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Abstract: The present paper provides a qualitative discussion of the evolution of contact traction fields
beneath rigid shallow foundations resting on granular materials. A phenomenological similarity
is recognized in the measured contact traction fields of rigid footings and at the bases of sandpiles.
This observation leads to the hypothesis that the stress distributions are brought about by the same
physical phenomena, namely the development of arching effects through force chains and mobilized
intergranular friction. A set of semi-empirical equations are suggested for the normal and tangential
components of this contact traction based on past experimental measurements and phenomenological
assumptions of frictional behaviors at the foundation system scale. These equations are then applied
to the prescribed boundary conditions for the analysis of the settlement, resistance, and stress fields
in supporting granular materials beneath the footing. A parametric sensitivity study is performed
on the proposed modelling method, highlighting solutions to the boundary-value problems in an
isotropic, homogeneous elastic half-space.
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1. Introduction

It is well known that the contact pressures which develop between a surface foot-
ing and soil body are in general not uniform. Many studies, both empirical [1–5] and
analytical [5–9], have suggested that the distribution of normal pressure at contact is
saddle-shaped, exhibiting a pressure dip at the center of the load. The peak values occur
at some distance from the center, which appears to be dependent on intrinsic multiscale
soil properties and evolves with applied loading criteria. For a given case, there also exists
a tangential traction field at the interface between a normally loaded foundation and a
soil body due to friction and the horizontal expansion of material beneath a compressive
load [2,6,7,10,11]. These facts are often neglected in practical engineering calculations; how-
ever, it is a major premise of the present paper that the spatial distributions and directions
of the traction fields developed during soil–structure interaction are non-negligible when
assessing structural settlement and resulting stress-equilibrium states. A priori knowledge
of the nonlinear development of these traction fields, applied as boundary conditions in
analysis, allows for the approximate modeling of mechanical behaviors reflecting the highly
nonlinear and heterogeneous nature of granular materials. This is true even within the
context of continuum models with simple (linear) constitutive relationships.

The literature contains several examples of analyses that shed some light upon the
mechanisms leading to the development of the saddle-shaped normal traction distributions.
The defining factor is the location of the peak magnitude of contact pressure and its
evolution over various loading cases. Empirical measurements show that these peak
locations tend to begin towards the edge of a footing for initial small loads, but progress
towards the center as the load magnitude increases ([2,3]). Mathematical models that
describe this phenomena come in at least three distinct flavors:
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(i) By treating the problem in the context of continuum elastoplasticity, researchers have
described this phenomena through the presence of plastic yielding [5,12,13]. Localized
plasticity is initialized at various loading stages due to the arbitrarily large edge
pressures present in the case of a purely elastic rigid punch [14,15].

(ii) Using a simpler two-dimensional model containing only springs, Kerr [9] was able
to replicate this behavior by extending the classic Winkler model [16] by adding a
second layer of normal springs separated by a shear layer; in this way the phenomena
is mechanically linked with the concept of shear resistance. In this model, evolution
of the peak location in the normal traction is related to the size of the footing and
not necessary the magnitude of the load, although both of these quantities obviously
contribute to the magnitudes of pressure applied to the underlying soil.

(iii) Smoltczyk [8] developed an analytical expression for the normal contact traction based
on an assumed probability distribution that force be transferred to the ground between
the edge and center of the footing. This represents the statistical likelihood of force
propagation along granular contact chains.

Although relatively successful in a qualitative representation of the empirical phe-
nomena, these models remain somewhat unsatisfactory for application to geotechnical
problems; they do not explicitly contain concepts or parameters specific to soil bodies.
They represent the complex mechanical behavior resulting from the discrete interaction of
individual grains through simplified macroscopic assumptions. Although these types of
simplifying assumptions are almost always necessary when modeling mechanical proper-
ties of soil, none of them are quite capable of explaining the phenomena that they represent.
This paper attempts to lay out an explanatory hypothesis for this pressure dip phenomena
based on the underlying mechanisms of a granular material, while remaining within the
context of simplified continuum calculations.

Furthermore, the distribution of shear traction present at the contact interface of a
shallow foundation has received less attention than the normal distribution. This is to be
expected, since the normal behavior is the most relevant to the serviceability and strength
of normally loaded foundations. However, it is clear from the presence of friction alone
that the shear components of traction at the contact interface will be nonzero even in the
case of purely normal and symmetric loads; this is granted even in the classical theories of
contact with friction [17]. These components of traction must be considered in any analysis
where accuracy in the local stress tensor is desired. Limited empirical measurements
have been made in an attempt to quantify the shear traction [2,10,11,18]; similarly, there
exist rudimentary semi-empirical equations that aim to approximate the distribution [19].
However, these have rarely been considered to prescribe the boundary conditions in the
analysis of contact problems, and no general method exists at this time for the prediction of
the spatial distribution of shear traction.

