Sliding Stability Assessment of Concrete Dams Using a 3D Discontinuum Hydromechanical Model Following a Discrete Crack Approach
Abstract
:1. Introduction
2. Governing Equations and Numerical Code
2.1. Mechanical Model
2.1.1. Joint Elements
2.1.2. Mesh Compatibility
2.1.3. Constitutive Models of the Joint Element
2.2. Hydraulic Model
2.3. Coupled Hydromechanical Model
3. Numerical Hydromechanical Model of an Arch-Gravity Dam
3.1. Model Description
3.2. Material Properties
3.3. Sequence of Analysis
3.4. Results Analysis
3.4.1. Uplift Pressures
3.4.2. Quantity of Water That Flows through the Dam/Foundation Interface
3.4.3. Stresses
4. Sliding Stability Analysis
4.1. Strength Reduction Method
4.2. Amplification of Hydraulic Pressure
- SM1 within the dam concrete and a cohesive brittle contact model at the dam/foundation interface (zero tensile strength and cohesion);
- SM1 within the dam concrete and at the dam/foundation interface;
- SM2 within the dam concrete and at the dam/foundation interface.
4.2.1. Nonoperational Drainage System
4.2.2. Operational Drainage System
4.2.3. Safety Factors
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bustamante, L.; Radisic, A. Structural design and RCC zoning in Ralco dam. In Proceedings of the 22nd International Congress on Large Dams, Barcelona, Spain, 18–23 June 2006; ICOLD: Paris, France, 2006; Volume 1, pp. 33–45. [Google Scholar]
- Lombardi, G. 3-D analysis of gravity dams. Int. J. Hydropower Dams 2007, 14, 98–102. [Google Scholar]
- Lemos, J.V. Discontinuum models for dam foundation failure analysis. Keynote Lecture. In Proceedings of the 12th International Congress on Rock Mechanics, Beijing, China, 16–21 October 2011. [Google Scholar]
- Farinha, M.L.B.; Lemos, J.V.; Maranha das Neves, E. Numerical modelling of borehole water-inflow tests in the foundation of the Alqueva arch dam. Can. Geotech. J. 2011, 48, 72–88. [Google Scholar] [CrossRef] [Green Version]
- Farinha, M.L.B.; Lemos, J.V.; Maranha das Neves, E. Analysis of foundation sliding of an arch dam considering the hydromechanical behaviour. Front. Struct. Civ. Eng. 2012, 6, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Barla, G.; Bonini, M.; Cammarata, G. Stress ans seepage analyses for a gravity dam on a jointed granitic rock mass. In Proceedings of the 1st International UDEC/3DEC Symposium: Numerical Modeling of Discre Materials in Geotechnical Engineering, Civil Engineering and Earth Sciences, Bochum, Germany, 29 September–1 October 2004; pp. 263–268. [Google Scholar]
- Gimenes, E.; Fernández, G. Hydromechanical analysis of flow behavior in concrete gravity dam foundations. Can. Geotech. J. 2006, 43, 244–259. [Google Scholar] [CrossRef]
- Farinha, M.L.B.; Azevedo, N.M.; Candeias, M. Small displacement coupled analysis of concrete gravity dam foundations: Static and dynamic conditions. Rock Mech. Rock Eng. 2017, 50, 439–464. [Google Scholar] [CrossRef]
- Bretas, E.; Lemos, J.V.; Lourenço, P. Hydromechanical analysis of mansonry gravity dams and their foundations. Rock Mech. Rock Eng. 2013, 46, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Noorishad, J.; Ayatollahi, M.S.; Witherspoon, P.A. A finite-element method for coupled stress and fluid flow analysis in fractured rock masses. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1982, 19, 185–193. [Google Scholar] [CrossRef]
