A Review of Relationship between Texture Characteristic and Mechanical Properties of Rock
Abstract
:1. Introduction
2. Rock Textural Characteristics
2.1. Primary Structure
2.2. Secondary Structures
3. Relationships between Rock Textural Characteristics and Mechanical Properties
3.1. Mineral Composition
3.2. Grain Size, Density, and Porosity
3.3. Texture Coefficient (TC)
3.4. Rock Anisotropy
4. Failure Criteria of Anisotropic Rocks
5. Discussion
6. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, L. Engineering Properties of Rocks; Geo-Engineering Book Series; Hudson, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 226–230. [Google Scholar]
- Tapponnier, P.; Brace, W.F. Development of stress-induced microcracks in Westerly granite. Int. J. Rock Mech. Min. Sci. Geomech. 1976, 13, 103–112. [Google Scholar] [CrossRef]
- Miskovsky, K.; Duarte, M.T.; Kou, S.Q.; Lindqvist, P.A. Influence of the mineralogical composition and textural properties on the quality of coarse aggregates. J. Mater. Eng. Perform. 2004, 2004. 13, 144–150. [Google Scholar] [CrossRef]
- Saroglou, H.; Marinos, P.; Tsiambaos, G. The anisotropic nature of selected metamorphic rocks from Greece. J. South. Afr. Inst. Min. Metall. 2004, 104, 217–222. [Google Scholar]
- Shakoor, A.; Bonelli, R.E. Relationship between petrographic characteristics, engineering index properties, and mechanical properties of selected sandstones. Bull. Assoc. Eng. Geol. 1991, 28, 55–71. [Google Scholar] [CrossRef]
- Přikryl, R. Assessment of rock geomechanical quality by quantitative rock fabric coefficients: Limitations and possible source of misinterpretations. Eng. Geol. 2006, 87, 149–162. [Google Scholar] [CrossRef]
- Sun, W.; Wang, L.; Wang, Y. Mechanical properties of rock materials with related to mineralogical characteristics and grain size through experimental investigation: A comprehensive review. Front. Struct. Civ. Eng. 2017, 11, 322–328. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, J. The effect of confining pressure on mechanical properties in coal and rock: Review and new insights. Arab. J. Geosci. 2021, 14, 1–22. [Google Scholar] [CrossRef]
- Williams, H.; Turner, F.J.; Gilbert, C.M. Petrography: An Introduction to the Study of Rocks in Thin Section; W.H. Freeman and Company: San Francisco, CA, USA, 1982; pp. 12–41. [Google Scholar]
- Schulz, B.; Sandmann, D.; Gilbricht, S. SEM-Based Automated Mineralogy and Its Application in Geo- and Material Sciences. Minerals 2020, 10, 1004. [Google Scholar] [CrossRef]
- Kahn, J.S. The analysis and distribution of the properties of packing in sand-size sediments: 1. On the measurement of packing in sandstones. J. Geol. 1956, 64, 385–395. [Google Scholar] [CrossRef]
- Dreyer, W. The Science of Rock Mechanics, Part 1: The Strength Properties of Rocks; Trance Tech Publications: Cleveland, OH, USA, 1973; p. 501. [Google Scholar]
- Dobereiner, L.; Freitas, M.D. Geotechnical properties of weak sandstones. Geotechnique 1986, 36, 79–94. [Google Scholar] [CrossRef]
- Krumbein, W.C. Measurement and geological significance of shape and roundness of sedimentary particles. J. Sediment. Res. 1941, 11, 64–72. [Google Scholar] [CrossRef]
- Wadell, H. Volume, shape, and roundness of rock particles. J. Geol. 1932, 40, 443–451. [Google Scholar] [CrossRef]
- Howarth, D.F.; Rowlands, J.C. Development of an index to quantify rock texture for qualitative assessment of intact rock properties. Geotech. Test. J. 1986, 9, 169–179. [Google Scholar]
- Vutukuri, V.S.; Lama, R.D.; Saluja, S.S. Handbook on Mechanical Properties of Rocks, Testing Techniques and Results; Trans Technical Publications: Clausthal, Germany, 1974; p. 280. [Google Scholar]
- Taylor, J.M. Pore-space reduction in sandstones. AAPG Bull. 1950, 34, 701–716. [Google Scholar]
- Tsidzi, K.E.N. A quantitative petrofabric characterization of metamorphic rocks. Bull. Int. Assoc. Eng. Geol. 1986, 33, 3–12. [Google Scholar] [CrossRef]
- Al-Harthi, A.A. Effect of planar structures on the anisotropy of Ranyah sandstone, Saudi Arabia. Eng. Geol. 1999, 50, 49–57. [Google Scholar] [CrossRef]
- Bell, F.G. The physical and mechanical properties of the fell sandstones, Northumberland, England. Eng. Geol. 1987, 12, 1–29. [Google Scholar] [CrossRef]
- Zorlu, K.; Ulusay, R.T.; Ocakoglu, F.; Gokceoglu, C.A.; Sonmez, H. Predicting intact rock properties of selected sandstones using petrographic thin-section data. Int. J. Rock Mech. Min. Sci. 2004, 41, 93–98. [Google Scholar] [CrossRef]
- Cox, M.R.; Budhu, M. A practical approach to grain shape quantification. Eng. Geol. 2008, 96, 1–16. [Google Scholar] [CrossRef]
- Ehrlich, R.; Weinberg, B. An exact method for characterization of grain shape. J. Sediment. Res. 1970, 40, 205–212. [Google Scholar]
- Beddow, J.K.; Vetter, A.F. The use of classifiers in morphological analysis of articulates. J. Powder Bulk Solids Technol. 1977, 1, 42–45. [Google Scholar]
- Kaye, B.H. Review of new methods for characterize the shape and texture of fine particle. J. Powder Bulk Solids Technol. 1982, 6, 1–4. [Google Scholar]
- Howarth, D.F.; Rowlands, J.C. Quantitative assessment of rock texture and correlation with drillability and strength properties. Rock Mech. Rock Eng. 1987, 20, 57–85. [Google Scholar] [CrossRef]
- Higgins, M.D. Quantitative Textural Measurements in Igneous and Metamorphic Petrology; Cambridge University Press: Cambridge, UK, 2006; pp. 7–9. [Google Scholar]
- Hack, R.; Price, D. Quantification of weathering. Proc. Eng. Geol. Environ. 1997, 1, 145–150. [Google Scholar]
- Matsukura, Y.; Hashizume, K.; Oguchi, C.T. Effect of microstructure and weathering on the strength anisotropy of porous rhyolite. Eng. Geol. 2002, 63, 39–47. [Google Scholar] [CrossRef]
- Salager, S.; François, B.; Nuth, M.; Laloui, L. Constitutive analysis of the mechanical anisotropy of Opalinus Clay. Acta Geotech. 2013, 8, 137–154. [Google Scholar] [CrossRef]
- Ramamurthy, T. Strength Modulus Responses of Anisotropic Rocks. Compressive Rock Eng. 1993, 1, 313–329. [Google Scholar]
- Tien, Y.M.; Kuo, M.C. A failure criterion for transversely isotropic rocks. Int. J. Rock Mech. Min. Sci. 2001, 38, 399–412. [Google Scholar] [CrossRef]
- Ajalloeian, R.; Lashkaripour, G.R. Strength anisotropies in mudrocks. Bull. Eng. Geol. Environ. 2000, 59, 195–199. [Google Scholar] [CrossRef]
- Behrestaghi, M.H.; Rao, K.S.; Ramamurthy, T. Engineering geological and geotechnical responses of schistose rocks from dam project areas in India. Eng. Geol. 1996, 44, 183–201. [Google Scholar] [CrossRef]