More research is required to provide a comprehensive account of the foundation
contact traction fields, even for the simplest cases of homogeneous and cohesionless sands.
Recent work [20,21] has advocated for the inclusion of empirical measurements in those
boundary value problems of elasticity that have historically been applied to the analysis of
shallow foundation systems. While it is often not feasible to empirically assess the stress
fields present within the internal fabric of a real soil body, the surface traction conditions
are measurable in an experimental or field domain. A simple argument from continuity
shows that if realistic surface (boundary) values are enforced in a continuum-based model,
the resulting stress analysis will likely be more reflective of the real physical state of the
granular material, at least in the neighborhood of the boundary.

The goal of the present study is to formulate a generalized understanding of the
development of contract traction distributions in the context of elasticity by providing a
qualitative description based on a strong analogy between the measured foundation fields
and the stress states at the bases of static sandpiles, e.g., those measured and presented
in [22–24]. Furthermore, this paper seeks to motivate future research on this topic by
showcasing the usefulness of accurate empirically informed boundary conditions within
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our analytical models. Based on past empirical measurements and qualitative observations
of the evolution of combined normal and tangential traction fields, a parametric study is
performed for prescribed Neumann boundary conditions on a homogeneous, isotropic,
linear-elastic half-space.

2. Results
2.1. Contact Traction, Mobilized Shear Resistance, and the Static Sandpile

The evolution of the pressure-dip in the normal contact traction distribution of a foot-
ing on dry sand is exhibited most prominently in a laboratory experiment performed by
Murzenko [3]. That author measured the spatial distributions of normal contact pressures
beneath the center and diagonal lines of a relatively rigid square ram on a compacted, dry
sand under increasing and repeated loads (Figure 1). The nature of these distributions
appears to depend on the magnitude of the external load, as well as the loading history of
the foundation system. Furthermore, this experiment reported considerable redistribution
of pressure under cyclic loading, where pressure peaks appeared closer to the center of the
load for the same load magnitudes after reloading. The site-scale measurements of Muhs
and Bub [2] provides evidence that there exists unique distributions of tangentially acting
traction that correspond and evolve alongside the normal distributions. The experiment of
Lazebnik and Smirnov [1] suggests that this type of normal pressure distribution extends
to some degree into the interior of the sand body, but ultimately becomes parabolic at
some depth away from the loaded footing. The precise distributions that develop for a
given loading scenario will depend on various inherent soil properties, including mobi-
lized shear resistance, internal friction parameters, intergranular force chain development,
and arching effects. As it stands, no comprehensive theory exists that the engineer can
use to predict a pressure distribution for a given foundation system based explicitly on
the properties of the granular material (intergranular friction, loading history/conditions,
and the arrangement/properties of individual particles).
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Figure 1. Data from five loading cases in the experiment of Murzenko [3]: (a) taken from pressure
cells across the center of a square footing of width 2a; (b) across the 45◦ diagonal. The data are
curve-fit using Equation (1).

2.1.1. The Foundation-Sandpile Analogy

There exists a number of experimental and analytical results in the field of granular
physics that provides the basis for a hypothesis along these lines. It is well-known that the
pressure-dip exists in normal stress distributions measured at the bases of static sandpiles.
The measurements of Smid and Novosad [22] are particularly noteworthy, providing values
for the shear stress components corresponding to the normal pressure fields. Comparison of
these results to the foundation contact pressure measurements of [1–3] reveals a remarkable
resemblance in stress fields developed in contact interfaces with a rigid structure. A series
of experiments by Brockbank et al. [23] provided a strong empirical correlation between the
stress state (i.e., peak pressure location) with the angle or repose of the granular material,
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which is naturally related to a soil’s angle of internal friction. A further experimental work
by Vanel et al. [24] produced the following striking result; the resulting stress distribution
at the base of a sandpile is qualitatively dependent on its construction method. This is to
say that the equilibrium state of the granular mass is fundamentally linked to its history
(deposition and loading), prompting the concept of a sand’s “memory.” Piles formed
progressively from localized sources showed the pressure dip; those formed by a transition
from a uniform flowing state to a mechanically stable jammed state had parabolic stress
distributions with maximum values at the center of the pile. The results were qualitatively
invariant between circular and rectangular base plates. Another important finding is
that the measured stress distributions within the sandpiles were shown to be largely
independent of the size of the pile; the normal stress profiles strongly collapse to one
distinct curve when normalized over a wide range of pile heights for the same material
with localized source construction history. The role of the deposition process in sandpile
stresses was later investigated by Ai et al. [25]. It has also been shown by Zuriguel and
Mullin [26] that inherent soil properties such as particle shape have qualitative effects on
the resulting pressure distributions.

