005 (Table 1) at East Lee High School has not undergone
significant renovations or expansions in nearly twenty years, so changes in capacity
are considered negligible.

• The OD Matrix analysis used in this study does not account for critical variables
such as wind speed and infrastructure damage, but the scenario closes shelters under
inundation when processing AI. In addition, this study focuses on only two counties,
Collier and Lee, which have extensive rural areas near their eastern boundaries. Evacu-
ation challenges are more shaped by geographic remoteness and limited transportation
infrastructure rather than storm-specific variables. As a result, the OD Matrix analysis
is well suited to this study’s context and objectives.

• The final results of the accessibility index would be based on available trips after data
processing.

Table 1. SpNS information details.

County Shelter
Type Year Built Site

Name Latitude Longitude
Risk

Capacity
(Spaces)

Risk
Capacity
(Sq Ft)

Planned
Usage

(Spaces)

Lee SpNS 2005 East Lee
HS 26.5582528 81.601995 1305 118,297 150
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Accordingly, the steps of E2SFCA are listed as follows [32,40,43,45,47,49,50]:
Step 1: Calculate the supply to demand ratio with Equation (1):

Rj =
Sj

∑i∈{tij≤t0} Pi·Wi
, (1)

where Sj is the capacity of SpNS j, which was a buffer center with the travel time threshold
radius t0, and then tij is the travel cost (time) from population centroid i to the shelter j.
Wi is the Gaussian weight function for distance decay that indicates evacuation demand
change based on travel cost (Equation (2)):

Wi = W
(
tij, t0

)
=

e−
1
2×(

tij
t0
)

2

− e−
1
2

1 − e−
1
2

, (2)

Step 2: Calculate the accessibility index with Equation (3):

Ai = ∑j∈{tij≤t0}
RjWi (3)

It is worth noting that since the two counties in this assessment have only one regis-
tered SpNS, the travel time threshold for data filtering was set to the maximum value of all
one-way OD trips to ensure that every origin with a population count greater than zero
was considered within the evacuation range. It is also important to note that this maximum
value does not necessarily represent a direct trip from an origin to the SpNS destination.
Some coastal origins require transferring at an intermediate destination before reaching
the SpNS. This study does not account for the potential reduction in waiting time between
linked trips.

3.4. Storm Surge Flooding

According to NHC, extensive hurricane forecasting and recorded information. For
this study, a new product, the Potential Storm Surge Flooding Map, was utilized. This
map demonstrates the coastal flooding risks associated with hurricane-induced storm
surges. The projected water heights in these areas are based on the Sea, Lake, and Overland
Surges from Hurricanes (SLOSHs) model [51], which takes into account the temporal and
spatial uncertainties of tropical cyclones. The map is generated from simulations of the
Probabilistic Hurricane Storm Surge (P-Surge 2.5) model and considers historical errors in
the NHC’s official track and intensity forecasts. Potential storm surge flooding is depicted
by processing the 10% exceedance level values from P-Surge 2.5, indicating areas where
there is a one in ten chance of storm surge exceeding the predicted levels.

This study leverages the Potential Storm Surge Flooding Map to provide a detailed
risk assessment of coastal flooding during hurricanes. Both Hurricane Irma and Hurricane
Ian appeared to have the highest and largest inundation no more than 3 h before the
actual landing time, which was compatible with Replica’s congested travel time data since
most of the filtered trips had related results. By incorporating probabilistic modeling and
historical forecast data, it offers a comprehensive understanding of the potential impact of
storm surges, enhancing the accuracy and reliability of evacuation planning and disaster
preparedness strategies.

4. Results and Discussions
As hurricanes move inland, their speed and wind strength decrease due to land friction.

This reduction in intensity means that areas closer to the actual landfall location are more
likely to experience the strongest storm surges and the most severe impacts. The friction
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with the land surface slows down the hurricane and weakens its winds, but the immediate
coastal areas still bear the brunt of the storm’s initial force before this weakening occurs.