- Nasseri, M.H.; Rao, K.S.; Ramamurthy, T. Anisotropic strength and deformational behavior of Himalayan schists. Int. J. Rock Mech. Min. Sci. 2003, 40, 3–23. [Google Scholar] [CrossRef]
- Heng, S.; Guo, Y.; Yang, C.; Daemen, J.J.; Li, Z. Experimental and theoretical study of the anisotropic properties of shale. Int. J. Rock Mech. Min. Sci. 2015, 74, 58–68. [Google Scholar] [CrossRef]
- Amadei, B. Importance of anisotropy when estimating and measuring in situ stresses in rock. Int. J. Rock Mech. Min. Sci. Geomech. 1996, 33, 293–325. [Google Scholar] [CrossRef]
- Singh, J.; Ramamurthy, T.; Venkatappa, R.G. Strength anisotropies in rocks. Geo Tech. 1989, 19, 147–166. [Google Scholar]
- ISRM. Rock Characterization, Testing and Monitoring, ISRM Suggested Methods; Pergamon Press: Oxford, UK, 1981. [Google Scholar]
- Saroglou, H.; Tsiambaos, G. Classification of Anisotropic Rocks. In Proceedings of the 11th ISRM Congress, Lisbon, Portugal, 9–13 July 2007. [Google Scholar]
- Tsidzi, K.E. The influence of foliation on point load strength anisotropy of foliated rocks. Eng. Geol. 1990, 29, 49–58. [Google Scholar] [CrossRef]
- Franklin, J. Suggested method for determining Point Load Strength (revised version). Int. J. Rock Mech. 1985, 2, 51–60. [Google Scholar] [CrossRef]
- Tsidzi, K.E. Propagation characteristics of ultrasonic waves in foliated rocks. Assoc. Eng. Geol. 1997, 56, 103–113. [Google Scholar]
- Onodera, T.F.; Asoka Kumara, H.M. Relation between texture and mechanical properties of crystalline rocks. Bull. Int. Assoc. Eng. Geol. 1980, 22, 173–177. [Google Scholar]
- Yılmaz, N.G.; Goktan, R.M.; Kibici, Y. An investigation of the petrographic and physico-mechanical properties of true granites influencing diamond tool wear performance, and development of a new wear index. Wear 2011, 271, 960–969. [Google Scholar] [CrossRef]
- Merriam, R.; Rieke, H.H., III; Kim, Y.C. Tensile strength related to mineralogy and texture of some granitic rocks. Eng. Geol. 1970, 4, 155–160. [Google Scholar] [CrossRef]
- Hornby, B.E.; Schwartz, L.M.; Hudson, J.A. Anisotropic effective-medium modeling of the elastic properties of shales. Geophysics 1994, 59, 1570–1583. [Google Scholar] [CrossRef]
- Gupta, A.S.; Rao, K.S. Weathering effects on the strength and deformational behaviour of crystalline rocks under uniaxial compression state. Eng. Geol. 2000, 56, 257–274. [Google Scholar] [CrossRef]
- Mondol, N.H.; Jahren, J.; Bjørlykke, K.; Brevik, I. Elastic properties of clay minerals. Lead. Edge 2008, 27, 758–770. [Google Scholar] [CrossRef]
- Sousa, L.M. The influence of the characteristics of quartz and mineral deterioration on the strength of granitic dimensional stones. Environ. Earth Sci. 2013, 69, 1333–1346. [Google Scholar] [CrossRef]
- Yusof, N.Q.; Zabidi, H. Correlation of mineralogical and textural characteristics with engineering properties of granitic rock from Hulu Langat, Selangor. Procedia Chem. 2016, 19, 975–980. [Google Scholar] [CrossRef]
- An, W.B.; Wang, L.; Chen, H. Mechanical properties of weathered feldspar sandstone after experiencing dry-wet cycles. Adv. Mater. Sci. Eng. 2020, 2020, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.T.; Zhao, J.; Wang, Z.; Yang, C.; Han, Q.; Zheng, Z. Effects of high differential stress and mineral properties on deformation and failure mechanism of hard rocks. Can. Geotech. J. 2021, 58, 411–426. [Google Scholar] [CrossRef]
- Ma, Z.; Gamage, R.P.; Zhang, C. Mechanical properties of α-quartz using nanoindentation tests and molecular dynamics simulations. Int. J. Rock Mech. Min. Sci. 2021, 147, 104878. [Google Scholar] [CrossRef]
- Lu, Y.; Li, C.; He, Z.; Gao, M.; Zhang, R.; Li, C.; Xie, H. Variations in the physical and mechanical properties of rocks from different depths in the Songliao Basin under uniaxial compression conditions. Geomech. Geophys. Geo-Energy Geo-Resour. 2020, 6, 1–14. [Google Scholar] [CrossRef]
- Ündül, Ö. Assessment of mineralogical and petrographic factors affecting petro-physical properties, strength and cracking processes of volcanic rocks. Eng. Geol. 2016, 210, 10–22. [Google Scholar] [CrossRef]
- Orhan, M.; Işık, N.S.; Topal, T.A.; Özer, M.U.S. Effect of weathering on the geomechanical properties of andesite, Ankara–Turkey. Environ. Geol. 2006, 50, 85–100. [Google Scholar] [CrossRef]
- Lundqvist, S.; Göransson, M. Evaluation and interpretation of microscopic parameters vs. mechanical properties of Precambrian rocks from the Stockholm region, Sweden. Proc. Eighth Euroseminar Microsc. Appl. Build. Mater. 2001, 11, 13–20. [Google Scholar]
- Ulusay, R.; Türeli, K.; Ider, M.H. Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Eng. Geol. 1994, 38, 135–157. [Google Scholar] [CrossRef]
- Hugman, R.H.; Friedman, M. Effects of texture and composition on mechanical behavior of experimentally deformed carbonate rocks. AAPG Bull. 1979, 63, 1478–1489. [Google Scholar]
- Arel, E.; Tugrul, A. Weathering and its relation to geomechanical properties of Cavusbasi granitic rocks in northwestern Turkey. Bull. Eng. Geol. Environ. 2001, 60, 123–133. [Google Scholar]
- Gu, R.; Fang, Y. Experiment study on effects of mineral composition on rheological characteristics of soft clayey soil. Rock Soil Mech. 2007, 28, 26–81. [Google Scholar]
- Marques, E.A.; Barroso, E.V.; Menezes Filho, A.P.; Vargas, E.A., Jr. Weathering zones on metamorphic rocks from Rio de Janeiro—Physical, mineralogical and geomechanical characterization. Eng. Geol. 2010, 111, 1–18. [Google Scholar] [CrossRef]
- Fereidooni, D. Determination of the geotechnical characteristics of hornfelsic rocks with a particular emphasis on the correlation between physical and mechanical properties. Rock Mech. Rock Eng. 2016, 49, 2595–2608. [Google Scholar] [CrossRef]
- Chapagain, Y.P.; Sapkota, S.; Ghale, D.B.; Bohara, N.B.; Duwal, N.; Bhattarai, J. A case study on mineralogy and physico-mechanical properties of commercial bricks produced in Nepal. SN Appl. Sci. 2020, 2, 1–14. [Google Scholar] [CrossRef]
- Ahmad, T.; Rizwan, M.; Hussain, Z.; Ullah, S.; Ali, Z.; Khan, A.; Khan, H.A. mineralogical and Textural influence on physico-mechanical properties of selected granitoids from Besham Syntaxis, Northern Pakistan. Acta Geodyn. Geomater 2021, 18, 347–362. [Google Scholar] [CrossRef]
- Li, Q.; Li, J.; Duan, L.; Tan, S. Prediction of rock abrasivity and hardness from mineral composition. Int. J. Rock Mech. Min. Sci. 2021, 140, 46–58. [Google Scholar] [CrossRef]