The mechanical explanation for the stress behavior observed within sandpiles is that
a natural arching effect occurs as the forces carried by the bulk material are distributed
along intergranular force chains [27]. The pressures are therefore distributed and supported
through a wedge of granular material by frictional force networks, which redistribute
granular body forces away from the center of the pile, thus leading to the pressure dip.

A good example of the explanation of the sandpile pressure dip is the Fixed Principal
Axis (FPA) theory ([28,29]). The continuum stress equilibrium equations are closed by
the assumption that intergranular force chains fix the direction of the principal stress axis
within the pile, providing analytic expressions of the stress tensor which depend only on
the angel of repose and match very well with experiment. The FPA model stress tensor also
contains a radially acting shear stress component with zero values at the edge and center of
the pile and with a peak location shared with the normal distribution as shown in Figure 2.
The prediction of the contact stresses matches well with the experimental sandpile results
of discussed above.
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Figure 2. Representative analytical sandpile stresses from the Fixed Principal Axis model ([28,29]).
Normal stress σzz is plotted alongside the corresponding radial shear stress σρz for three values of the

angle of repose φ; values are plotted with respect to a normalized coordinate S =
|x| tan φ

z . Note that
the location of the peak stress magnitudes is a function of φ alone.
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The pressure-dip phenomena is driven by the inherent physical mechanisms of the
granular material. Furthermore, the stress phenomena measured and calculated for static
sandpiles are qualitatively the same as those found in the shallow foundation contact
problem. Apart from this phenomenological observation, further geometrical evidence
strengthens the analogy between the two problems. It is well-known from the classical
theory of foundation bearing capacity [30] that at the ultimate state of plastic failure there
exits a wedge of elasticity-dominant soil immediately beneath the footing, which settles
in rigid motion alongside it (Figure 3b). The existence of this wedge has been verified
photographically in real soils, for example by Biarez et al. [31]. Furthermore, the wedge
formation can be visualized using Finite Element Method (FEM) [32] and Discrete Element
Method (DEM) [33–35] numerical analyses of shallow foundation systems. For a given
load smaller than the bearing capacity, the elastic wedge begins to form as shear planes
develop at angles dependent on the degree of mobilized internal friction. With increasing
foundation forces this wedge evolves to that predicted at the ultimate state. The differences
between the foundation and sandpile systems are as follows:

• The free-standing sandpile distributes the weight of its own body forces alone, while
the resultant traction on the footing is the response to externally applied forces.

• The boundary of the sandpile is stress-free and at a state of incipient failure, while
the boundary of the foundation wedge is supported and confined by the surrounding
soil bed.

The result: the foundation system is statically equivalent to a sandpile, turned upside
down, with additional boundary conditions (Figure 3).

Given the similarity in wedge geometry and the traction phenomenon between soil
and support structure, we argue that the contact traction fields as shown in (Figure 1)
are the product of the arching effect in the formation of force chains in a wedge of soil,
which evolves with externally applied loads to a relatively rigid loaded footing. These
normal traction distributions evolve towards a parabolic distribution as the resultant load
approaches a limit state (e.g., the distribution assumed by Terzaghi [30]). It follows that
there must also exist frictional stresses resisting soil movement in parallel to the soil–
footing interfaces and which correspond to the normal traction distributions in predictable
ways [6,7,21].

Measurements of the pressure dip in the foundation problem predate the notice of this
phenomena in sandpiles in the literature by a few decades at least. Given that the latter
caused significant upheaval in the study of granular physics (see [36]), the mechanical
analogy suggested here may have been pointed out at an earlier time. As the FPA model
provides an analytical prediction of normal and tangential stress distribution for a given
angle of repose, it may be possible to predict the same for a given quantity of mobilized
internal friction, which will in turn be dependent on the inherent properties of the soil as
well as on load history and magnitude. The development of such a model is outside of the
scope of this paper.
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Figure 3. A qualitative comparison between the forces and geometries of (a) a static sandpile, and (b) a
normally loaded shallow foundation system with underlying granular wedge. The similarities in the
systems and their resulting stress phenomena (normal pressure dips and corresponding radial shear
tractions fields) is used as the basis for a mechanical analogy between the two problems.

