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Abstract: Over the conventional limit equilibrium method and limit analysis method, the finite
element method is advantageous, especially for slopes involving complex failure mechanisms where
the critical slip surfaces cannot be represented by log spirals and other similarities. In the presence of
tension cracks at slope crests, however, the finite element method encounters difficulties in conver-
gence while handling Mohr–Coulomb’s yielding surfaces with tensile strength cut-off. Meanwhile,
the commonly used load-controlled method for the system of nonlinear equilibrium equations is hard
to bring the slope into the limit equilibrium state. The two drawbacks drag down the finite element
method in more extensive applications. By reducing the constitutive integration of plasticity with
non-smooth yielding surfaces to the mixed complementarity problem, the convergence in numerical
constitutive integration is established for arbitrarily large incremental strains. In order to bring
the slope to the limit equilibrium state, a new displacement-controlled algorithm is designed for
the system of nonlinear equilibrium equations, which is far more efficient than the load-controlled
method. A procedure is proposed to locate tension cracks. Corresponding to the Mohr–Coulomb
failure criterion with and without tensile strength cut-off, the failure mechanisms differ significantly,
while the difference in the factor of safety might be ignorable.

Keywords: slope stability analysis; constitutive integration of plasticity; Mohr–Coulomb yielding
surfaces; tension cracks; displacement-controlled method

1. Introduction

Over the conventional limit equilibrium method and the limit analysis, the finite
element method (FEM) is advantageous, especially for complex slopes where the critical
slip surfaces cannot be approximated by circles, log spirals, and other similarities. The
failure mechanism is automatically identified as long as the slope is brought into the limit
equilibrium state from its natural state. Therefore, FEM and other similarities together
with the strength reduction technique have been advocated in the past decades by many
researchers, such as Matsui and San [1], Ugai and Leshchinsky [2], Griffiths and Lane [3],
Dawson et al. [4] and Yang et al. [5]. Based on field surveys and monitoring data, Xuan
Zhang et al. analyzed the deformation characteristics and disaster prediction model of a
granite rockslide with a discrete element method [6]. Somaie Jolfaei and Ali Lakirouhani
analyzed the sensitivity of effective parameters in borehole failure in rocky environments
with neural networks [7].

Tension cracks are ubiquitous at the slope crests. Ignoring the presence of these cracks
in the analysis of slope stability may reportedly overestimate the stability factor up to
70% [8]. Duncan and Wright [9] have suggested that if tensile stresses are encountered in
the process of slope analysis, either a tension crack should be set or the failure envelope
should be modified to eliminate tension.
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In the conventional limit equilibrium method, the location and depth of the tension
crack are determined by a test-and-error process, see Spencer [10], where many artificial
assumptions are introduced, however. With the rapid development of computer software
and hardware, various effective optimization methods have been adopted to locate the
critical failure surface, such as the improved wolf swarm algorithm [11] and harmony
search algorithm [12].

In the upper bound method of the limit analysis, the tension crack is a portion of
the critical slip surface, which is usually represented by a log-spiral and determined
by minimizing the critical slope height. Tensile failure and shear failure are unified in
one yielding surface, and the most notable is the Mohr–Coulomb yielding surface with
the tensile strength cut-off. The upper bound method is limited by the simple failure
mechanism. Since Michalowski [13], the upper bound method appears to be a research
hot point in the stability analysis of slopes with tension cracks. Utili [14] proposed a set of
solutions for the stability of homogeneous slopes with open cracks by the kinematic method
of limit analysis. In addition to a pre-existing crack, a crack formation is also considered as
part of the failure mechanism in Michalowski [8] with reduced or no tensile strength. Such
a method is extended to three-dimensional slopes [15] and infinite slopes against shallow
slides [16]. However, the transformation of the yielding surface from the principal stress
space to the Mohr stress plane applied in the kinematic method is somewhat intricate.

Using FEM, in principle, the tension crack should be captured as long as the tension
portion is cut off the Mohr–Coulomb yielding surface and the slope is brought into the
limit equilibrium state. However, this is not the case. Thus far, the slope stability analysis
based on the finite element strength reduction has been limited to the yielding surfaces
without tensile strength cut-off. The reason lies in the singularity created by tension cut-off
even if the yielding surface itself is smooth, such as the Drucker–Prager yielding surface.

