Location of Tension Cracks at Slope Crests in Stability Analysis of Slopes
Abstract
:1. Introduction
2. The Mixed Complementarity Problem from Constitutive Integration of Plasticity
2.1. Elasto-Perfectly Plasticity in the Rate Form
2.2. The Numerical Constitutive Integration
2.3. The Mixed Complementarity Problem
3. Displacement-Controlled Method Tailored for Plastic Deformation
4. The Secant Method for the Factor of Safety
5. Illustrative Examples
5.1. Homogeneous Soil Slope
5.2. A Layered Slope with Weak Interlayer
5.3. Multistage Non-Homogeneous Soil Slope
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Algorithm of GSPC
References
- Matsui, T.; San, K.-C. Finite Element Slope Stability Analysis by Shear Strength Reduction Technique. Soils Found. 1992, 32, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Ugai, K.; Leshchinsky, D. Three-Dimensional Limit Equilibrium and Finite Element Analyses: A Comparison of Results. Soils Found. 1995, 35, 1–7. [Google Scholar] [CrossRef]
- Griffiths, D.V.; Lane, P.A. Slope stability analysis by finite elements. Geotechnique 1999, 49, 387–403. [Google Scholar] [CrossRef]
- Dawson, E.M.; Roth, W.H.; Drescher, A. Slope stability analysis by strength reduction. Geotechnique 1999, 49, 835–840. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, G.; Zheng, H. Stability analysis of soil-rock-mixture slopes using the numerical manifold method. Eng. Anal. Bound. Elements 2019, 109, 153–160. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, C.; He, M.; Dong, M.; Zhang, G.; Zhang, F. Failure Mechanism and Long Short-Term Memory Neural Network Model for Landslide Risk Prediction. Remote Sens. 2022, 14, 166. [Google Scholar] [CrossRef]
- Jolfaei, S.; Lakirouhani, A. Sensitivity Analysis of Effective Parameters in Borehole Failure, Using Neural Network. Adv. Civ. Eng. 2022, 2022, 4958004. [Google Scholar] [CrossRef]
- Michalowski, R.L. Stability of intact slopes with tensile strength cut-off. Geotechnique 2017, 67, 720–727. [Google Scholar] [CrossRef]
- Duncan, J.M.; Wright, G.S.; Brandon, L.T. Soil Strength and Slope Stability; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Spencer, E. Effect of Tension on Stability of Embankments. J. Soil Mech. Found. Div. 1968, 94, 1159–1173. [Google Scholar] [CrossRef]
- Ma, J.; Shi, C. Searching Method of Critical Slip Surface of Slope Based on Improved Wolf Swarm Algorithm. Math. Probl. Eng. 2022, 2022, 9600684. [Google Scholar] [CrossRef]
- Haghshenas, S.S.; Haghshenas, S.S.; Geem, Z.W.; Kim, T.H.; Mikaeil, R.; Pugliese, L.; Troncone, A. Application of Harmony Search Algorithm to Slope Stability Analysis. Land 2021, 10, 1250. [Google Scholar] [CrossRef]
- Michalowski, R.L. Stability assessment of slopes with cracks using limit analysis. Can. Geotech. J. 2013, 50, 1011–1021. [Google Scholar] [CrossRef]
- Utili, S. Investigation by limit analysis on the stability of slopes with cracks. Geotechnique 2013, 63, 140–154. [Google Scholar] [CrossRef]
- Park, D.; Michalowski, R.L. Three-dimensional stability analysis of slopes in hard soil/soft rock with tensile strength cut-off. Eng. Geol. 2017, 229, 73–84. [Google Scholar] [CrossRef]
- Michalowski, R.L. Failure potential of infinite slopes in bonded soils with tensile strength cut-off. Can. Geotech. J. 2018, 55, 477–485. [Google Scholar] [CrossRef]
- Clausen, J.; Damkilde, L.; Andersen, L. Efficient return algorithms for associated plasticity with multiple yield planes. Int. J. Numer. Methods Eng. 2006, 66, 1036–1059. [Google Scholar] [CrossRef]
- Sloan, S.; Abbo, A.J.; Sheng, D. Refined explicit integration of elastoplastic models with automatic error control. Eng. Comput. 2001, 18, 121–194. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Pande, G.N. Some useful forms of isotropic yield surfaces for soil and rock mechanics. In Finite Elements in Geomechanics; Gudehus, G., Ed.; Wiley: London, UK, 1977; pp. 179–190. [Google Scholar]