2.1.2. Semi-Empirical Traction Functions

A benefit of the recognition of the sandpile-foundation analogy lies in the use of semi-
empirical tools from one problem in the setting of another. Ai et al. [25] initially proposed
an equation of the following form for the interpolation of empirical measurements of the
normal compressive stresses at the bases of sandpiles:

p(ξ) = A cos
(

π

2
ξ

α

)ω

− B exp
(
− ξ2

(ζα)2

)
. (1)

Under the initially intended interpretation , α is the half-length of a sandpile and
A, B, ζ and ω are curve-fit parameters. This expression was first applied to the interpolation
of foundation contact traction data in [20]; it has also been used here for the curve-fits of
Murzenko’s data seen in Figure 1. The first term on the right-hand side of Equation (1)
determines the bulk of the pressure profile, while the second term is associated with the
pressure dip. Thus the parameters A, ω are associated with the magnitude and shape of
the pressure, respectively. B and ζ control the respective magnitude and spatial extent of
the pressure dip. The parameters will ultimately depend on load magnitude, geometry,
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and history, as well as physical soil parameters, although more experimental data are
necessary to correlate them with these system features. The parameters for the curve-fits
of Murzenko’s data in Figure 1 are given in Table 1. The five normal loading cases are
from here on referred to as loads N1-N5. The subscripts 0 and 45 refer to the angle from
the horizontal at which the traction measurements were measures taken across a square
footing, i.e., the center line and diagonal.

Table 1. Input parameters for Equation (1) fitting the Murzenko data for loading cases N1–N5.

A0 A45 B0 B45 ω0 ω45 ζ0 ζ45

Case N1 1935.557 2069.007 127.751 141.196 0.0605 0.0539 0.7367 0.7838
Case N2 5819.266 5047.482 309.301 232.123 0.0619 0.0605 0.7719 0.8213
Case N3 7391.370 6138.864 205.655 80.404 0.1454 0.1585 0.4888 0.5074
Case N4 10,532.047 10,006.803 220.551 168.095 0.3166 0.4956 0.3123 0.2446
Case N5 15,063.014 14,008.211 422.666 317.186 0.7887 0.9731 0.2785 0.1694

A mathematical expression for the corresponding radial shear traction field was
suggested in [21]. The function in that paper was able only to generate traction fields with
peak locations within the inner-half radius of the sandpile or foundation. Note that all
recorded sandpile data fit within this assumption; the peak location for the FPA model is
also theoretically bounded within this radius. However, the empirical data from foundation
measurements show that the peak location in traction can range across the entire surface
of the footing (see Figure 1 for normal traction examples of his phenomenon, and [2] for
tangential). This variation in the foundation traction behavior from that seen in sandpiles
is likely due to the extra confinement at the boundary of the underlying soil wedge; this
confining effect from the surrounding soil allows for extra support of the internal arches
that redistribute the traction at the wedge base further away from the center. In order to
capture the full range of phenomena, the radial–tangential traction function is modified as:

q(ξ) = Cξ(α− ξ) exp

(
(αH( α

2 − ξ∗)− ξ)2

D2

)
. (2)

Here, H(x) is the Heaviside step function, ξ∗ is the desired location of peak traction,
and C and D are free parameters. It is deduced from the sandpile analogy that the peak
shear traction occurs at the same location as the peak in the normal traction field; thus ξ∗

can be determined by differentiation from Equation (1). The parameters C and D can then
be chosen to determine Equation (2) in order to cause the resulting tangential traction to
share this peak location (i.e., dq

dξ |ξ=ξ∗ = 0), and to enforce a desired ratio in peak normal

and tangential stresses defined as ς = q(ξ∗)
p(ξ∗) . An example of an outcome of this procedure is

shown in Figure 4.
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Figure 4. Example normal and shear traction curves from Equations (1) and (2), respectively.

2.2. Parametric Study for Boundary Conditions in an Analytic Elastic Foundation Model

It is common geotechnical practice to employ simple continuum models to approxi-
mate the settlement, stiffness, or stress states of a shallow foundation system. The classical
model utilized to this effect is the homogeneous, isotropic, half-space [37–40]. This model
is formulated using the elliptic partial differential equations of linear elasticity:

(λ + µ)
∂D
∂x

+ µ∆u = 0

(λ + µ)
∂D
∂y

+ µ∆v = 0

(λ + µ)
∂D
∂z

+ µ∆w = 0. (3)

Here λ, µ are the Lamé elastic constants, (u, v, w) are the elastic displacements in
the Cartesian (x, y, z) directions, D = ∂u

∂x + ∂v
∂y + ∂w

∂z is the strain dilation, and ∆ = ∂2

∂x2

+ ∂2

∂y2 +
∂2

∂z2 is the Laplacian differential operator. Historically, constant Neumann (traction)
boundary conditions normal to the contact plane are assumed in order to represent the
average contact pressure between a concentrically loaded rigid footing and underlying soil
body [39]. In general the Cartesian components of Neumann boundary conditions are the
traction fields qx, qy, p acting in the directions x, y, z on the boundary plane z = 0. These are
ultimately related to components of the stress tensor and the displacement vector (u, v, w)
on the boundary by Hooke’s law:

qx = −σxz|z=0 = −µ

(
∂u
∂z

∣∣∣∣
z−0

+
∂w
∂x

∣∣∣∣
z=0

)
qy = −σyz

∣∣
z=0 = −µ

(
∂v
∂z

∣∣∣∣
z=0

+
∂w
∂y

∣∣∣∣
z=0

)
p = −σzz|z=0 = −(λ + 2µ)

∂w
∂z

∣∣∣∣
z=0
− λ

(
∂u
∂x

∣∣∣∣
z=0

+
∂v
∂y

∣∣∣∣
z=0

)
In most past analyses, the tangential contact tractions qx, qy are assumed to be zero.