As is well known, the Mohr–Coulomb yielding surface in the principal stress space is
composed of six facets with six edges and one apex, as shown in Figure 1a. At a point on the
edge of the yielding surface, the normal is not unique. Huge efforts have been paid to the
constitutive integration of plasticity with non-smooth yielding surfaces for either implicit
algorithms such as Clausen et al. [17] or explicit ones such as Sloan et al. [18]. Tensile
strength cut-off creates additional edges and vertices near the head of the yielding surface,
as shown in Figure 1b, which further exacerbates the burden of constitutive integration.
Since Zienkiewicz and Pande [19], followed by Menetrey and Willam [20], as a result,
attempts to smooth the Mohr–Coulomb yielding surfaces have never ceased, see Abbo
et al. [21] and Andy et al. [22]. Nevertheless, smoothing compromises precision in order to
conserve the convexity of the yielding surface. Further, smoothing leads to the sacrifice of
computational efficiency because the incremental strain has to be small enough to secure
the convergence of constitutive integration when the stress point is close to the portion of
the big curvature of the smoothed yielding surface.

This study directly deals with the Mohr–Coulomb yielding surface and its cut-off ver-
sion instead of their smoothed versions, and thus no error is introduced. Meanwhile,
a displacement-controlled method (DCM) is designed, which, compared to the load-
controlled method (LCM) familiar to all of us, is easy to bring the slope into the limit
equilibrium state. DCM has a very similar program structure to LCM. One of the outcomes
from DCM is the load multiplier representing the load level the slope can undertake. Then
a secant method is designed for the factor of safety according to the relation between the
load multiplier and the strength reduction factor. Finally, a procedure is proposed for the
location and depth of tension cracks.
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Figure 1. Intact M–C surface and the cut-off M–C surface. (a) intact M–C surface in the principal
stress space; (b) the cut-off M–C surface in the principal stress space.

Typical slopes are analyzed using the Mohr–Coulomb yielding surfaces without and
with tensile strength cut-off, represented by intact M–C surfaces and cut-off M–C surfaces
subsequently, respectively. Comparisons are made of the results from the two kinds of
yielding surfaces, suggesting that significant differences exist in the failure mechanism
while the factor of safety might differ little. Using the intact M–C surface will result in a
notorious abnormal phenomenon, i.e., the tensile failure zone extends to the model bound-
ary, severely overestimated. Using the cut-off M–C surface, the abnormal is eliminated. A
procedure is proposed for the location and depth of tension cracks.

2. The Mixed Complementarity Problem from Constitutive Integration of Plasticity

In this section, we recapitulate the implicit constitutive integration of non-associative
plasticity with a non-smooth yielding surface. Then, the mathematical model, represented
by a mixed complementarity problem, is established for the numerical constitutive integra-
tion of plasticity. In order to avoid unnecessary distraction, the material is assumed to be
elastic and perfectly plastic, which is also the most applied material model in geotechnical
engineering. Extension to hardening materials is straight forward. Here, we only touch
upon the basic formulation of finite-dimensional variational inequalities, which can be
referred to in the monograph [23] for details. The mixed complementarity problem (MiCP)
to be built in this study is a special case of finite-dimensional variational inequalities.

2.1. Elasto-Perfectly Plasticity in the Rate Form

As is well known, the 6-dimensional stress rate vector
.
σ is related to the 6- dimensional

strain rate vector
.
ε by the constitutive relationship

.
σ = D

( .
ε− .

εp
)

(1)

Here, D is the 6× 6 elasticity matrix, which is symmetric and positive; see Zienkiewicz
and Taylor [23]. The strain rate vector

.
ε is provided and has the six components of

.
εx,

.
εy,

.
εz,

.
γyz,

.
γzx, and

.
γxy. The 6-dimensional stress rate vector

.
σ is unknown and has the same

subscripts as
.
ε. The 6-dimensional plastic strain rate vector

.
εp is unknown, having the

same subscripts as
.
ε but following the flow rule [20]

.
εp =

m

∑
i=1

.
λi∇gi (2)
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Here, the m scalars,
.
λ1,· · · ,

.
λm, are nonnegative plastic multiplier rates.

Except
.
ε and D, all the quantities in Equations (1) and (2) and the subsequent discus-

sions are dependent nonlinearly on the current stress point σ and plastic multiplier vector
λ, written as

.
σ(σ, λ),

.
εp(σ, λ),

.
λi(σ, λ) and gi(σ, λ). In order to shorten the formulae, the

arguments (σ, λ) attached to
.
σ, etc., are totally omitted.