- Menetrey, P.; Willam, K.J. Triaxial failure criterion for concrete and its generalization. Struct. J. 1995, 92, 311–318. [Google Scholar]
- Abbo, A.J.; Lyamin, A.V.; Sloan, S.W.; Hambleton, J.P. A C2 continuous approximation to the Mohr–Coulomb yield surface. Int. J. Solids Struct. 2011, 48, 3001–3010. [Google Scholar] [CrossRef] [Green Version]
- Wilkins, A.; Spencer, B.W.; Jain, A.; Gencturk, B. A method for smoothing multiple yield functions. Int. J. Numer. Methods Eng. 2020, 121, 434–449. [Google Scholar] [CrossRef]
- Zienkiewicx, O.C.; Taylor, R.L. The Finite Element Method: Solid Mechanics; McGraw-Hill Book Company: London, UK, 1991; Volume 2. [Google Scholar] [CrossRef] [Green Version]
- Simo, J.C.; Hughes, T.J. Computational Inelasticity; Springer: New York, NY, USA, 1998; pp. 198–215. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, T.; Wang, Q. The mixed complementarity problem arising from non-associative plasticity with non-smooth yield surfaces. Comput. Methods Appl. Mech. Eng. 2020, 361, 112756. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, D.F.; Li, C.G. On the Assessment of Failure in Slope Stability Analysis by the Finite Element Method. Rock Mech. Rock Eng. 2008, 41, 629–639. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, D.F.; Lee, C.F.; Tham, L.G. Displacement-controlled method and its applications to material non-linearity. Int. J. Numer. Anal. Methods Géoméch. 2005, 29, 209–226. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, D.F.; Li, C.G. Slope stability analysis based on elasto-plastic finite element method. Int. J. Numer. Methods Eng. 2005, 64, 1871–1888. [Google Scholar] [CrossRef]
- Cheng, Y.M.; Länsivaara, T.; Wei, W.B. Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Comput. Geotech. 2007, 34, 137–150. [Google Scholar] [CrossRef]
- Greco, V.R. Efficient Monte Carlo Technique for Locating Critical Slip Surface. J. Geotech. Eng. 1996, 122, 517–525. [Google Scholar] [CrossRef]
- Arai, K.; Tagyo, K. Determination of Noncircular Slip Surface Giving the Minimum Factor of Safety in Slope Stability Analysis. Soils Found. 1985, 25, 43–51. [Google Scholar] [CrossRef] [Green Version]
Angle | Difference | ||
---|---|---|---|
45° | 1.512 | 1.537 | 1.63% |
50° | 1.386 | 1.412 | 1.84% |
60° | 1.18 | 1.218 | 3.12% |
70° | 1.012 | 1.06 | 4.53% |
80° | 0.851 | 0.928 | 8.3% |
90° | 0.652 | 0.814 | 19.9% |
Soil | |||||
---|---|---|---|---|---|
S1 | 18.82 | 29.4 | 12 | 10 | 0.35 |
S2 | 18.82 | 9.8 | 5 | 10 | 0.35 |
S3 | 18.82 | 29.4 | 40 | 10 | 0.35 |
Soil | |||||
---|---|---|---|---|---|
S1 | 18.8 | 19.8 | 15.7 | 10 | 0.4 |
S2 | 19 | 22.7 | 16.9 | 12 | 0.4 |
S3 | 19.5 | 39.3 | 24.2 | 14 | 0.35 |
S4 | 19 | 27.6 | 21.3 | 12 | 0.35 |
S5 | 19 | 35.7 | 27.4 | 15 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Lin, S.; Zheng, H.; Zhang, D. Location of Tension Cracks at Slope Crests in Stability Analysis of Slopes. Geotechnics 2022, 2, 488-505. https://doi.org/10.3390/geotechnics2030024
Zhang T, Lin S, Zheng H, Zhang D. Location of Tension Cracks at Slope Crests in Stability Analysis of Slopes. Geotechnics. 2022; 2(3):488-505. https://doi.org/10.3390/geotechnics2030024
Chicago/Turabian StyleZhang, Tan, Songtao Lin, Hong Zheng, and Dianjie Zhang. 2022. "Location of Tension Cracks at Slope Crests in Stability Analysis of Slopes" Geotechnics 2, no. 3: 488-505. https://doi.org/10.3390/geotechnics2030024
APA StyleZhang, T., Lin, S., Zheng, H., & Zhang, D. (2022). Location of Tension Cracks at Slope Crests in Stability Analysis of Slopes. Geotechnics, 2(3), 488-505. https://doi.org/10.3390/geotechnics2030024