Because these assumptions may be inaccurate, recent work has been conducted in order
to facilitate the calculation of the stress and displacements fields for this problem under
arbitrary assumptions of boundary traction variation and direction. The solutions for the
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following examples are obtained using the method of superposition of interpolated closed-
form solutions for bilinear traction distributions as outlined by Taylor and Chung [20,21].

Given the preceding discussion of the normal and tangential boundary traction fields
which develop at foundation contact interfaces, the purpose of this section is to show
that the distribution and direction of the boundary traction fields have a non-negligible
effect on the results of traditional elastic analysis. The application of empirical knowledge
regarding these fields as boundary conditions yields results that are better in line with
known experimental data. In order to model soil–structure interaction through a square
footing, surface traction components take finite nonzero values inside a square region of
length 2a centered at the origin, as in Figure 5. The surface traction fields are assumed zero
outside of this region. The coordinates x′, y′ are defined as the values of coordinates x, y
within this square region. Normal traction fields are selected which exhibit the pressure dip
behavior in Equation (1) are employed as the boundary condition p(x′, y′). Corresponding
radially acting tangential traction fields are later prescribed as supplementary boundary
conditions qx(x′, y′), qy(x′, y′), and the effect of parametrizing the peak stress ratio ς of
Equation (2) on the resulting displacement and stress fields is studied.

Figure 5. Geometry and coordinate system of an elastic half-space.

2.2.1. Behavior Due to Evolving Normal Load

The one-dimensional curve fits of Equation (1) of the five normal loading cases of a
rigid square surface footing depicted in Figure 1 (from [3]) are mapped continuously to
the square using a procedure outlined in [20,21]. The traction surfaces that result from
this mapping are shown in Figure 6. These loading surfaces clearly exhibit the evolving
pressure dip phenomenon. The peak traction location is analyzed with respect to total load
in Figure 7.
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(a) (b)

(c) (d)

(e)

Figure 6. Normal traction surface examples mapped from Equation (1) to a square area: (a) Case N1;
(b) Case N2; (c) Case N3; (d) Case N4; (e) Case N5.
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Taking these loading surfaces as normal boundary conditions, the effect of increasing
load magnitude on a square footing resting on dry sand can be analyzed by calculating the
resulting elastic displacements and stresses in the half-space. In order to isolate the influence
of the evolving normal traction, it is assumed initially that qx = qy = 0. Figure 8 shows
the results for normalized vertical (z-direction) surface displacement fields. The results are
normalized by the material elastic parameters and footing size:

w∗p(x, y) ≡ E
2a(1− ν2)

wp(x, y, 0), (4)

where wp is the component of total vertical displacement w due to the normal traction p
alone, E is Young’s modulus, and ν the Poisson ratio. Figure 8a shows the cross-sectional
values of Equation (4) across the center line of the loaded region. Figure 8b gives a better
picture of the evolution of stiffness throughout the contact region, which corresponds to
each loading traction distribution. The force-displacement behavior is nonlinear across the
spectrum of loading cases, and this behavior varies according to the location of the point
within the loaded region. This is to be expected, as the traction fields tend to concentrate
towards the center of the region with increasing applied force. Correspondingly, points
closer to the center experience larger displacement for the higher loading cases, while points
closer to the edge appear to stiffen as the bulk of the contact traction is distributed away
from these regions. Due to the linearity of the material and contact geometry of this model,
it is clear that this nonlinearity stems for the evolution of the empirical contact traction
fields alone. In the real granular material, however, the measured evolution in contact
traction almost certainly occurred in conjunction with irreversible deformations within the
granular structure. The contact nonlinearity appears slight for cases N1–N4, but is most
drastic for the final case N5. The traction is redistributed to such a degree between N4
and N5 that the edge displacements calculated for the final case are larger than the former;
while this phenomena is likely nonphysical, it is worth noting that case N5 is described by
Murzenko as the “limiting case,” and that the traction was “recorded after the soil began to
’overflow’ at the surface”. The load magnitude of this case is also very close to the ultimate
bearing capacity calculated by the classical theory of Terzaghi [30]. Thus the nonphysical
“reversal” in displacement toward the edge of the footing domain between loads N4 and
N5 can be attributed to this model’s consideration of only contact nonlinearity. In reality,
the drastic change in contact traction between these two loads would occur in conjunction
with material nonlinearity, likely including large and irreversible deformations in the form
of local particle rearrangement or flow. It is interesting at least that this phenomena suggests
itself in a purely elastic analysis dependent only on the empirically measure distributions
of surface traction; the nonphysical limiting behavior of the edge displacements may be
removed by extending this analysis by including a model for material nonlinearities. In the
present model, the peak displacement value (at the origin) calculated for case N5 is almost
40% larger than that extrapolated linearly from the initial stiffness at case N1, suggesting a
non-negligible influence in the distribution of surface contact traction.