Equation (2) deserves a bit longer explanation.
m in Equation (2) is the number of boundary patches encompassing the elastic domain

Eσ defined by
Eσ ,

{
τ ∈ R6|y(τ) ≤ 0

}
(3)

Here, y : R6 → Rm is a vector-valued function with m component functions, y1, · · · ,
ym, and yi(τ) = 0 represents the ith boundary patch of Eσ that is smooth and convex.
y(τ) ≤ 0 in Equation (3) means that all the m component functions of y are not positive,
namely, yi(τ) ≤ 0, for i = 1, · · · , m. In this study, what we will concern is elastic and
perfectly plastic deformation. Therefore, Eσ keeps invariant in the stress space.

Take the intact M–C surface as an instance. In the principal stress space of τ1-τ2-τ3, Eσ

is a domain illustrated in Figure 1a and enclosed by the six planar patches as follows,

y1(τ1, τ2, τ3) = (τ1 − τ3) + (τ1 + τ3) sin φ− 2c cos φ
y2(τ1, τ2, τ3) = (τ2 − τ3) + (τ2 + τ3) sin φ− 2c cos φ
y3(τ1, τ2, τ3) = (τ2 − τ1) + (τ2 + τ1) sin φ− 2c cos φ
y4(τ1, τ2, τ3) = (τ3 − τ1) + (τ3 + τ1) sin φ− 2c cos φ
y5(τ1, τ2, τ3) = (τ3 − τ2) + (τ3 + τ2) sin φ− 2c cos φ
y6(τ1, τ2, τ3) = (τ1 − τ2) + (τ1 + τ2) sin φ− 2c cos φ

(4)

Namely, m = 6; Eσ has six edges and one apex. At any point on the edges, the normal
is not unique. φ= frictional angle; c= cohesion.

If the tension portion is cut off the intact M–C surface, we have the cut-off M–C surface
as shown in Figure 1b, and thus Eσ has another three planar patches as its boundary

y7(τ1, τ2, τ3) = τ1
y8(τ1, τ2, τ3) = τ2
y9(τ1, τ2, τ3) = τ3

(5)

In this case, m = 9, and more edges and vertices are on the boundary of Eσ.
Corresponding to the i-th patch of the yielding surface, i.e., yi(τ) = 0, is the potential

function gi(τ) in Equation (2). Replacement of φ in yi(τ) in Equation (4) by the dilatancy
angle ψ results in gi(τ). Usually, 0≤ ψ ≤ φ. Taking ψ = φ, namely, gi(τ) = yi(τ),
Equation (2) represents the associative plasticity; otherwise, non-associative plasticity. In
any case, Equation (2) tells us that

.
εp is a linear nonnegative combination of all the m

gradient vectors of the potential functions, ∇gi(σ), i = 1, · · · , m.
The stress point σ evolves following Equation (1) and, at the same time, cannot be

outside Eσ; in other words, y(σ) ≤ 0.
.
λi in Equation (2) and −yi constitute the complementarity relationship as follows

.
λi ≥ 0,−yi ≥ 0,

.
λi(−yi) = 0 (6)

for i = 1, · · · , m; or the equivalent vector form

0 ≤
.
λ⊥(−y) ≥ 0 (7)

with
.
λ the m-dimensional vector having m components of

.
λi. Here, notation “⊥” represents

“perpendicular to” and “a⊥b” is equivalent to aTb = 0, with a and b being two vectors of
the same dimension.
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Substituting Equation (2) into Equation (1), we have

.
σ =

.
σe −

.
σp (8)

Here,
.
σe , D

.
ε (9)

.
σp , DJ

.
λ (10)

J = 6 × m Jacobean matrix of vector-valued function g: R6 → Rm , defined as

J(σ) , [∇g1(σ), · · · ,∇gm(σ)] (11)

To this point, Equations (7) and (8) prescribe the constitutive relationship of elasto-
perfect plasticity in the rate form. The number of Equations (7) and (8) is six and m,
respectively, equal exactly to the number of the unknowns, namely, six components of σ
and m components of λ. Hence, once the initial values of σ and λ are provided, in principle,
their values at any time or corresponding to any incremental strain ∆ε can be determined.