- Hemmati, A.; Ghafoori, M.; Moomivand, H.; Lashkaripour, G.R. The effect of mineralogy and textural characteristics on the strength of crystalline igneous rocks using image-based textural quantification. Eng. Geol. 2020, 266, 54–67. [Google Scholar] [CrossRef]
- Wyering, L.D.; Villeneuve, M.C.; Wallis, I.C.; Siratovich, P.A.; Kennedy, B.M.; Gravley, D.M.; Cant, J.L. Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 2014, 288, 76–93. [Google Scholar] [CrossRef]
- Tang, A.M.; Cui, Y.J. Effects of mineralogy on thermo-hydro-mechanical parameters of MX80 bentonite. J. Rock Mech. Geotech. Eng. 2010, 2, 91–96. [Google Scholar]
- Pellegrino, A.; Prestininzi, A. Impact of weathering on the geomechanical properties of rocks along thermal–metamorphic contact belts and morpho-evolutionary processes: The deep-seated gravitational slope deformations of Mt. Granieri–Salincriti (Calabria–Italy). Geomorphology 2007, 87, 176–195. [Google Scholar] [CrossRef]
- Bell, F.G.; Lindsay, P. The petrographic and geomechanical properties of some sandstones from the Newspaper Member of the Natal Group near Durban, South Africa. Eng. Geol. 1999. 53, 57–81. [CrossRef]
- Tuğrul, A.; Zarif, I.H. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng. Geol. 1999, 51, 303–317. [Google Scholar] [CrossRef]
- Ward, C.R.; Nunt-Jaruwong, S.; Swanson, J. Use of marmineralogical analysis in geotechnical assessment of rock strata for coal mining. Int. J. Coal Geol. 2005, 64, 156–171. [Google Scholar] [CrossRef]
- Brunhoeber, O.M.; Arakkal, D.; Ji, R.; Miletić, M.; Beckingham, L.E. Impact of mineral composition and distribution on the mechanical properties of porous media. E3S Web Conf. 2020, 205, 02006. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, J.; Liang, Z.; Huang, S.; Wang, Y. Experimental Study on the Mechanical Properties of Triaxial Compression of White Sandstone under the Coupling Action of Chemical Corrosion and Temperature. IOP Conf. Ser. Earth Environ. Sci. 2021, 692, 123–135. [Google Scholar] [CrossRef]
- Han, Q.; Gao, Y.; Zhang, Y. Experimental Study of Size Effects on the Deformation Strength and Failure Characteristics of Hard Rocks under True Triaxial Compression. Adv. Civ. Eng. 2021, 1, 1–15. [Google Scholar] [CrossRef]
- Ajalloeian, R.; Jamshidi, A.; Khorasani, R. Evaluating the Effects of Mineral Grain Size and Mineralogical Composition on the Correlated Equations Between Strength and Schmidt Hardness of Granitic Rocks. Geotech. Geol. Eng. 2021, 4, 1–11. [Google Scholar] [CrossRef]
- Strauhal, T.; Zangerl, C.; Fellin, W.; Holzmann, M.; Engl, D.A.; Brandner, R.; Tessadri, R. Structure, mineralogy and geomechanical properties of shear zones of deep-seated rockslides in metamorphic rocks. Rock Mech. Rock Eng. 2017, 50, 419–438. [Google Scholar] [CrossRef]
- Regmi, A.D.; Yoshida, K.; Dhital, M.R.; Devkota, K. Effect of rock weathering, clay mineralogy, and geological structures in the formation of large landslide, a case study from Dumre Besei landslide, Lesser Himalaya Nepal. Landslides 2013, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gurocak, Z.; Kilic, R. Effect of weathering on the geomechanical properties of the Miocene basalts in Malatya, Eastern Turkey. Bull. Eng. Geol. Environ. 2005, 64, 373–381. [Google Scholar] [CrossRef]
- Eberli, G.P.; Baechle, G.T.; Anselmetti, F.S.; Incze, M.L. Factors controlling elastic properties in carbonate sediments and rocks. Lead. Edge 2003, 22, 654–660. [Google Scholar] [CrossRef]
- Josh, M.; Esteban, L.; Piane, C.D.; Sarout, J.; Dewhurst, D.N.; Clennell, M.B. Laboratory characterisation of shale properties. J. Pet. Sci. Eng. 2012, 88, 107–124. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, L.N.; Kendrick, J.E.; Oommen, T.; Lavallée, Y.; Chigna, G. Geomechanical rock properties of a basaltic volcano. Front. Earth Sci. 2015, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Jaques, D.S.; Marques, E.A.G.; Marcellino, L.C.; Leão, M.F.; Ferreira, E.P.S.; dos Santos Lemos, C.C. Changes in the Physical, Mineralogical and Geomechanical Properties of a Granitic Rock from Weathering Zones in a Tropical Climate. Rock Mech. Rock Eng. 2020, 53, 5345–5370. [Google Scholar] [CrossRef]
- Ersoy, H.; Atalar, C.; Sünnetci, M.O.; Kolaylı, H.; Karahan, M.; Ersoy, A.F. Assessment of damage on geo-mechanical and micro-structural properties of weak calcareous rocks exposed to fires using thermal treatment coefficient. Eng. Geol. 2021, 284, 106046. [Google Scholar] [CrossRef]
- Zhang, F.; An, M.; Zhang, L.; Fang, Y.; Elsworth, D. The role of mineral composition on the frictional and stability properties of powdered reservoir rocks. J. Geophys. Res. Solid Earth 2019, 124, 1480–1497. [Google Scholar] [CrossRef]
- Sajid, M.; Coggan, J.; Arif, M.; Andersen, J.; Rollinson, G. Petrographic features as an effective indicator for the variation in strength of granites. Eng. Geol. 2016, 202, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.W.; Locat, J.; Leroueil, S.; Malet, J.P. Rheological properties of fine-grained sediment: The roles of texture and mineralogy. Can. Geotech. J. 2010, 47, 1085–1100. [Google Scholar] [CrossRef]
- Tuǧrul, A. The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey. Eng. Geol. 2004, 75, 215–227. [Google Scholar] [CrossRef]
- Jeng, F.S.; Weng, M.C.; Lin, M.L.; Huang, T.H. Influence of petrographic parameters on geotechnical properties of tertiary sandstones from Taiwan. Eng. Geol. 2004, 73, 71–91. [Google Scholar] [CrossRef]
- Guéry, A.C.; Cormery, F.; Shao, J.F.; Kondo, D. A comparative micromechanical analysis of the effective properties of a geomaterial: Effect of mineralogical compositions. Comput. Geotech. 2010, 37, 585–593. [Google Scholar] [CrossRef]
- Kumar, V.; Sondergeld, C.; Rai, C.S. Effect of mineralogy and organic matter on mechanical properties of shale. Interpretation 2015, 3, SV9–SV15. [Google Scholar] [CrossRef]
- Liu, J.; Ding, W.; Wang, R.; Wu, Z.; Gong, D.; Wang, X.; Jiao, B. Quartz types in shale and their effect on geomechanical properties: An example from the lower Cambrian Niutitang Formation in the Cen’gong block, South China. Appl. Clay Sci. 2018, 163, 100–107. [Google Scholar] [CrossRef]
- Wong, L.Y.; Peng, J.; Teh, C.I. Numerical investigation of mineralogical composition effect on strength and micro-cracking behavior of crystalline rocks. J. Nat. Gas Sci. Eng. 2018, 53, 191–203. [Google Scholar] [CrossRef]
- Singh, R.; Umrao, R.K.; Ahmad, M.; Ansari, M.K.; Sharma, L.K.; Singh, T.N. Prediction of geomechanical parameters using soft computing and multiple regression approach. Measurement 2017, 99, 108–119. [Google Scholar] [CrossRef]