Figure 9 depicts the distributions of vertical stress beneath the loaded region as it
is transferred to the elastic body and dissipates with depth. The trend clearly presents
itself that the wider and deeper the pressure dip in the surface traction, the further the
pressure dip propagates into the body with depth. Regardless of the surface conditions,
the distribution of σzz eventually become parabolic at some value of z. The extent to which
the pressure dip propagates beneath the contact can be compared to the measurements
of [1]. That the normal stress profile will eventually become parabolic in the elastic domain
is evident from comparison with the distributions beneath uniform (constant) traction
distributions [20]; Saint Venant’s principle guarantees that the difference in the effects of
statically equivalent loads becomes negligible at large distances from the load (see [41]).
However, Figure 9 shows that for cases N1–N5 (i.e., when there is zero surface shear
traction), the pressure dip vanishes almost immediately beneath the applied load.
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traction loading cases N1–N5. (a) Cross-sectional displacement across the center of the loaded region
(y′ = 0). (b) Average pressure vs. normalized displacement for five points within the loaded domain.
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Figure 9. Vertical compressive stress σzz in central cross sections with depth: (a) Case N1-T0; (b) Case
N2-T0; (c) Case N3-T0; (d) Case N4-T0; (e) Case N5-T0.
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2.2.2. Effects of Tangential Traction Fields

Assuming friction at the contact interface, the normal loading cases N1–N5 will each
produce a corresponding nonzero distribution of radially acting tangential traction qρ.
These are accounted for in this analysis by prescription of auxiliary boundary conditions
qx, qy in addition to the normal traction p already given. The peak locations of the tangential
traction fields are assumed to correspond to that of the normal as in Figure 4; the ratio of
the peak traction values ς = q(ξ∗)

p(ξ∗) is assumed the same for the center and diagonal cross-
sections, but is taken as free parameter which accounts for the unknown relative magnitude
of the tangential traction fields. The combined loading cases can therefore be specified
by designation N#-Tς. Equation (2) is mapped to a surface traction distribution qρ(x′, y′)
in the same manner as the normal traction fields. The five tangential traction surfaces
corresponding the the normal loading cases are shown in Figure 10, and the parameters for
each loading case are given in Table 2. To ease analysis in Cartesian coordinates, radial–
tangential surface traction fields are mapped to the components of traction acting in the x
and y directions:

qx(x′, y′) = cos
(
θ(x′, y′)

)
qρ(x′, y′), (5)

qy(x′, y′) = sin
(
θ(x′, y′)

)
qρ(x′, y′). (6)

These boundary conditions are used to analyze how the inclusion of tangential surface
traction, and the manipulation of the parameter ς, effect the distributions of the elastic fields.

Table 2. Input parameters for the radial shear traction function from Equation (2), corresponding to
the five normal traction loading cases (N1–N5) examined in this study. The peak traction ratio ς is
further parametrized in order to study the effect of the magnitude of frictional shearing forces, which
may develop at the contact interface.

Case C0/ς C45/ς D0 D45 ξ∗0 /a ξ∗45/
√

2a

1 166.056 41.413 0.2356 0.3041 0.8907 1.2848
2 850.628 474.082 0.2551 0.3774 0.8726 1.2180
3 8091.466 4031.808 0.5741 1.2330 0.6101 0.6443
4 12,180.771 4437.509 0.5954 0.6060 0.3983 0.4241
5 13,072.097 4512.017 0.4545 0.5076 0.3209 0.3305

The effect of the tangential surface traction fields on the normal stiffness behavior of
the foundation system is nearly negligible. Figure 11a shows the normalized contributions
of vertical displacement w across the center of the footing due to the radial tangential
traction field alone; that is,

w∗q(x, y) ≡ E
2a(1 + ν)(1− 2ν)

wq(x, y, 0). (7)

It is clear from comparison with Equation (4) that the total vertical displacement
w = wp + wq can only be plotted when definite values of the elastic parameters are chosen;
for the sake of example, values of E = 9806.65 kPa and ν = 0.4 are taken, being reasonable
assumptions for a dense sand [42]. Figure 11b–d show the combined total displacement for
varying shear ratio ς. As the results do not vary considerably, it is reasonable to conclude
that the vertical surface displacement is almost entirely dominated by the magnitude and
distribution of the normal traction component. In particular, the presence of nonzero
tangential traction does not remove the nonphysical overlap of the edge displacements
discussed in the last section and portrayed in Figure 8.
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(a) (b)