Solving Equations (7) and (8) for
.
σ and

.
λ is easy for smooth yielding surfaces and has

been expounded upon in the literature; for non-smooth yielding surfaces, however, that
becomes quite intricate in the classic treatments, such as the return-mapping algorithm,
while the incremental strain has to be small enough so as to reach convergence. Fortunately,
the treatment to be proposed turns out to be very easy, no matter how many the boundary
patches of Eσ are.

2.2. The Numerical Constitutive Integration

Supposing that the current load step starts at the stress point σ0 and experiences the
incremental strain vector ∆ε, we find the stress point σ at the end of the load step. This
constitutes constitutive integration.

By the Euler backward integration to Equation (8), we have the nonlinear equations in
(σ, λ),

σ = σe − σp (12)

called the stress decomposition subsequently, where

σe , σ0 + D∆ε (13)

is referred to as the elastic trial stress in the literature [23]; and

σp , DJλ (14)

Integration of Equation (7) leads to the nonlinear complementarity relationship

0 ≤ λ⊥(−y) ≥ 0 (15)

Compared with the Euler backward approximation (12), the complementarity rela-
tionship (15) is accurate with no error introduced.

Among the most commonly used to solve for (σ, λ) from Equations (12) and (15) is
the return-mapping algorithm. If σe is outside the yielding surface, the algorithm needs to
find the intersection σI of the elastic path σ0-σe and the yielding surface, as illustrated in
Figure 2, which needs some computations.
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Figure 2. The intersection of the elastic path and the yielding surface.

Suppose the fourth and fifth patches of the Mohr–Coulomb yielding surface are active
at the current iteration. By stating the i-th patch is active at the current iteration, we mean
λi > 0. Then, Equations (12) and (15) reduce to the system of nonlinear equations in σ, λ4,
and λ5, 

σ = σe −D[λ4∇g4(σ) + λ5∇g5(σ)]
f4(σ) = 0
f5(σ) = 0

(16)

If both λ4 and λ5 are positive at the end of the iteration, the guess of the active patches
is right; otherwise, the active patches have to be adjusted at the next iteration, see Simo and
Hughes [24]. As a result, the return-mapping algorithm is actually a test and error process.

If the above system is solved using the Newton method, the Hesse matrices of functions
g4 and g5 have to be calculated, denoted by

G4(σ) =

(
∂2g4

∂τi∂τj

)
τ=σ

and G5(σ) =

(
∂2g5

∂τi∂τj

)
τ=σ

(17)

where the subscript i or j being one index of the six components of τx, τy, τz, τyz, τzx, and

τxy; for example, ∂2g4
∂τ2∂τ4

= ∂2g4
∂τy∂τyz

.
Obviously, the more the non-smooth points on the yielding surface are, the more

complicated the return-mapping algorithm becomes, and the more adjustments to the
active patches are needed. The tensile strength cut-off creates more non-smooth points on
the yielding surface and further burdens the return-mapping algorithm.

Fortunately, the test-and-error adjustments in the return-mapping algorithm are totally
avoided in the procedure to be proposed.

2.3. The Mixed Complementarity Problem

Equations (12) and (15) are equivalent to the mixed complementarity problem, stated
as follows. Provided the incremental strain vector ∆ε, find (σ, λ)∈ R6 × Rm

+ such that{
0 ≤ λ⊥fI(σ, λ) ≥ 0
fE(σ, λ) = 0, σ free

(18)

Here, Rm
+ is the set of all the m-dimensional vectors with all the m components being

nonnegative; fI : R6 × Rm
+ → Rm

+ is called the n-yielding function, defined as

fI(σ, λ) , −y(σ) (19)
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and fE : R6 × Rm
+ → R6 is referred to as the constitutive function, reading

fE(σ, λ) , σ + σp − σe (20)

The above-mixed complementarity problem is abbreviated as MiCP, algorithm for
MiCP can be seen in Appendix A.

Suppose the set of solutions to MiCP (fI , fE) is not empty [25]; based on the Gauss–
Seidel iteration, we designed a projection–contraction algorithm, abbreviated by GSPC.
GSPC is unnecessary to (i) test if the elastic trial stress point σe, defined in Equation (13), is
outside the elastic domain Eσ; (ii) find the intersection between the elastic path σ0-σe and
the yielding surface; (iii) guess which yielding patches are active; and (iv) form the Hesse
matrix of any potential function gi.