- Gell, K. Influence of Seepage in the Underground to the Calculation of Stresses and Deformations of Arch Dams. Ph.D. Thesis, RWTH, Aachen, Germany, 1983. (In German). [Google Scholar]
- Wittke, W.; Gell, K. Wechselwirkung zwischen Staumauer und Untergrund. Wasserwirtschaft 1984, 74, 137–141. [Google Scholar]
- Gell, K.; Wittke, W. A new design concept for arch dams taking into account seepage forces. Rock Mech. Rock Eng. 1986, 19, 187–204. [Google Scholar] [CrossRef]
- Erban, P.; Gell, K. Consideration of the interaction between dam and bedrock in a coupled mechanic-hydraulic FE-program. Rock Mech. Rock Eng. 1988, 21, 99–117. [Google Scholar] [CrossRef]
- Gomes de Mendonça, T. Three-Dimensional Finite Element Model for the Analysis of the Hydromechanical Behaviour of Concrete Dam Foundations; Report 158/99; LNEC: Lisboa, Portugal, 1989; pp. 1–67. (In Portuguese) [Google Scholar]
- Sun, Y. A Three-Dimensional Model for Transient Fluid Flow through Deformable Fractured Porous Media. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 1994. [Google Scholar]
- Damjanac, B. A Three-Dimensional Numerical Model of Water Flow in a Fractured Rock Mass. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 1996. [Google Scholar]
- Rutqvist, J.; Stephansson, O. The role of hydromechanical coupling in fractured rock engineering. Hydrogeol. J. 2003, 11, 7–40. [Google Scholar] [CrossRef] [Green Version]
- Shukla, R.; Ranjith, P.G.; Choi, S.K.; Haque, A. A novel testing apparatus for hydromechanical investigation of rocks: Geo-sequestration of carbon dioxide. Rock Mech. Rock Eng. 2012, 45, 1073–1085. [Google Scholar] [CrossRef]
- Yan, C.; Zheng, H.; Sun, G.; Ge, X. Combined finite-discrete element method for simulation of hydraulic fracturing. Rock Mech. Rock Eng. 2016, 49, 1389–1410. [Google Scholar] [CrossRef]
- Yan, C.; Zheng, H. FDEM-flow3D: A 3D hydro-mechanical coupled model considering the pore seepage of rock matrix for simulating three-dimensional hydraulic fracturing. Comput. Geotech. 2017, 81, 212–228. [Google Scholar] [CrossRef]
- Yan, C.; Jiao, Y.-Y.; Zheng, H. A fully coupled three-dimensional hydro-mechanical finite discrete element approach with real porous seepage for simulating 3D hydraulic fracturing. Comput. Geotech. 2018, 96, 73–89. [Google Scholar] [CrossRef]
- Londe, P.; Sabarly, F. La distribution des perméabilités dans la foundation des barrages voûtes en fonction du champ de contrainte. In Proceedings of the 1st International Congress on Rock Mechanics, Lisbon, Portugal, 25 September–1 October 1966; Volume II, pp. 517–522. [Google Scholar]
- Louis, C. A Study of Groundwater Flow in Jointed Rock and Its Influence on the Stability of Rock Masses. Ph.D. Thesis, University of Karlsruhe, English Translation, Imperial College Rock Mechanics Research Report Nº10, London, UK, 1969. (In German). [Google Scholar]
- Louis, C.; Maini, Y.N. Determination of in situ hydraulic parameters in jointed rock. In Proceedings of the 2nd International Congress on Rock Mechanics, Belgrade, Serbia, 21–26 September 1970; Volume I, pp. 235–245. [Google Scholar]
- Cornet, F.H.; Li, L.; Hulin, J.P.; Ippolito, I.; Kurowski, P. The hydromechanical behavior of a fracture: An in situ experimental case study. Int. J. Rock Mech. Min. Sci. 2003, 40, 1257–1270. [Google Scholar] [CrossRef]