(c) (d)

(e)

Figure 10. Radial shear traction surface examples from Equation (2) mapped to a square area. Subplots
(a–e) correspond to normal loading cases N1–N5, respectively; the shear traction distributions are
normalized by the peak traction ratio ς.
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The tangential traction components have a much larger effect on the stress tensor than
on the normal stiffness behavior in the elastic foundation model. Figures 12–14 show the
distributions of vertical compressive stress σzz beneath the center of the loaded surface
region with increasing values of the shear ratio ς. This analysis shows that the increased
presence of frictional shear traction at the contact interface leads to an increase in magnitude
and depth of the pressure dip within the elastic medium beneath the load; the values of σzz
at z = 0 do not vary as they are fixed as boundary conditions. The experiment of Lazebnik
and Smirnov [1] show that the pressure dip does in fact extend to some depth within a
sand body loaded by a rigid foundation, while Figure 9 suggests that this is not the case
for an elastic medium with zero tangential surface traction. The presence of friction at
the contact interface, modeled via the tangential traction components, causes the spatial
propagation of the pressure dip in the component of the stress tensor normal to the contact
plane. The relationship between the peak shear ratio ς and the depth of propagation of the
pressure dip are studied numerically and presented in Figure 15. Given the mechanical
explanation of arching within an underlying wedge of soil, these results may be correlated
with the depth of the elastic wedge.
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Figure 11. Effects of tangential contact traction on total vertical displacement. (a) Normalized compo-
nent of vertical displacement due to the tangential traction components alone (from Equation (7)).
(b) Resulting displacements from combined normal and tangential loading cases when ς = 0.3;
(c) ς = 0.6; and (d) ς = 0.9. Values of E = 9806.65 kPa and ν = 0.4 were chosen for the combined
load displacement influences in (b–d).
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Figure 12. Vertical compressive stress σzz in central cross sections with depth: (a) Case N1-T0.3;
(b) Case N2-T0.3; (c) Case N3-T0.3; (d) Case N4-T0.3; (e) Case N5-T0.3.
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Figure 13. Vertical compressive stress σzz in central cross sections with depth: (a) Case N1-T0.6;
(b) Case N2-T0.6; (c) Case N3-T0.6; (d) Case N4-T0.6; (e) Case N5-T0.6.
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Figure 14. Vertical compressive stress σzz in central cross sections with depth: (a) Case N1-T0.9;
(b) Case N2-T0.9; (c) Case N3-T0.9; (d) Case N4-T0.9; (e) Case N5-T0.9.
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Figure 15. Propagation of the extent of the pressure dip depth (zdip) in the elastic medium beneath
the center of the loaded area for the five combined normal-tangential loading cases and increasing
shear ratio ς.

2.2.3. Effects of Remaining Stress Components

The focus thus far has been on the behavior of the vertical displacement w of the contact
surface and the pressure dip in the stress component σzz. For the sake of completeness,
a brief discussion of the remaining components of the stress tensor is provided. For the sake
of brevity, this discussion is limited to the case N4-T0.3. This corresponds to the last normal
loading case in which the experimental deformation remained elastic, and a physically
realistic shear stress ratio, judging by the results from the FPA model (see Figure 2 or the
discussion in [21]). The elastic constants are chosen again as E = 9806.65 kPa and ν = 0.4.

The combined effects of the stress tensor are perhaps best captured by two measures;
the hydrostatic pressure

P =
1
3
(σxx + σyy + σzz), (8)

and the von Mises stress

σv =
√

3J2, (9)

J2 =
1
6

(
(σxx − σyy)

2 + (σyy − σzz)
2 + (σzz − σxx)

2
)
+ σ2

xy + σ2
xz + σ2

yz.

For comparison, similar calculations and plots were made by Forsbach [43] for normal
and tangential contacts involving various axisymmetric rigid punches.

Results are compared between the “frictionless” (zero surface shear) case under load
N4 and the case N4-T0.3. Figure 16 show a pseudocolor and contour plot of the hydrostatic
pressures along the cross section y = 0 for these two cases. Figure 17 shows the same
results for the von Mises stress. The hydrostatic pressure distributions of the two cases are
qualitatively similar, as the maximum pressure occurs at the surface under the load and
at some distance from the center. However, the presence of the tangential surface traction
tends to pull the surface maximum pressure further from the center of the loaded and
region. Furthermore, these peaks are more localized and seem to move inwards towards
the center with depth. This matches both what was shown in Figure 12 for the vertical
stress and mimics the behavior of the arching phenomenon in a granular wedge.