3. Displacement-Controlled Method Tailored for Plastic Deformation

It is well known that based on a provided nodal incremental load vector, the conven-
tional finite element load-controlled analysis solves a system of nonlinear equations to
obtain the nodal incremental displacement vector. Of many existing algorithms for systems
of nonlinear equations, the full Newton–Raphson method and the modified Newton–
Raphson method are the two most widely used. However, when the load level is near the
collapsed load, namely, it is about to reach the limit equilibrium state, the convergence rate
of the Newton–Raphson method is then rather poor. A slope in the limit equilibrium state
is actually a mechanism at which the tangential stiffness matrix of the finite elements is
ranked one deficient [26], causing an invalid load-controlled method (LCM) for solving the
system of equilibrium equations. In order to traverse stably limited points of the slope on
an equilibrium path, in this section, we will design the displacement-controlled method
(no generally accepted names; here we refer to this method as DCM in reference to LCM),
which is tailored for elastic-plastic deformation and easy to bring the slope into the limit
equilibrium state.

Once the problem domain Ω is discretized with finite elements, we have the system of
nonlinear equilibrium equations in the discrete form

∑
e

∫
Ωe

BTσdΩ = ρq + q0 (21)

Here, Ωe is the domain of a typical element in the mesh; σ∈ R6 is the total stress vector
at the end of this load step; B is the 6 × ne matrix that is related to the incremental strain
vector ∆ε∈ R6 by the relationship

∆ε = Bpe (22)

where pe ∈ Rne is the incremental displacement degrees of freedom vector of element Ωe,
with ne the number of displacement degrees of freedom of element Ωe.

In Equation (21), q0 is the load vector at the beginning of this load step; q the reference
load vector; ρq the incremental load vector at this step; and ρ the load multiplier, in the
conventional LCM, ρ is taken as a series of known values, now, let ρ be unknown and
specify some component of pe as a determined value.

Matrices of B, q0 and q can be referred to in the literature on FEM, such as Zienkiewicz
and Taylor [24].

Substituting the stress decomposition (12) together with Equations (13) and (22) into
Equation (21) leads to the system of nonlinear equations

Kp = ρq + r (23)

Here, p is the incremental displacement degrees of freedom vector of the mesh; K is
the elastic stiffness matrix

K = ∑
e

∫
Ωe

BTDBdΩ (24)
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which keeps variant during the iteration in solving Equation (23); and vector r

r =
¯
q0 + ∑

e

∫
Ωe

BTσpdΩ (25)

is nonlinearly dependent on p, with

¯
q0 = q0 −∑

e

∫
Ωe

BTσ0dΩ (26)

also invariant during iteration.
Here is the iteration scheme for the solution of system (23), where vector r is deemed

a known vector and dependent on the previous iterate of p, whose initial value will be
provided subsequently. As a result, the iteration version of system (23) reads

Kpk+1 = ρq + rk (27)

where the superscript k is the iteration number. In this way, whether plasticity is associative
or non-associative, we always work with the symmetric and positive definite matrix K
that keeps invariant within the load step, avoiding a non-symmetric stiffness matrix in the
classical Newton–Raphson method and enjoying much higher efficiency.

Multiplying by K−1 the two sides of system (27), we have

pk+1 = ρpq + pk
r (28)

where pq is the elastic displacement vector due to the reference load vector q, namely, the
solution to system

Kpq = q (29)

pq keeps invariant with iteration; and pk
r in Equation (28) is the solution to system

Kpk
r = rk (30)

and changes with iteration because vector rk depends on σk
p.

The introduction of ρ creates one more unknown than the equilibrium equations in
system (21). If ρ is kept invariant, say ρ = 1, the solution scheme is the load-controlled
method (LCM), but fitted only to the situation prior to collapse. By letting ρ be unknown
but the ith component pk+1

i of pk+1 be provided, namely,

pk+1
i = pi (31)

the solution scheme is the displacement-controlled method (DCM) and is fitted to the whole
deformation history.