- Sadeghiyeh, S.M.; Hashemi, M.; Ajalloeian, R. Comparison of permeability and groutability of Ostur dam site rock mass for grout curtain design. Rock Mech. Rock Eng. 2013, 46, 341–357. [Google Scholar] [CrossRef]
- Rastegarnia, A.; Sohrabibidar, A.; Bagheri, V.; Razifard, M.; Zolfaghari, A. Assessment of relationship between grouted values and calculated values in the Bazoft dam site. Geotech. Geol. Eng. 2017, 35, 1299–1310. [Google Scholar] [CrossRef]
- European Club of ICOLD. Sliding Safety of Existing Gravity Dams—Final Report; Report of the European Working Group: Rome, Italy, 2004. [Google Scholar]
- Liu, X.; Zhu, W.; Zhang, P.; Li, L. Failure in rock with intersecting rough joints under uniaxial compression. Int. J. Rock Mech. Min. Sci. 2021, 146, 104832. [Google Scholar] [CrossRef]
- Dong, W.; Wu, Z.; Zhou, X. Fracture mechanisms of rock-concrete interface: Experimental and numerical. J. Eng. Mech. 2016, 142, 04016040. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Yang, D.; Zhang, B.; Wu, Z. Rock-concrete interfacial crack propagation under mixed mode I-II fracture. J. Eng. Mech. 2018, 144, 04018039. [Google Scholar] [CrossRef]
- Azevedo, N.M. A Rigid Particle Discrete Element Model for the Fracture Analysis of Plain and Reinforced Concrete. Ph.D. Thesis, Heriot-Watt University, Scotland, UK, 2003. [Google Scholar]
- Caballero, A.; Willam, K.J.; Carol, I. Consistent tangent formulation for 3D interface modeling of cracking/fracture in quasi-brittle materials. Comput. Methods Appl. Mech. Eng. 2008, 197, 2804–2822. [Google Scholar] [CrossRef]
- Azevedo, N.M.; Farinha, M.L.B. A hydromechanical model for the analysis of concrete gravity dam foundations. Geotecnia 2015, 133, 5–33. (In Portuguese) [Google Scholar] [CrossRef]
- Underwood, P. Dynamic relaxation. In Computational Methods for Transient Analysis; North Holland: New York, NY, USA, 1983. [Google Scholar]
- Lemos, J.V.; Cundall, P. Earthquake analysis of concrete gravity dams on jointed rock foundations. In Distinct Element Modelling in Geomechanics; Oxford and IBH Publishing: New Delhi, India, 1999; pp. 117–143. [Google Scholar]
- Goodman, R.; Taylor, R.; Brekke, T. A model for the mechanics of jointed rock. J. Soil Mech. Found. Div. (ASCE) 1968, 94, 637–659. [Google Scholar] [CrossRef]
- Hohberg, J. A Joint Element for the Nonlinear Dynamic Analysis of Arch Dams. Ph.D. Thesis, Institute of Structural Engineering, ETH, Zurich, Switzerland, 1992. [Google Scholar]
- Andjelkovic, V.; Pavlovic, N.; Lazarevic, Z.; Nedovic, V. Modelling of shear characteristics at the concrete-rock mass interface. Int. J. Rock Mech. Min. Sci. 2015, 76, 222–236. [Google Scholar] [CrossRef]
- Azevedo, N.M.; Candeias, M.; Gouveia, F. A Rigid Particle Model for Rock Fracture Following the Voronoi Tessellation of the Grain Structure: Formulation and Validation. Rock Mech. Rock Eng. 2015, 48, 535–557. [Google Scholar] [CrossRef]
- Barton, N.; Bandis, S.; Bakhtar, K. Strength, deformation and conductivity coupling of rock joints. Int. J. Rock Mech. Min. Sci. GeoMech. Abstr. 1985, 22, 121–140. [Google Scholar] [CrossRef]
- Snow, D.T. A Parallel Plate Model of Fractured Permeable Media. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1965. [Google Scholar]
- Itasca UDEC—Universal Distinct Element Code; Version 4.0; Itasca Consulting Group: Minneapolis, MN, USA, 2004.