- Vernik, L.; Kachanov, M. Modeling elastic properties of siliciclastic rocks. Geophysics 2010, 75, 171–182. [Google Scholar] [CrossRef]
- Allison, R.J.; Bristow, G.E. The effects of fire on rock weathering: Some further considerations of laboratory experimental simulation. Earth Surf. Processes Landf. J. Br. Geomorphol. Res. Group 1999, 24, 707–713. [Google Scholar] [CrossRef]
- Xu, T.; Pruess, K. Numerical simulation of injectivity effects of mineral scaling and clay swelling in a fractured geothermal reservoir. In Proceedings of the Numerical Simulation of Injectivity Effects of Mineral Scaling and Clay Swelling in a Fractured Geothermal Reservoir, Lawrence, Berkeley National Lab, Berkeley, CA, USA, 10 May 2004. [Google Scholar]
- Guo, Z.; Li, X.Y.; Liu, C.; Feng, X.; Shen, Y. A shale rock physics model for analysis of brittleness index, mineralogy and porosity in the Barnett Shale. J. Geophys. Eng. 2013, 10, 025006. [Google Scholar] [CrossRef]
- Molins, S.; Trebotich, D.; Miller, G.H.; Steefel, C.I. Mineralogical and transport controls on the evolution of porous media texture using direct numerical simulation. Water Resour. Res. 2017, 53, 3645–3661. [Google Scholar] [CrossRef] [Green Version]
- Kainthola, A.; Singh, P.K.; Verma, D.; Singh, R.; Sarkar, K.; Singh, T.N. Prediction of strength parameters of himalayan rocks: A statistical and ANFIS approach. Geotech. Geol. Eng. 2015, 33, 1255–1278. [Google Scholar] [CrossRef]
- Lastra, G.; Jokovic, V.; Kanchibotla, S. Understanding the impact of geotechnical ore properties and blast design on comminution circuits using simulations. Miner. Eng. 2021, 170, 161–175. [Google Scholar] [CrossRef]
- Brace, W.F. Dependence of fracture strength of rocks on grain size. In Proceedings of the 4th US Symposium on Rock Mechanics (USRMS), University Park, PA, USA, 30 March–1 April 1961; Volume 76, pp. 99–103. [Google Scholar]
- Hoek, E. Rock Fracture under Static Stress Conditions; Report no: ME/TH/17; CSIR: Pretoria, South Africa, 1965. [Google Scholar]
- Mendes, F.M.; Aires-Barros, L.; Rodrigues, F.P. The use of modal analysis in the mechanical characterization of rock masses. In Proceedings of the 1st ISRM Congress, Lisbon, Portugal, 25 September–1 October 1966. [Google Scholar]
- Willard, R.J.; McWilliams, J.R. Microstructural techniques in the study of physical properties of rock. Int. J. Rock Mech. Min. Sci. Geomech. 1969, 6, 1–12. [Google Scholar] [CrossRef]
- Hartley, A. A review of the geological factors influencing the mechanical properties of road surface aggregates. Q. J. Eng. Geol. 1974, 7, 69–100. [Google Scholar] [CrossRef]
- Singh, S.K. Relationship among fatigue strength, mean grain size and compressive strength of a rock. Rock Mech. Rock Eng. 1988, 21, 271–276. [Google Scholar] [CrossRef]
- Åkesson, U.; Lindqvist, J.; Göransson, M.; Stigh, J. Relationship between texture and mechanical properties of granites, central Sweden, by use of image-analysing techniques. Bull. Eng. Geol. Environ. 2001, 60, 277–284. [Google Scholar] [CrossRef]
- French, W.J.; Kermani, S.; Mole, C.F. Petrographic evaluation of aggregate parameters. In Proceedings of the 8th Euro seminar on Microscopy Applied to Building Materials, Athens, Greece, 4–7 September 2001. [Google Scholar]
- Räisänen, M.; Kupiainen, K.; Tervahattu, H. The effect of mineralogy, texture and mechanical properties of anti-skid and asphalt aggregates on urban dust. Bull. Eng. Geol. Environ. 2003, 62, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Price, N.J. The compressive strength of coal measure rocks. Colliery Eng. 1960, 37, 283–292. [Google Scholar]
- Přikryl, R. Some microstructural aspects of strength variation in rocks. Int. J. Rock Mech. Min. Sci. 2001, 38, 671–682. [Google Scholar] [CrossRef]
- Wong, R.H.; Chau, K.T.; Wang, P. Microcracking and grain size effect in Yuen Long marbles. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1996, 33, 479–485. [Google Scholar] [CrossRef]
- Hareland, G.; Polston, C.E.; White, W.E. Normalized rock failure envelope as a function of rock grain size. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1993, 30, 715–717. [Google Scholar] [CrossRef]
- Fahy, M.P.; Guccione, M.J. Estimating strength of sandstone using petrographic thin-section data. Bull. Assoc. Eng. Geol. 1979, 16, 467–485. [Google Scholar] [CrossRef]
- Chatterjee, R.; Mukhopadhyay, M. Petrophysical and geomechanical properties of rocks from the oilfields of the Krishna-Godavari and Cauvery Basins, India. Bull. Eng. Geol. Environ. 2002, 61, 169–178. [Google Scholar] [CrossRef]
- Tamrakar, N.K.; Yokota, S.; Shrestha, S.D. Relationships among mechanical, physical and petrographic properties of Siwalik sandstones, Central Nepal Sub-Himalayas. Eng. Geol. 2007, 90, 105–123. [Google Scholar] [CrossRef]
- Ozturk, C.A.; Nasuf, E.; Kahraman, S.A. Estimation of rock strength from quantitative assessment of rock texture. J. South. Afr. Inst. Min. Andm. 2014, 114, 471–480. [Google Scholar]
- Ersoy, A.; Waller, M.D. Textural characterization of rocks. Eng. Geol. 1995, 39, 123–136. [Google Scholar] [CrossRef]
- Ozturk, C.A.; Nasuf, E.; Bilgin, N. The assessment of rock cutability, and physical and mechanical rock properties from a texture coefficient. J. South. Afr. Inst. Min. Metall. 2004, 104, 397–402. [Google Scholar]
- Alber, M.; Kahraman, S. Predicting the uniaxial compressive strength and elastic modulus of a fault breccia from texture coefficient. Rock Mech. Rock Eng. 2009, 42, 117–125. [Google Scholar] [CrossRef]
- Aagaard, B. Strength Anisotropy of Rocks. Master’s Dissertation, Norwegian Institute of Technology, Trondheim, Norway, 1976; p. 104. [Google Scholar]
- Nasseri, M.H.; Rao, K.S.; Ramamurthy, T. Failure mechanism in schistose rocks. Int. J. Rock Mech. Min. Sci. 1997, 34, 219–223. [Google Scholar] [CrossRef]
- Khanlari, G.R.; Heidari, M.; Sepahigero, A.A.; Fereidooni, D. Quantification of strength anisotropy of metamorphic rocks of the Hamedan province, Iran, as determined from cylindrical punch, point load and Brazilian tests. Eng. Geol. 2014, 169, 80–90. [Google Scholar] [CrossRef]
- Ali, E.; Guang, W.; Weixue, J. Assessments of strength anisotropy and deformation behavior of banded amphibolite rocks. Geotech. Geol. Eng. 2014, 32, 429–438. [Google Scholar] [CrossRef]
- Hobbs, D.W. The tensile strength of rocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1963, 1, 385–396. [Google Scholar] [CrossRef]