Substituting Equation (31) into the ith equation of Equation (28) and solving for
ρ yields

ρ =
pi − pk

ri
pqi

(32)

with pqi and pk
ri the ith component of vectors pq and pk

r . Substituting ρ back to Equation

(28), we have the vector pk+1. Here, the provided component pi of pk+1 in Equations (31)
and (32) is specified as

pi = pqi (33)

where
∣∣pqi

∣∣ is the maximum of all the absolute values of components of pq, see Equation (29).
At each step, the equilibrium iteration is convergent if

‖pk+1 − pk‖∞ < ep‖pq‖∞
(34)
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with ep = tolerance of the displacement relative error.
DCM starts at k = 0, and the initial iterate p0 of p is specified as the elastic displacement.

p0 = pq (35)

where pq is defined in Equation (29).
DCM is proved far more efficient in the nonlinear regime [27]. Since always convergent,

DCM will be applied to bring the slope to the limit equilibrium state.

4. The Secant Method for the Factor of Safety

The strength reduction technique for the factor of safety of a slope, Fs, is simply to con-
duct the elastic-perfectly plastic analysis of the slope with the reduced strength parameters

cF =
c
F

and tan φF =
tan φ

F
(36)

until the slope reaches the limit equilibrium state, at which the reduction factor F is taken
as Fs.

As for the adjustment to the deformation parameters: Young’s modulus E and Pois-
sion’s ratio v, we adopt the strategy proposed by Zheng et al. [28], the adjusted E and v are
denoted by EF and vF, respectively.

Let the gravity generate the reference load vector q in Equation (21), and no other
external load exists in the slope, i.e., q0 = 0. With the reduced strength parameters of cF
and φF, and the adjusted deformation parameters of EF and vF, we apply DCM to bring
the slope to the limit equilibrium state.

Let ρtq represent the load level under which the slope is at the limit equilibrium state.
ρt is obtained by accumulating the load multipliers ρi of all the steps before the slope
reaches the limit equilibrium state, reading

ρt =
N

∑
i=1

ρi (37)

Here, ρi is the load multiplier of the i-th step; N is the number of all the steps needed
for the slope to reach the limit equilibrium state. At the limit equilibrium state, ρN is 0
theoretically but |ρN | < 0.001 numerically in this study.

Obviously, ρt is a strictly decreasing function of the strength reduction factor F, de-
noted by ρt(F), and the factor Fs of safety is the root of the equation, ρt(F) = 1, as depicted
in Figure 3. Obviously, ρt(1) ≤ 1 implies Fs ≤ 1.

Geotechnics 2022, 2, FOR PEER REVIEW  10 
 

 

The strength reduction technique for the factor of safety of a slope, sF , is simply to 

conduct the elastic-perfectly plastic analysis of the slope with the reduced strength pa-

rameters 

F

c
c

F
  and 

tan
tan F

F


   (36) 

until the slope reaches the limit equilibrium state, at which the reduction factor F  is 

taken as sF . 

As for the adjustment to the deformation parameters: Young’s modulus E and Pois-

sion’s ratio v, we adopt the strategy proposed by Zheng et al. [28], the adjusted E and v 

are denoted by FE  and Fv , respectively. 

Let the gravity generate the reference load vector q  in Equation (21), and no other 

external load exists in the slope, i.e., 0q  = 0. With the reduced strength parameters of Fc  

and F , and the adjusted deformation parameters of FE  and Fv , we apply DCM to 

bring the slope to the limit equilibrium state. 

Let t q  represent the load level under which the slope is at the limit equilibrium 

state. t  is obtained by accumulating the load multipliers i  of all the steps before the 

slope reaches the limit equilibrium state, reading 

1

N

t i

i

 


  (37) 

Here, i  is the load multiplier of the i-th step; N is the number of all the steps needed for 

the slope to reach the limit equilibrium state. At the limit equilibrium state, N  is 0 the-

oretically but 0.001N   numerically in this study. 

Obviously, t  is a strictly decreasing function of the strength reduction factor F , 

denoted by t ( )F , and the factor sF  of safety is the root of the equation, t ( ) 1F  , 

as depicted in Figure 3. Obviously,  t 1 1   implies sF    1. 

 

Figure 3. Secant method for factor of safety. Figure 3. Secant method for factor of safety.



Geotechnics 2022, 2 497

Let
(

F1, ρ1
t
)

and
(

F2, ρ2
t
)

be two points on the curve of F vs. ρt, assuming without loss
of generality that ρ1

t ≥ 1 and ρ2
t < 1. Then, execute the following operations.

Step 1. The interpolation of
(

F1, ρ1
t
)

and
(

F2, ρ2
t
)

gives rise to a guessed factor of safety

F3 =
1− ρ1

t
ρ2

t − ρ1
t
(F2 − F1) + F1 (38)

Step 2. Calculate ρ3
t by taking F3 as the new reduction factor and repeating DCM.