In the case of Hurricane Ian, its landfall point was closer to the remaining OD Matrix
grid after filtering, as indicated in Figure 5. Despite both hurricanes being Category 4 at
landfall and having similar wind speeds and rainfall, Ian’s storm surge impact was more
direct and widespread across the study area. This proximity to the landfall point meant
that Ian’s storm surge had a more immediate and severe effect on the coastal communities,
leading to extensive flooding and damage. This comparison highlights the importance of
considering the hurricane’s approach and landfall location when assessing potential storm
surge impacts and planning for disaster response and mitigation.

Table 2 lists the statistics of AI comparison after the E2SFCA calculation. While
both scenarios share the same maximum AI (0.015), Irma shows a higher mean AI and
standard deviation (0.0030) compared to Ian. We also compared the skewness of each
AI’s values. Ian’s AI distribution is more skewed (4.7) than Irma’s (3.2), indicating a
greater concentration of low-accessibility areas during Ian. Though it indicates that on
average, communities had better overall accessibility under Irma compared to Ian, and it
was majorly caused by the difference in hurricane track directions.

Table 2. Accessibility index statistics.

Scenario AI

Hurricane Names Standard Deviation Maximum AI Mean AI Skewness

Irma 0.0030 0.015 9 × 10−4 3.2

Ian 0.0025 0.015 5.5 × 10−4 4.7
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4.1. Hurricane Tracks and Their Impacts

As previously mentioned, both hurricanes struck the southwest coast of Florida, but
they did so in markedly different ways, leading to varied impacts on the region. Hurricane
Irma approached from due south at an angle to the coastline. This trajectory meant that the
southern part of the study area was particularly vulnerable to significant storm surges, as
the angle of approach allowed the storm to push water into these regions more effectively.
The interaction between the hurricane’s path and the coastal geography intensified the
surge, leading to considerable flooding and damage. In contrast, Hurricane Ian made
landfall with a perpendicular approach to the coastline. This straight-on trajectory resulted
in a more even distribution of storm surges along the coast. The perpendicular impact
meant that the force of the storm surge was spread out more uniformly across the coastal
areas, rather than being concentrated in a specific section as with Irma. This difference in
approach likely led to distinct patterns of flooding and damage, affecting a broader swath
of the coastline.

Hurricane Ian’s severe flooding had a devastating impact on the road networks in Lee
County and the northwest side of Collier County. As illustrated in Figure 5b, the entire
Cape Coral area, including all of Pine Island, was within high-risk flooding zones. Critical
western bridges and roads in this region were also at risk, severely disrupting transportation.
Additionally, sections of the I-75, which connect Lee County and Collier County along
the coastline, faced significant flooding risks, highlighting the widespread impact on
major evacuation routes. Consequently, from a storm surge perspective, Ian created more
substantial transportation obstacles in this region compared to Irma, significantly reducing
the accessibility to SpNS and hindering evacuation efforts.

The population distribution depicted in Figure 3 further underscores the challenges
posed by Ian. The coastal areas, where the elderly population is particularly concen-
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trated, faced greater evacuation difficulties. The storm surge’s destruction of housing
and roadways made immediate evacuation impossible, emphasizing the need for earlier
evacuation efforts. Ian’s storm surge was more uniformly distributed along the coast,
intensifying the evacuation challenges for residents, especially those with limited mobility
and special needs.

The storm surge’s impact extended beyond immediate transportation and housing
issues. The inundation of critical infrastructure, including emergency services and health-
care facilities, exacerbated the challenges for vulnerable populations. This widespread
flooding disrupted not only evacuation routes but also the accessibility of essential services,
compounding the difficulties faced by residents. As mentioned earlier, the highest and
most extensive flooding from both hurricanes occurred three hours before full landfall. This
timing offers critical insights for future planning that the government needs to consider
helping and prompting the early evacuation is essential to ensure the safety of residents and
to prevent last-minute bottlenecks on critical evacuation routes. Additionally, improving
the resilience of infrastructure, such as reinforcing bridges and elevating roadways, could
mitigate the impact of future storm surges.

4.2. Limitations

In Figure 5b, we again saw a slight increase in local accessibility, which is a reasonable
phenomenon that the FCA calculation results will appear when applied to inundation
or road closure scenarios. Other studies have also noted that when coastal populations
cannot evacuate to critical facilities like shelters, the demand for these facilities by distant
populations decreases [3]. This results in the capacity initially allocated for coastal areas
becoming available for populations closer to the facilities. Therefore, although the overall
average accessibility and minimum values decline, the origins near the SpNS show an
increase in accessibility.