- McCabe, W.M.; Koerner, R.M. High pressure shear strength investigation of an anisotropic mica schist rock. Int. J. Rock Mech. Min. Sci. Geomech. 1975, 12, 219–228. [Google Scholar] [CrossRef]
- Brown, E.T.; Richards, L.R.; Barr, M.V. Shear strength characteristics of Delabole slate. Proc. Conf. Rock Eng. 1977, 1, 31–51. [Google Scholar]
- Donath, F. A triaxial pressure apparatus for testing of consolidated or unconsolidated materials subjected to pore pressure. In Testing Techniques for Rock Mechanics; American Society for Testing and Materials: Conshohocken, PA, USA, 1966; pp. 41–55. [Google Scholar]
- Ambrose, J. Failure of Anisotropic Shales under Triaxial Stress Conditions. Ph.D. Thesis, Imperial College London, Department of Earth Science and Engineering, London, UK, 2014. [Google Scholar]
- Saeidi, O.; Rasouli, V.; Vaneghi, R.G.; Gholami, R.; Torabi, S.R. A modified failure criterion for transversely isotropic rocks. Geosci. Front. 2014, 5, 215–225. [Google Scholar] [CrossRef]
- Duveau, G.; Shao, J.F.; Henry, J.P. Assessment of some failure criteria for strongly anisotropic geomaterials. Mech. Cohesive-Frict. Mater. Int. J. Exp. Model. Comput. Mater. Struct. 1998, 3, 1–26. [Google Scholar] [CrossRef]
- Hill, R. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1948, 193, 281–297. [Google Scholar]
- Goldenblat, I.; Kopnov, V.A. Strength of glass-reinforced plastics in the complex stress state. Polym. Mech. 1966, 1, 54–59. [Google Scholar] [CrossRef]
- Pariseau, W.G. Plasticity theory for anisotropic rocks and soil. In Proceedings of the 10th US Symposium on Rock Mechanics (USRMS), Austin, TX, USA, 22 May 1968. [Google Scholar]
- Tsai, S.W.; Wu, E.M. A general theory of strength for anisotropic materials. J. Compos. Mater. 1971, 5, 58–80. [Google Scholar] [CrossRef]
- Boehler, J.P.; Sawczuk, A. Equilibre limite des sols anisotropes. J. De Mec. 1970, 5–13. [Google Scholar]
- Boehler, J.P.; Sawczuk, A. On yielding of orientated solids. Acta Mech. 1977, 27, 185–192. [Google Scholar] [CrossRef]
- Boehler, J.P. Contributions the Oriques et Expérimentales a L’etude des Milieux Plastiques Anisotropes’. Ph.D. Thesis, Sciences appliquées, Grenoble, France, 1975. [Google Scholar]
- Allirot, D.; Boehler, J.P. Evolution of mechanical properties of a stratified rock under confining pressure. In Proceedings of the 4th ISRM Congress, Montreux, Switzerland, 2–8 September 1979. [Google Scholar]
- Boehler, J.P.; Raclin, J. Ecrouissage anisotrope des matériaux orhtotropes pré de formes. J. De Mec. 1982, 23–44. [Google Scholar]
- Cazacu, O.; Cristescu, N.D. Failure of Anisotropic Compressible Shale; University of California: Los Angeles, CA, USA, 1995. [Google Scholar]
- Jaeger, J.C. Shear failure of transversely isotropic rock. Geol. Mag. 1960, 97, 65–72. [Google Scholar] [CrossRef]
- McLamore, R.; Gray, K.E. The mechanical behavior of transversely isotropic sedimentary rocks. Transit. Am. Soc. Mech. Eng. 1967, 89, 62–76. [Google Scholar]
- Single, B.; Goel, R.K.; Mehrotra, V.K.; Garg, S.K.; Allu, M.R. Effect of intermediate principal stress on strength of anisotropic rock mass. Tunn. Undergr. Space Technol. 1998, 13, 71–79. [Google Scholar] [CrossRef]
- Ramamurthy, T.; Venkatappa Rao, G.; Singh, J. A strength criterion for anisotropic rocks. In Proceedings of the 5th Australia-New Zealand Conference on Geomechanics, Sydney, Australia, 22–26 August 1988. [Google Scholar]
- Walsh, J.B.; Brace, W.F. A fracture criterion for brittle anisotropic rock. J. Geophys. Res. 1964, 69, 3449–3456. [Google Scholar] [CrossRef]
- Hoek, E. Fracture of anisotropic rock. J. Afr. Inst. Min. Metall. 1964, 64, 501–518. [Google Scholar]
- Hoek, E. Strength of jointed rock masses. Geotechnique 1983, 33, 187–223. [Google Scholar] [CrossRef] [Green Version]
- Hoek, E.; Brown, E.T. Empirical strength criterion for rock masses. J. Geotech. Eng. Div. 1980, 106, 1013–1035. [Google Scholar] [CrossRef]
- McClintock, F.A.; Walsh, J.B. Friction on Griffith Cracks in Rocks under Pressure. ASME 1962, 2, 1015–1021. [Google Scholar]
- Olszak, W.; Urbanowski, W. The plastic potential and the generalized distortion energy in the theory of non-homogeneous anisotropic elastic-plastic bodies. Arch. Mech. Stos 1956, 8, 671–694. [Google Scholar]
- Li, Y.; Zhang, H.; Chen, M.; Meng, X.; Shen, Y.; Liu, H.; Lu, Y. Strength criterion of rock mass considering the damage and effect of joint dip angle. Sci. Rep. 2022, 12, 2601. [Google Scholar] [CrossRef]
- Dafalias, Y.F.; Popov, E.P. A model for nonlinearity hardening material for complex loading. Acta Mech. 1979, 21, 173–192. [Google Scholar] [CrossRef]
- Dafalias, Y.F. Issues on the constitutive formulation at large elastoplastic deformations, Part 1: Kinematics. Acta Mech. 1987, 69, 119–138. [Google Scholar] [CrossRef]
- Nova, R.; Sacchi, G. A generalized failure condition for orthotropic solids. Mech. Behav. Anisotropic Solids/Comportment Méchanique Des Solides Anisotropes 1979, 623–641. [Google Scholar]
- Raclin, J. Contributions Théoriques et Expérimentales à L’étude de la Plasticité, de L’écrouissage et de la Rupture des Solides Anisotropes. Ph.D. Dissertation, Grenoble, Paris, France, 1984; p. 623. [Google Scholar]
- Cazacu, O.; Cristescu, N.D. A paraboloid failure surface for transversely isotropic materials. Mech. Mater. 1995, 31, 381–393. [Google Scholar] [CrossRef]
- Salajegheh, S.; Shahriar, K.; Jalalifar, H.; Ahangari, K. Numerical and experimental research of rock failure mechanism and its dependence on mi Hoek-Brown failure criterion. Min. -Geol.-Pet. Bull. 2021, 36, 157–165. [Google Scholar] [CrossRef]
- Kusabuka, M.; Takeda, H.; Kojo, H.; Tonegawa, T. Anisotropic yield function for rocks and evaluation of material parameters. Doboku Gakkai Ronbunshu 1999, 631, 205–220. [Google Scholar] [CrossRef] [Green Version]
- Pietruszczak, S.; Mroz, Z. On failure criteria for anisotropic cohesive-frictional materials. Int. J. Numer. Anal. Methods Geomech. 2001, 25, 509–524. [Google Scholar] [CrossRef]
- Lee, Y.K.; Pietruszczak, S. Application of critical plane approach to the prediction of strength anisotropy in transversely isotropic rock masses. Int. J. Rock Mech. Min. Sci. 2008, 45, 513–523. [Google Scholar] [CrossRef]
- Mróz, Z.; Maciejewski, J. Critical plane approach to analysis of failure criteria for anisotropic geomaterials. Bifurc. Instab. Degrad. Geomater. 2011, 11, 69–89. [Google Scholar]
- Casagrande, A.; Carillo, N. Shear failure of anisotropic materiials, Journal oy the Boston Society oy Civil Engineers. Contrib. Soil Mech. 1944, 31, 1941–1953. [Google Scholar]