Step 3. If
∣∣ρ3

t − 1
∣∣ < 0.001, set Fs = F3 and terminate.

Step 4. If ρ3
t < 1, then let F2 = F3, ρ2

t = ρ3
t ; otherwise, let F1 = F3, ρ1

t = ρ3
t ; return to

Step 1.
The above solution is actually the secant method. It should be noted that the secant

method needs to estimate two initial values; this may require some trial work. Moreover,
the secant method is likely to have difficulty when the horizontal axis is tangent to the
graph of the curve at a certain point, and there is no guarantee for computational conver-
gence. Fortunately, ρt is a strictly decreasing function of the strength reduction factor F in
this paper.

5. Illustrative Examples

Three typical examples are presented to illustrate the capability of the proposed
method in the stability analysis of slopes by accounting for the tension failure. All the
examples are assumed in the plain strain condition, with associative plasticity.

All the meshes consist of isoparametric quadrilateral elements, with each having four
nodes and deployment of quadrature points as 2 × 2. The displacement tolerance ep = 1%
in Equation (34).

The left and right boundaries are roller boundaries, while the nodes on the bottom
boundary are fixed horizontally and vertically.

Two cases are considered for all the examples with the intact M–C surfaces and the
cut-off M–C surfaces. Fs

MC denotes the factor of safety provided by the intact M–C surface;
Fs

Cut the factor of safety by the cut-off M–C surface.

5.1. Homogeneous Soil Slope

Figure 4 shows a homogeneous soil slope with a height of 20 m and a slope angle
of 45◦, designed by Cheng et al. [29]. The soil has a unit weight γ = 25 kN/m3, cohesion
c = 42 kPa, internal friction angle φ = 30◦, Young’s modulus E = 30 MPa, Poisson’s ratio
v = 0.3.
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The outcomes of Fs
MC = 1.537 and ′Fs

Cut = 1.512 imply that ignoring tension failure
overestimates the factor of safety only by 1.65%.

Figure 5 displays the distribution of the equivalent plastic strain εp at the moment
when the slope reaches the limit equilibrium state, defined by,

εp = ∑
√

2
3

∆εT
p ∆εp (39)

where the summation is with regards to all the incremental steps, and ∆εp the incremental
plastic strain vector within a typical step.
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Figure 5. Comparisons of failure mechanisms (1500 elements). (a) failure mechanisms of intact M–C
surface; (b) failure mechanisms of the cut-off M–C surface.

In Figure 5a, the tensile failure zone at the top of the slope, denoted by ΩT , is drawn
by the condition

σ1 > 0 (40)

for the intact M–C surface, with σ1 the major principal stress; while in Figure 5b, ΩT is
marked by

λ , max(λ7, λ8, λ9) > 0 (41)

for the cut-off M–C surface; λ7, λ8 and λ9 are plastic multipliers associated with the three
tensile strength surfaces f7 = 0, f8 = 0 and f9 = 0.

Figure 5 clearly tells us that ignoring the tensile failure brings about the tension failure
zone ΩT extending to the left boundary, an abnormal phenomenon familiar to those who
have some experience in using the finite element strength reduction. Considering the
tensile failure causes a smaller ΩT , seemingly more reasonable.

Further, included in Figure 5 are the tension cracks. Each tension crack is represented
by a vertical line segment that is within ΩT and passes the quadrature point in ΩT at which
εp assumes the maximum. In this way, the location and depth of the tension crack are
automatically determined.

The influence of mesh density is shown in Figure 6, suggesting that with the increase
in mesh density,
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Figure 6. Influence of mesh density. (a) failure mechanisms of intact M–C surface with 395 elements;
(b) failure mechanisms of the cut-off M–C surface with 395 elements; (c) failure mechanisms of
intact M–C surface with 6000 elements; (d) failure mechanisms of the cut-off M–C surface with
6000 elements.

(1) the failure zone becomes narrower and narrower;
(2) the factor of safety becomes smaller and smaller. This is because the FEM we adopt

is based on compatible elements of displacement-type and always approaches from below
the exact displacement. Certainly, a larger deformation field results in a more dangerous
slope under the same load level and the same boundary displacement constraints;

(3) the location and depth of the tension crack converge prior to the failure zone; for
example, at least at the mesh density of 1500 elements, the location and depth of the tension
crack have become convergent, yet the failure zone has not.