- Bear, J. Dynamics of Fluids in Porous Media; Dover Publications, Inc.: New York, NY, USA, 1988. [Google Scholar]
- Farinha, M.L.B.; Azevedo, N.M.; Leitão, N.S.; Castilho, E.; Câmara, R. 3D coupled hydromechanical analysis of dam foundations. In Proceedings of the 9th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE 2018), Porto, Portugal, 25–27 June 2018. [Google Scholar]
- Freitas, G.; Farinha, M.L.B.; Azevedo, N.M.; Almeida, J.R.; Sá, M.; Leitão, N.S. Discontinuous hydromechanical modelling of concrete dam foundations. In Proceedings of the Fourth International Dam World Conference, Lisboa, Portugal, 21–25 September 2020; Volume 1. [Google Scholar]
- Azevedo, N.M.; Farinha, M.L.B.; Freitas, G.; Almeida, J.R. Safety evaluation of an arch-gravity dam based on a small displacement hydromechanical coupled model. In Lecture Notes in Civil Engineering. Challenges and Innovations in Geomechanics; IACMAG 2021; Barla, M., Di Donna, A., Sterpi, D., Eds.; Springer: Cham, Switzerland, 2021; Volume 126. [Google Scholar] [CrossRef]
- Azevedo, N.M.; Farinha, M.L.B.; Sá, M.; Almeida, J.R. Discontinuum models in three-dimensional hydromechanical analysis of the behavior of concrete dam foundations. Geotecnia 2021, 151, 5–32. (In Portuguese) [Google Scholar] [CrossRef]
Material | Young’s Modulus E (Gpa) | Poisson’s Ratio (-) | Density (kg/m3) |
---|---|---|---|
Concrete | 30.3 | 0.24 | 2400 |
Rock mass | 64.4 | 0.20 | 2700 |
Joint | (MPa) 1 | GI (N/mm) 1 | c (MPa) | GII (N/mm) | tan ϕ | ca (Mpa) | tan ϕa |
---|---|---|---|---|---|---|---|
Concrete/concrete | 2.9 | 87.0 | 5.08 | 435.0 | 1.0 | 76.2 | 0.04 |
Concrete/rock | 0.5 | 19.5 | 0.9 | 97.5 | 1.0 | 13.5 | 0.04 |
Model | Brittle | SM1 | SM2 | |
---|---|---|---|---|
NOD (UC) | H (m) | 37.0 | 37.0 | 41.0 |
F | 2.13 | 2.13 | 2.25 | |
NOD (C) | H (m) | 19.0 | 19.0 | 20.0 |
F | 1.58 | 1.58 | 1.61 | |
OD (UC) | H (m) | 40.0 | 40.0 | 45.0 |
F | 2.22 | 2.22 | 2.38 | |
OD (C) | H (m) | 29.0 | 28.0 | 28.0 |
F | 1.89 | 1.86 | 1.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farinha, M.L.B.; Azevedo, N.M.; Schclar Leitão, N.A.; Rocha de Almeida, J.; Oliveira, S. Sliding Stability Assessment of Concrete Dams Using a 3D Discontinuum Hydromechanical Model Following a Discrete Crack Approach. Geotechnics 2022, 2, 133-157. https://doi.org/10.3390/geotechnics2010006
Farinha MLB, Azevedo NM, Schclar Leitão NA, Rocha de Almeida J, Oliveira S. Sliding Stability Assessment of Concrete Dams Using a 3D Discontinuum Hydromechanical Model Following a Discrete Crack Approach. Geotechnics. 2022; 2(1):133-157. https://doi.org/10.3390/geotechnics2010006
Chicago/Turabian StyleFarinha, Maria Luísa Braga, Nuno Monteiro Azevedo, Noemi Alejandra Schclar Leitão, João Rocha de Almeida, and Sérgio Oliveira. 2022. "Sliding Stability Assessment of Concrete Dams Using a 3D Discontinuum Hydromechanical Model Following a Discrete Crack Approach" Geotechnics 2, no. 1: 133-157. https://doi.org/10.3390/geotechnics2010006
APA StyleFarinha, M. L. B., Azevedo, N. M., Schclar Leitão, N. A., Rocha de Almeida, J., & Oliveira, S. (2022). Sliding Stability Assessment of Concrete Dams Using a 3D Discontinuum Hydromechanical Model Following a Discrete Crack Approach. Geotechnics, 2(1), 133-157. https://doi.org/10.3390/geotechnics2010006