- Ashour, H.A. A compressive strength criterion for anisotropic rock materials. Can. Geotech. J. 1988, 25, 233–237. [Google Scholar] [CrossRef]
- Zhao, Q.D.; Liu, Z.S.; Qi, L. Strength criteria for anisotropic rocks and experimental studies. Soc. Pet. Eng. 1992, SPE 25302. [Google Scholar]
- Tiwari, R.P.; Rao, K.S. Response of an anisotropic rock mass under polyaxial stress state. J. Mater. Civ. Eng. 2007, 19, 393–403. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, H. Three-dimensional Hoek-Brown strength criterion for rocks. J. Geotech. Geoenviron. Eng. 2007, 133, 1128–1135. [Google Scholar] [CrossRef]
- Lee, Y.K.; Pietruszczak, S.; Choi, B.H. Failure criteria for rocks based on smooth approximations to Mohr–Coulomb and Hoek–Brown failure functions. Int. J. Rock Mech. Min. Sci. 2012, 56, 146–160. [Google Scholar] [CrossRef]
- Murrell, S.A.F. The effect of triaxial stress systems on the strength of rocks at atmospheric temperatures. Geophys. J. Int. 1965, 10, 231–281. [Google Scholar] [CrossRef] [Green Version]
- Barron, K. Brittle fracture initiation in and ultimate failure of rocks: Part I—Anisotropic rocks: Theory. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1971, 8, 553–563. [Google Scholar] [CrossRef]
- Ladanyi, B.; Archambault, G. Evaluation of shear strength of a jointed rock mass. In Proceedings of the 24th International Geological Congress, Montreal, QC, Canada, 22 June 1979; Volume 1, pp. 249–270. [Google Scholar]
- Bieniawski, Z.T. Estimating the strength of rock materials. J. South. Afr. Inst. Min. Metall. 1974, 74, 312–320. [Google Scholar] [CrossRef]
- Smith, M.B.; Cheatham, J.B., Jr. An anisotropic compacting yield condition applied to porous limestone. Int. J. Rock Mech. Min. Sci. Geomech. 1980, 17, 159–165. [Google Scholar] [CrossRef]
- Yoshinaka, R.; Yamabe, T. A Strength Criterion of Rocks and Rock Masses. In Proceedings of the ISRM International Symposium, Aachen, Germany, 26–28 May 1981. [Google Scholar]
- Zhang, G.Q. Rock failure with weak planes by self-locking concept. Int. J. Rock Mech. Min. Sci. 2009, 46, 974–982. [Google Scholar] [CrossRef]
- Saroglou, H.; Tsiambaos, G. A modified Hoek–Brown failure criterion for anisotropic intact rock. Int. J. Rock Mech. Min. Sci. 2007, 45, 223–234. [Google Scholar] [CrossRef]
- Tien, Y.M.; Kuo, M.C.; Juang, C.H. An experimental investigation of the failure mechanism of simulated transversely isotropic rocks. Int. J. Rock Mech. Min. Sci. 2006, 43, 1163–1181. [Google Scholar] [CrossRef]
- Horino, F.G.; Ellickson, M.L. A Method for Estimating Strength of Rock Containing Planes of Weakness; US Department of Interior, Bureau of Mines: Washington, DC, USA, 1970. [Google Scholar]
- Jaeger, J.C.; Cook, N.G. Fundamentals of Rock Mechanics, 3rd ed.; Chapman and Hall: London, UK, 1979. [Google Scholar]
- Nova, R. The failure of transversely isotropic rocks in triaxial compression. Int. J. Rock Mech. Min. Sci. Geomech. 1980, 17, 325–332. [Google Scholar] [CrossRef]
- Nova, R. An extended Cam Clay model for soft anisotropic rocks. Comput. Geotech. 1986, 2, 69–88. [Google Scholar] [CrossRef]
- Rafiai, H. New empirical polyaxial criterion for rock strength. Int. J. Rock Mech. Min. Sci. 2011, 48, 922–931. [Google Scholar] [CrossRef]
- Askaripour, M.; Saeidi, A.; Rouleau, A.; Mercier-Langevin, P. Rockburst in underground excavations: A review of mechanism, classification, and prediction methods. Undergr. Space 2022. [Google Scholar] [CrossRef]
- Dehkordi, A.R. 3D Finite Element Cosserat Continuum Simulation of Layered Geomaterials. Ph.D. Thesis, University of Toronto, Department of Civil Engineering, Toronto, ON, Canada, 2008. [Google Scholar]
- Song, Z.; Zhang, J. Research on the progressive failure process and fracture mechanism of rocks with the structural evolution perspective. J. Struct. Geol. 2022, 154, 104484. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, J. Progressive failure mechanical behaviour and response characteristics of sandstone under stress-seepage coupling. J. Geophys. Eng. 2021, 18, 200–218. [Google Scholar] [CrossRef]
- Zhang, J.; Song, Z.; Wang, S. Experimental investigation on permeability and energy evolution characteristics of deep sandstone along a three-stage loading path. Bull. Eng. Geol. Environ. 2021, 80, 1571–1584. [Google Scholar] [CrossRef]
Term | Description |
---|---|
Textural characteristics | Grain size, shape and orientation, packing density, texture coefficient, mineral content, cement type and degree of cementation, porosity, grain boundary or contact relationships |
Mechanical characteristics | Strength, hardness, abrasiveness, density, pore pressure |
Structural characteristics | Joints, fractures, cleavages, foliations, faults, folds, bedding, banding, and schistosity |
Weathered characteristics | Alteration and water content |
Definition | Formula | References | Parameters | |
---|---|---|---|---|
Packing density (Pd) | Ratio of the sum of the grain length encountered along a traverse across a thin section to the total length of the traverse | [11] | Li is the length of each grain along the traverse line, TL is the traverse length | |
Packing proximity (Pp) | Ratio of the number of grains to grain contacts | [11] | gi is the number of grain-to-grain contacts, t is the total length of the traverse | |
Index of interlocking (g): | Compares the area of the grain and its perimeter, which contacts neighboring grains | [12] | n is number of grains considered, LPi is a portion of the grain perimeter that contacts neighboring grains, Ai is the area of exposed grain section | |
Index of grain size homogeneity (t) | A non-directional fabric parameter that defines the grain size distribution of the rock | [12] | Aavg is the average grain cross-section (area), Ai is the area of individual grain | |
Grain contact | Ratio to its own total length of the length of contact a grain has with its neighbors | [13] | L is the length of grain contact, is the total length of grain surface | |
Grain shape | Sphericity: Ratio between grain volume and the smallest circumscribing sphere Roundness: Ratio of curvature of a grain’s edges to overall grain shape | [14,15] | is grain volume, is the smallest circumcising sphere | |
Texture coefficient (TC) | Analyzes grain shape parameters, such as circularity and elongation, orientation of grains, and degree of grain packing (proportion of grains and matrix) | [16] | AW is the area weighting (grain packing density), N0 is the number of grains with aspect ratio less than 2.0, N1 is the number of grains with aspect ratio larger than 2.0, FF0 is the arithmetic mean of form factor of all N0 grains, AR1 is the arithmetic mean of aspect ratio of N1 grains, and AF1 is the angle factor orientation computed for all N1 grains | |