Comparison between the von Mises stresses shows a much larger qualitative discrep-
ancy. The frictionless case has peak von Mises stress at some depth beneath the boundary.
The tangential traction boundary conditions tend to localize the maximum values of σv
at the boundary and towards the center of the load. The cause of this is two-fold; (i) the
nonzero shear stresses provided by the auxiliary boundary conditions add large surface
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contributions when squared as per the terms in J2 in Equation (9); (ii) there exists a small
shallow region near the origin in which the horizontal stresses σxx σyy are in tension, leading
the difference terms (σyy − σzz)2 and (σyy − σzz)2 in Equation (9) to be locally large. This
small tensile zone is an artifact of the outward-radially acting shear traction fields and the
approximation of a soil body as an elastic continuum. As granular materials cannot sustain
tension, this highlights a limitation of the elliptic Equation (3) to analyze soil–structure
interaction; however, the small tensile zones can be interpreted in terms of the increased
resistance due to the frictional contact and arching phenomena inside a real elastic soil body.
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Figure 16. Hydrostatic pressure P in the xz-plane beneath loading cases (a) N4-T0 (frictionless) and
(b) N4-T0.3.
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Figure 17. von Mises equivalent stress σv in the xz-plane beneath loading cases (a) N4-T0 (frictionless)
and (b) N4-T0.3.

3. Discussion

The distributions of contact stress fields on loaded foundations have been studied in
past geotechnical literature primarily out of concern for quantifying the reaction forces on
footings for design purposes. However, qualitatively similar phenomena in the stress fields
beneath static sandpiles have been studied in the granular physics literature in the context
of a fundamental aspect of the mechanical behavior of granular materials. The primary
goal of the present paper has been to introduce the latter interpretation to the problem
of a loaded surface footing in static equilibrium with an underlying sand, interpreted as
an upside-down sandpile with lateral support. An auxiliary goal has been to show that
the inclusion of these types of (normal and tangential) contact traction fields as boundary
conditions can improve the results of continuum models of shallow foundation systems.

The evolution of the pressure dip in the normal traction fields recorded by Murzenko [3]
and others corresponds intuitively with the reduction in stiffness with increasing load
which is typical in the force-displacement behavior of shallow foundations. It has been
demonstrated that the employment of a priori expressions of this traction evolution as



Geotechnics 2022, 2 111

boundary conditions is capable of (qualitatively) representing these phenomena in a static,
purely elastic domain. In the present examples, a sharp reduction of stiffness at the center
of the loaded region (and an increase at the edges) corresponds to the case where shear
failure was observed beneath the foundation in the source experiment.

The inclusion of nonzero shear traction components in the boundary conditions results
in a minimal increase in the foundation stiffness. However, the existence of tangential sur-
face traction fields tends to deepen the extent to which the pressure dip exists in the normal
(vertical) stress distribution with depth beneath the loaded boundary. Parametrization of
the magnitude of the radial shear boundary traction component therefore provides a means
to simulate the effects of body force and friction effects in a granular mass per calibration
of multi-scale contact phenomena in the foundation system.

It is noted that the calculation procedure introduced here is not intended to replace
more sophisticated (and expensive) numerical analyses. A sufficiently large DEM model
(with the right intergranular contact/friction models and sample preparation) may be
able to predict physically accurate contact pressure distributions of a footing–soil contact
on a given soil while capturing internal stresses and displacement all at once; however,
the authors are not aware of any case in the literature which shows the resulting normal
and tangential traction fields from such an approach. Furthermore, a fully 3D model
with accurate particle size and soil dimensions would be prohibitively computationally
expensive for nearly all researchers and engineers. It remains an open question whether
any continuum-based constitutive model could predict the correct displacements alongside
the traction fields with the pressure dip. The FPA model is a static stress theory with no
displacements or external loads.

The example provided here was for a homogeneous, dry, compacted sand, as reflected
in Murzenko’s experiment from which the boundary data were derived. Friction enhances
elasticity in granular solids [44], and for that reason the simplifying (elastic) assumption
was reasonable for this case, but may be less so in other scenarios. Other methods have been
suggested to the authors for estimation of the response of softer and more complex soils [45].
It is currently unclear how the present approach may handle heterogeneous soil mixtures
or instances where soil improvement methods have been used [46]. The effectiveness
of the method depends on the measurement of boundary traction in real soils, and the
extent to which these fields convey information regarding the mechanical response of the
soil–structure interaction. In general, further experiments are needed in which the surface
contact traction is measured at the interface between either real or model footings providing
different loading conditions to different soil bodies. Furthermore, the authors are not aware
of any existing experimental results which report both the measured contact traction fields
alongside the resulting displacement of the footing; this type of data is required in order to
fully validate the types of boundary value models discussed above.

4. Materials and Methods

The conclusions in the present paper are all based on data available in the cited
literature. The boundary conditions are prepared using the equations and data herein and
in [3,20,21]. The numerical results are obtained using the analytic element-based method
described in [20,21]; code to implement this method is found in the supplementary material
attached to these references.
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