Heat Production from Single Fracture Hot Dry Rock, Applications for EGS Reservoir Design
Abstract
:1. Introduction
2. Conceptual Model
3. Mathematical Models
3.1. An Approximate Solution
3.2. Finite Element Solutions
3.3. Fracture Reservoir Design
4. Calculation Results
4.1. Validity of Model 1
4.2. Temperature Field
4.3. Temperature of Produced Water
4.4. Heat Production
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, D.W.; Duchane, D.V. Scientific progress on the Fenton Hill HDR project since 1983. Geothermics 1999, 28, 591–601. [Google Scholar] [CrossRef] [Green Version]
- Genter, A.; Evans, K.; Cuenot, N.; Fritsch, D.; Sanjuan, B. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS). Comptes Rendus Geosci. 2010, 342, 502–516. [Google Scholar] [CrossRef]
- Tester, J.W.; Anderson, B.J.; Batchelor, A.S.; Blackwell, D.D.; DiPippo, R.; Drake, E.M.; Garnish, J.; Livesay, B.; Moore, M.C.; Nichols, K.; et al. The Future of Geothermal Energy; Technical Report. DOE Contract DE-AC07-05ID14517; Massachusetts Institute of Technology: Cambridge, MA, USA, 2006. [Google Scholar]
- Dash, Z.V.; Murphy, H.D.; Aamodt, R.L.; Aguilar, R.G.; Brown, D.W.; Counce, D.A.; Fisher, H.N.; Grigsby, C.O.; Keppler, H.; Laughlin, A.W.; et al. Hot Dry Rock Geothermal Reservoir Testing- 1978 to 1980. J. Volcanol. Geotherm. Res. 1983, 15, 59–99. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-S.; Pruess, K. Numerical simulation of non-isothermal multiphase tracer transport in heterogeneous fractured porous media. Adv. Water Resour. 2000, 23, 699–723. [Google Scholar] [CrossRef]
- Pruess, K. Numerical simulation of multiphase tracer transport in fractured geothermal reservoirs. Geothermics 2002, 31, 475–499. [Google Scholar] [CrossRef]
- Pruess, K.; Narasimhan, T.N. A practical method for modeling fluid and heat flow in fractured porous media. Soc. Pet. Eng. J. 1985, 25, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Pruess, K. Numerical simulation of injectivity effects of mineral scaling and clay swelling in a fractured geothermal reservoir. Geotherm. Resour. Council Trans. 2004, 28, 269–276. [Google Scholar]
- Sanyal, S.K.; Butler, S.J. An analysis of power generation prospects from enhanced geothermal systems. In Proceedings of the World Geothermal Congress 2005, Antalya, Turkey, 24–29 April 2005. [Google Scholar]
- Pruess, K. Enhanced geothermal systems (EGS) using CO2 as working fluid—A novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 2006, 35, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Taron, J.; Elsworth, D. Thermal–hydrologic–mechanical–chemical processes in the evolution of engineered geothermal reservoirs. Int. J. Rock Mech. Min. Sci. 2009, 46, 855–864. [Google Scholar] [CrossRef]
- Taron, J.; Elsworth, D.; Min, K.-B. Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media. Int. J. Rock Mech. Min. Sci. 2009, 46, 842–854. [Google Scholar] [CrossRef]
- Rutqvist, J.; Wu, Y.-S.; Tsang, C.-F.; Bodvarsson, G. A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int. J. Rock Mech. Min. Sci. 2002, 39, 429–442. [Google Scholar] [CrossRef]
- Hanano, M. Contribution of fractures to formation and production of geothermal resources. Renew. Sustain. Energy Rev. 2004, 8, 223–236. [Google Scholar] [CrossRef]
- Jiang, F.; Luo, L.; Chen, J. A novel three-dimensional transient model for subsurface heat exchange in enhanced geothermal systems. Int. Commun. Heat Mass Transf. 2013, 41, 57–62. [Google Scholar] [CrossRef]
- Fox, D.B.; Sutter, D.; Beckers, K.F.; Lukawski, M.Z.; Koch, D.L.; Anderson, B.J.; Tester, J.W. Sustainable heat farming: Modeling extraction and recovery in discretely fractured geothermal reservoirs. Geothermics 2013, 46, 42–54. [Google Scholar] [CrossRef]
- Bai, M.; Roegiers, J.-C. Fluid flow and heat flow in deformable fractured porous media. Int. J. Eng. Sci. 1994, 32, 1615–1633. [Google Scholar] [CrossRef]