Area weighting | Reflects intergranular space | [16] | - | |
Strong cement over matrix index (SCMI) | Ratio of total strong cement over matrix in sandstone | [17] | - | |
Strong cement over total cement (SCTC) | [17] | - | ||
Strong over weak contact (SOWC) | Represents how well the grains are interlocked and cemented | [18] | Su is the ratio of sutured contact to total contact type (%); Ta is the ratio of tangential contact to total contact type (%); Lo, is the ratio of long contact to total contact type (%); G-C is the ratio of grain-to-cement contact to total contact nature (%); G-V is the ratio of grain-to-void contact to total contact nature (%); G-M is the ratio of grain-to-matrix contact to total contact nature (%) | |
Foliation Index (FIX) | [19] | and are the sum of the number of grain boundaries parallel and perpendicular to the mineral fabric from all measured line transections | ||
Porosity | [20] | Vv is specimen pore volume, V is specimen bulk volume | ||
Density | [20] | Ms is oven-dried grain mass of the specimen, and V is specimen bulk volume |
Shape Characteristic | Definition | Comment |
---|---|---|
Sphericity [14] | Ratio of grain volume to that of the smallest circumscribing sphere |
|
Roundness [15] | Ratio of the curvature of grain edges/corners to overall grain |
|
Fourier series [24] | Shape (wave of the profile) estimated by the expansion of the periphery radius as a function of the angle of the grain’s center of gravity by Fourier series |
|
Fourier descriptors [25] | Calculation of shape descriptors from the Fourier series coefficients |
|
Fractal dimension [26] | 2D value ranging from 0 to 1; describes the capability of a rugged boundary to occupy void space |
|
Parameters | Symbol | Computation | Meaning of Parameters for Real Grains |
---|---|---|---|
Area | Ai | Number of pixels defining the object | Cross-section area |
Perimeter | LP | Length of all edge pixels outlining the object | Length of grain boundary |
Major (minor) axis length | Dmax, Dmin MajX1, MajX2, MajY1, MajY2 are the X, Y coordinates of the endpoints | Distance between the two points defining the major axis | - |
Slope of mineral principal axes | MajAS | Angle of the major or minor axes from a horizontal reference line | - |
Equivalent diameter | Dequiv | Grain size | |
Compactness | C | Shape of an object as it moves from a circle to a line | Shape of the grain cross-section |
Shape (form) factor | SF | Circularity of grain cross-section | |
Aspect ratio | AR | Grain ellipticity | |
Grain boundary smoothness | GBS | Deviation of grain shape from the smooth surface |
Term | Description |
---|---|
Unweathered/unaltered | Outer fracture planes may be stained or discolored, but no visible signs of alteration can be seen. |
Slightly weathered/altered | Fractures may have thin fillings of altered material and are stained or discolored. It is possible for the discoloration to extend outward from the fracture planes as far as 20% of the fracture spacing (i.e., less than 40% of the core is discolored). |
Medium weathered/altered | Fractures are discolored for a distance greater than 20% of the fracture spacing between them (i.e., generally a large part of the rock). Altered material may fill fractures. (Except in poorly cemented sedimentary rocks) The core does not have a friable surface, and its original texture has been preserved. |
Highly weathered/altered | Discoloration takes place throughout the rock. The surface of the core is friable and usually pitted due to the washing out of highly altered minerals by drilling water. Although much of the original rock texture has been preserved, grains have separated. |
Totally weathered/altered | There is discoloration in the rock, and the core has a similar external appearance to soil. Despite the rock texture being partially preserved, the grains are completely separated. |
Anisotropy Ratio | Class | Rock Type |
---|---|---|
1.0–1.1 | Isotropic | Sandstone |
>2.1–2.0 | Weakly anisotropic | Sandstone–Shale |
>2.0–4.0 | Moderately anisotropic | Shale–Slates–Phyllites |
>4.0–6.0 | Highly anisotropic | Slates–Phyllites |
>6.0 | Very highly anisotropic | Slates–Phyllites |
Descriptive Term | |
---|---|
1 | Isotropic |
1–2 | Low–moderately anisotropic |
2–4 | Highly anisotropic |
>4 | Very highly anisotropic |
Degree of Velocity Anisotropy (VA%) | Descriptive Term |
---|---|
<2 | Isotropic |
2–6 | Fairly anisotropic |
6–20 | Moderate anisotropic |
20–40 | Highly anisotropic |
>40 | Very highly anisotropic |
Anisotropy Classification | Strength Index (Iσc) | Longitudinal Velocity Index (IVp) | Diametrical Point Load Index (Id) |
---|---|---|---|
Isotropic | Iσc ≤ 1.1 | - | Id = 1.0 |
Fairly anisotropic | 1.1 < Iσc ≤ 2.0 | IVp ≤ 1.5 | 1.0 < Id ≤ 2.0 |
Moderate anisotropic | 2.0 < Iσc ≤ 3.0 | 1.5 < IVp ≤ 2.0 | |
Highly anisotropic | 3.0 < Iσc ≤ 5.0 | IVp > 2.0 | 2.0 < Id ≤ 4.0 |
Very highly anisotropic | Iσc > 5.0 | - | Id > 4.0 |
Equation | Reference | Parameters | R2 |
---|---|---|---|
[61] | D: mineral content of dolomite (%) M: mineral content of microcrystalline carbonate is in MPa | 0.73 0.87 | |
[3] | M = Mica (%) Q = Quartz (%) F = Feldspar (%) | 0.73 0.64 0.71 | |
[57] | Camf. = Amphibole content (%) CGrM = Groundmass content for all types of compositions% Cplg. = Plagioclase content% | 0.37 | |
[57] | CGrM 1 = Groundmass content values obtained from specimens with only andesitic composition% | 0.66 | |
[57] | Cb = Biotite content% | −0.56 | |
[57] | 0.56 | ||
[57] | 0.66 | ||
[57] | CGrM 2 = Groundmass content values obtained from specimens with only rhyodacite composition | 0.61 |
Equation | Correlation |
---|---|
0.811 | |
0.810 | |
0.826 | |
0.806 |
Relationship | Prediction Equation | Correlation Coefficient |
---|---|---|
Unit Weight (y) Mean grain size (x) Rock fragment (x) Percent matrix (x) | −0.54 −0.54 0.53 | |
Point Load Index (y) Round grain (x) Angular grain (x) Sutured contacts (x) Rock fragment (x) Grain to void (x) | −0.68 0.69 0.55 −0.52 −0.61 | |
Quality Index (y) Packing proximity (x) Grain to grain (x) Grain to matrix (x) Rock fragment (x) Percent matrix (x) | −0.55 −0.55 0.53 −0.74 0.68 | |
Porosity (y) Mean grain size (x) Degree of sorting (x) Grain to void (x) Rock fragment (x) | 0.56 0.65 0.59 0.59 | |