This phenomenon highlights a critical issue: regions already lacking evacuation
accessibility will quickly lose their evacuation options when a disaster strikes. Conversely,
areas with good supply and accessibility are less likely to be affected by the disaster in
terms of evacuation capability. For the studied region, coastal areas far from the SpNS,
including the aging population and large rural populations, already have poor evacuation
accessibility. When a hurricane makes landfall, these populations are the first to lose their
evacuation options. Vulnerable groups become even more at risk, a situation we must strive
to avoid. This situation emphasizes the need for targeted strategies to improve evacuation
options for these vulnerable populations. Strengthening infrastructure, increasing the
capacity and number of SpNS, and ensuring efficient and early evacuation procedures are
essential to mitigate the heightened risks faced by these communities during hurricanes
and other natural disasters.

5. Conclusions
This study underscores the varied impacts of Hurricanes Irma and Ian on the south-

west coast of Florida, highlighting the critical need to consider a hurricane’s approach and
landfall location when evaluating storm surge effects and planning for disaster response.
Hurricane Irma approached from the south at an angle, resulting in significant storm surges,
particularly in the southern portion of the study area. This angled path allowed for an
intense surge due to the interaction between the hurricane’s trajectory and the coastal
geography, causing extensive flooding and damage. On the other hand, Hurricane Ian
made landfall perpendicularly to the coastline, leading to a more evenly distributed storm
surge across the coastal areas. This direct impact caused widespread flooding and damage
across a larger area. As such, the key contributions of this paper are as follows:
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1. It enhances the understanding of Hurricane Ian’s impact by analyzing the evacuation
accessibility of the elderly population to special needs shelters, addressing a critical
gap in emergency planning for vulnerable groups in the existing research.

2. It conducts a comparative analysis of storm surge impacts from two major hurri-
canes, Irma and Ian, on the same region that was hit by them within a short time
interval. Despite not incorporating more wind field changes, by relying on storm
surge predictions at that time from NOAA, this study clearly demonstrates the signifi-
cant influence of hurricane tracks on regional evacuation accessibility. This finding
underscores the heightened uncertainty in evacuation planning as future hurricanes
become more unpredictable in both track and intensity, providing a crucial warning
for improving disaster preparedness strategies.

Findings also indicate that Hurricane Ian’s severe flooding severely disrupted road
networks in Lee County and the northwest part of Collier County. Critical evacuation
routes, including the entire Cape Coral area and portions of the I-75, faced significant
flooding risks, impeding evacuation efforts and limiting access to SpNS. The population
distribution analysis showed that coastal areas, particularly those with a high concentration
of elderly residents, experienced greater challenges in evacuating due to the destruction
of homes and roads by storm surges. This emphasizes the necessity for earlier evacuation
initiatives and improving evacuation/sheltering plans.

The research also highlights that areas already lacking in evacuation accessibility
will quickly lose their evacuation options during a disaster, whereas regions with better
supply and accessibility are less likely to be affected. Coastal areas distant from the
SpNS, including those with aging populations and extensive rural populations, are at
a heightened risk of losing their evacuation opportunities when a hurricane hits. This
situation underscores the urgency for targeted strategies to enhance evacuation options for
these vulnerable populations.

Future research should address several key limitations identified in this study. The
use of a half-mile sample size for the OD Matrix may have limited the granularity of trip
analysis, highlighting the need for finer spatial resolutions to better link trips to SpNS.
Incorporating additional factors, such as wind fields and their impacts on transportation
and infrastructure, is critical for developing a more comprehensive or larger-scale assess-
ment. As discussed in the introduction, climate change is expected to increase the intensity
of hurricanes. Future studies should account for related effects, such as sea level rise, on
storm surge patterns, and evacuation accessibility. Furthermore, investigating the timing
and effectiveness of evacuation procedures, assessing the resilience of infrastructure, and
examining socioeconomic factors will provide valuable insights for refining evacuation
strategies and enhancing disaster preparedness.
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