- Bataillé, A.; Genthon, P.; Rabinowicz, M.; Fritz, B. Modeling the coupling between free and forced convection in a vertical permeable slot: Implications for the heat production of an Enhanced Geothermal System. Geothermics 2006, 35, 654–682. [Google Scholar] [CrossRef] [Green Version]
- Ghassemi, A.; Kumar, G.S. Changes in fracture aperture and fluid pressure due to thermal stress and silica dissolution/precipitation induced by heat extraction from subsurface rocks. Geothermics 2007, 36, 115–140. [Google Scholar] [CrossRef]
- Sanyal, S.K.; Granados, E.E.; Butler, S.J.; Horne, R.N. An Alternative and Modular Approach to Enhanced Geothermal Systems. In Proceedings of the World Geothermal Congress 2005, Antalya, Turkey, 24–29 April 2005. [Google Scholar]
- Shaik, A.R.; Rahman, S.S.; Tran, N.H.; Tran, T. Numerical simulation of Fluid-Rock coupling heat transfer in naturally fractured geothermal system. Appl. Therm. Eng. 2011, 31, 1600–1606. [Google Scholar] [CrossRef]
- Holman, J. Heat Transfer, 7th ed.; McGraw-Hill, Inc.: New York, NY, USA, 1990. [Google Scholar]
- Gringarten, A.C.; Witherspoon, P.A.; Ohnishi, Y. Theory of heat extraction from fractured hot dry rock. J. Geophys. Res. 1975, 80, 1120–1124. [Google Scholar] [CrossRef]
- McFarland, R.D.; Murphy, H.D. Extracting Energy from Hydraulically Fractured Geothermal Reservoirs; ASME: State Line, NV, USA, 1976. [Google Scholar]
- Wunder, R.; Murphy, H. Thermal Drawdown and Recovery of Singly and Multiply Fractured Hot Dry Rock Reservoirs; Informal Report W-7405-ENG.36; Los Alamos Scientific Laboratory of the University of California: Los Alamos, NM, USA, 1978. [Google Scholar]
- Cheng, A.H.-D.; Ghassemi, A.; Detournay, E. Integral equation solution of heat extraction from a fracture in hot dry rock. Int. J. Numer. Anal. Methods Géoméch. 2001, 25, 1327–1338. [Google Scholar] [CrossRef]
- Tian, L. Experimental and Numerical Study on the Thermo-Hydrological Coupling of Fractured Rocks. Master’s Thesis, Beijing Jiao Tong University, Beijing, China, 2009. (In Chinese with English Abstract). [Google Scholar]
- Fan, Z.; Parashar, R.; Jin, Z.H. Impact of convective cooling on pore pressure and stresses around a borehole subjected to a constant flux: Implications for hydraulic tests in an EGS reservoir. Interpretation 2020, 8, 1–31. [Google Scholar] [CrossRef]
- Fan, Z.; Parashar, R. Analytical Solutions for a Wellbore Subjected to a Non-isothermal Fluid Flux: Implications for Optimizing Injection Rates, Fracture Reactivation, and EGS Hydraulic Stimulation. Rock Mech. Rock Eng. 2019, 52, 4715–4729. [Google Scholar] [CrossRef]
Symbol | Definition | Value |
---|---|---|
Original rock temperature (°C) | 200 | |
Lenth of fracture (m) | 1000 | |
Unit height of facture (m) | 1 | |
Rock density (kg/m3) | 2820 | |
Heat capacity of rock (J/kg °C) | 1170 | |
Heat conductivity of rock (W/m °K) | 2.8 | |
Temperature of injected water (°C) | 30 | |
Water density (kg/m3) | 900 | |
Heat capacity of fluid (J/kg °C) | 4200 | |
h | Heat transfer coefficient (W/m2 K) | 900 |
fracture width (mm) | 2 | |
Fluid flow rate (cm/s) | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Z.; Zhai, H. Heat Production from Single Fracture Hot Dry Rock, Applications for EGS Reservoir Design. Geotechnics 2022, 2, 191-208. https://doi.org/10.3390/geotechnics2010009
Su Z, Zhai H. Heat Production from Single Fracture Hot Dry Rock, Applications for EGS Reservoir Design. Geotechnics. 2022; 2(1):191-208. https://doi.org/10.3390/geotechnics2010009
Chicago/Turabian StyleSu, Zheng, and Haizhen Zhai. 2022. "Heat Production from Single Fracture Hot Dry Rock, Applications for EGS Reservoir Design" Geotechnics 2, no. 1: 191-208. https://doi.org/10.3390/geotechnics2010009
APA StyleSu, Z., & Zhai, H. (2022). Heat Production from Single Fracture Hot Dry Rock, Applications for EGS Reservoir Design. Geotechnics, 2(1), 191-208. https://doi.org/10.3390/geotechnics2010009