Uniaxial Compressive Strength (y) Round grain (x) Angular grain (x) Sutured contacts (x) | −0.71 0.70 0.82 | |
Young’s Modulus (y) Mean grain size (x) Packing proximity (x) Grain to grain (x) Grain to matrix (x) | 0.70 0.86 0.887 −0.75 | |
Poisson’s ratio (y) Packing density (x) Packing proximity (x) Grain to grain (x) | −0.77 −0.90 −0.86 |
Relationship | Prediction Equation | Correlation |
---|---|---|
Uniaxial compressive strength (y) Density (x) | 0.98 | |
Tensile strength (y) Density (x) | 0.98 | |
Young’s modulus (y) Density (x) | 0.91 | |
Uniaxial compressive strength (y) Absorption (x) | −0.97 | |
Tensile strength (y) Absorption (x) | −0.97 | |
Young’s modulus (y) Absorption (x) | −0.93 | |
Uniaxial compressive strength (y) Pore volume (x) | −0.98 | |
Tensile strength (y) Pore volume (x) | −0.98 | |
Young’s modulus (y) Pore volume (x) | −0.97 | |
Uniaxial compressive strength (y) Sutured contacts (x) | 0.70 | |
Tensile strength (y) Sutured contacts (x) | 0.72 | |
Young’s modulus (y) Sutured contacts (x) | 0.89 |
Basin | Parameters Related | Regression Equation and Correlation |
---|---|---|
Krishna-Godavari | Uniaxial compressive strength (y), dry density (x) | |
Uniaxial compressive strength(y), tensile strength (x) | ||
Uniaxial compressive strength (y), effective porosity (x) | ||
Young’s modulus (y), uniaxial compressive strength (x) | ||
Gauvery | Uniaxial compressive strength (y), dry density (x) | |
Uniaxial compressive strength (y), tensile strength (x) | ||
Uniaxial compressive strength (y), effective porosity(x) | ||
Young’s modulus (y), uniaxial compressive strength (x) |
Predictor | Constant | Equation and Correlation Coefficient |
---|---|---|
Density (ρdry) | CC Pcc Mz SCTC Void SCMI | R2 = 0.76 |
Saturated Density (ρsat) | SCTC SCMI Void Cc Pd Pcc | R2 = 0.66 |
Porosity (n) | SCTC Void SOWC G-C G-V Cc | R2 = 0.66 |
SHH | Void ψp | R2 = 0.23 |
PLI (Is50) | Void SCTC SOWC G_V Lo | R2 = 0.49 |
UCS | Void SOWC G_V Lo Cc | R2 = 0.48 |
Secant modulus (Es) | Void SOWC Lo G_V | R2 = 0.31 |
Tangent Modulus (Et) | Void SOWC Lo G_V | R2 = 0.38 |
Modulus ratio (MR) | Void SCTC G-G Pd | R2 = 0.21 |
Equation | Correlation Coefficient |
---|---|
0.47 | |
−0.64 | |
+0.3406 | −0.62 |
−0.72 | |
−0.88 | |
−0.55 | |
−0.72 | |
−0.69 | |
−0.66 | |
0.63 |
Equation | Mineral Type | Correlation | Reference |
---|---|---|---|
Sandstone, siltstone, marl, shale, limestone | 0.76 | [123] | |
Limestone | 0.87 | ||
Sandstone, siltstone, marl, shale | 0.93 | ||
Fault breccia | 0.90 | [124] | |
Sandstone, limestone, siltstone, granite, diorite | 0.69 | [122] | |
0.62 | |||
Saturated rock material | 0.91 | [16] | |
Dry rock material | 0.92 |
Continuous Criteria | Discontinuous Criteria | |
---|---|---|
Mathematical Approach | Empirical Approach | |
Von Mises (1928) Hill (1948) Olszak and Urbanowicz (1956) Goldenblat (1962) Goldenblat and Kopnov (1966) Pariseau (1968) Boehler and Sawczuk (1970, 1977) Tsa and Wu (1971) Boehler (1975) DafaliaS (1979, 1987) Allirot and Boehler (1979) Nova and Sacchi (1979) Nova (1980, 1986) Boehler and Raclin (1982) Raclin (1984) Cazacu and Cristescu (1995) Cazacu and Cristescu (1999) Kusabuka et al. (1999) Pietruszczak and Mroz (2001) Lee and Pietruszczak (2008) Mroz and Maciejewski (2011) | Casagrande and Carillo (1944) Jaeger (variable cohesive strength theory) (1960) Mclamore and Gray (1967) Ramamurthy, Rao, and Singh (1998) Ashour (1988) Zhao, Liu, and Qi (1992) Single et al. (1998) Tien and Kuo (2001) Tien, Kuo, and Juang (2006) Tiwari and Rao (2007) Saroglou and Tsiambaos (2007) Zhang and Zhu (2007) Lee, Pietruszczak, and Choi (2012) | Jaeger (Single plane-of-weakness theory) (1960, 1964) Walsh and Brace (1964) Murrell (1965) Hoek (1964, 1983) Barron (1971) Ladanyi and Archambault (1972) Bieniawski (1974) Hoek and Brown (1980) Smith and Cheatham (1980) Yoshinaka and Yamabe (1981) Duveau et al., (1998) Zhang (2009) |
Criteria | Jaeger Criterion | Modified Criterion |
---|---|---|
Constant parameters | C0, tan ϕ0, C90, tan ϕ90, , | C0, tan ϕ0, C90, tan ϕ90, , , a, b, |
Mathematical Continuous Criteria | Empirical Continuous Criteria |
---|---|
Definition: The mathematical technique used to describe a material’s strength function, taking into account the type of symmetry present in the material. From these criteria, constants are obtained. | Definition: By applying empirical laws defined by the variation in material parameters considering loading orientation, it is possible to describe anisotropic strength using the isotropic failure criterion. Experimental data are used to determine the parameters. |
Representative Criterion: In the theory of frictionless materials, the main and first criterion is Hill’s principle, which is an extension of Von Mises’ isotropic theory. Pariseau in 1968 extended Hill’s criterion for cohesive-frictional materials similar to rocks. | Representative Criterion: Using variational cohesion as a function of loading orientation and constant friction, Jaeger in 1960 proposed a modification of the Mohr–Coulomb criterion. |
Challenges: (1) In order to determine the material constants, experimentation should be conducted. (2) Analyzing the physical behavior of the material or the tested rocks gives each criterion its own perspective on anisotropy. | Challenges: (1) For such a criterion to be established, there must be a large amount of experimental data and a curve-fitting procedure. (2) The physical and mathematical bases of such criteria are lacking. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Askaripour, M.; Saeidi, A.; Mercier-Langevin, P.; Rouleau, A. A Review of Relationship between Texture Characteristic and Mechanical Properties of Rock. Geotechnics 2022, 2, 262-296. https://doi.org/10.3390/geotechnics2010012
Askaripour M, Saeidi A, Mercier-Langevin P, Rouleau A. A Review of Relationship between Texture Characteristic and Mechanical Properties of Rock. Geotechnics. 2022; 2(1):262-296. https://doi.org/10.3390/geotechnics2010012
Chicago/Turabian StyleAskaripour, Mahdi, Ali Saeidi, Patrick Mercier-Langevin, and Alain Rouleau. 2022. "A Review of Relationship between Texture Characteristic and Mechanical Properties of Rock" Geotechnics 2, no. 1: 262-296. https://doi.org/10.3390/geotechnics2010012
APA StyleAskaripour, M., Saeidi, A., Mercier-Langevin, P., & Rouleau, A. (2022). A Review of Relationship between Texture Characteristic and Mechanical Properties of Rock. Geotechnics, 2(1), 262-296. https://doi.org/10.3390/geotechnics2010012