The depth of tension cracks of slopes in the limit equilibrium state is still an open issue
in theory. There have been many works on this. For example, Michalowski [13] proposed
an empirical interval of the depth of tension cracks for homogeneous slopes with no water

h =
κcm

γ
tan
(

π

4
+

φm

2

)
(42)

where κ varies between 2 and 3.83; cm and φm are the mobilized strength parameters, namely,

cm =
c
Fs

and tan φm =
tan φ

Fs
(43)

By taking Fs = Fs
Cut = 1.512, the h-interval evaluated by Equation (42) is (3.23 m, 6.18 m).

The convergent depth estimated by the proposed analysis is 2.80 m, even below the
lower bound of 3.23 m evaluated by Equation (42).

With the same mechanical parameters as the above example, let the slope angle β be
50◦, 60◦, 70◦, 80◦, and 90◦. Table 1 lists the results, suggesting that before β exceeds 70◦

the difference in the factor of safety can be ignored using the intact M–C surface or the
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cut-off M–C surface. If β > 80◦, the difference increases sharply and reaches 20% at β = 90◦.
Consequently, the stability of deep foundation pits must be analyzed under the condition
of tensile strength cut-off.

Table 1. Outcomes of different slope angles.

Angle Fs
MC Fs

Cut Difference

45◦ 1.512 1.537 1.63%
50◦ 1.386 1.412 1.84%
60◦ 1.18 1.218 3.12%
70◦ 1.012 1.06 4.53%
80◦ 0.851 0.928 8.3%
90◦ 0.652 0.814 19.9%

By taking Fs = Fs
Cut = 1.06 corresponding to β = 70◦, the interval of the tension crack

depth is (17.02 m, 32.60 m) according to the evaluation (42), while the slope height is only
20 m, and thus the overestimation is concluded. The depth evaluated by the proposed
procedure is 4.8 m, as we can see in Figure 7, a seemingly more practical value. Using the
intact M–C surface will result in the tensile failure zone extending to the model boundary
and is severely overestimated. Using the cut-off M–C surface, the abnormal is eliminated.
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5.2. A Layered Slope with Weak Interlayer 

Figure 7. Comparisons of failure mechanisms with β = 70◦. (a) failure mechanisms of intact M–C
surface; (b) failure mechanisms of the cut-off M–C surface.

5.2. A Layered Slope with Weak Interlayer

This example concerns a layered slope where a layer of low resistance is interposed
between two layers of higher strength, see Greco [30] and Arai and Tagyo [31]. Geometrical
features of the slope and mechanical parameters are in Figure 8 and Table 2.

Table 2. Mechanical Parameters of Section 5.2.

Soil γ (kN/m3) c (kN/m2) ϕ (◦) E (MPa) v

S1 18.82 29.4 12 10 0.35
S2 18.82 9.8 5 10 0.35
S3 18.82 29.4 40 10 0.35
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Figure 8. Geometry and adopted mesh. (a) geometry; (b) adopted mesh.

Calculated by Greco and Arai and Tagyo are Fs = 0.388 and Fs = 0.405 without tension
crack, respectively. Using the proposed method, Fs

MC = 0.417 and Fs
MC = 0.391. The

distributions of the equivalent strain are shown in Figure 9; it can be seen that the plastic
failure characteristics at the back edge of the slope for the two kinds of yielding surfaces
are quite different. As the tension cut-off is considered, due to the tensile failure of the
soil at the top of the slope, a tensile crack will run through the first soil layer, the sliding
body moves forward at the top of the slope, and the safety factor of the slope is reduced
by about 6.2%. While only considering shear failure, a slide will occur along the weak
interlayer at the rear edge of the slope. Because the factor of safety is much less than 1.0
and is impossible to sustain, neither the tensile failure zone nor the tension crack is drawn.
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5.3. Multistage Non-Homogeneous Soil Slope

Figure 10a shows the geometry of a slope with a strong interlayer. The first grade of
the slope is 8 m with a rate of 1:1, and the second is 10 m with a rate of 1:0.75. A thin layer
of hard soil (A3) with a thickness of 0.8 m is embedded in the layered soil with slightly
lower strength. Figure 10b is the mesh of 943 elements. The soil parameters are in Table 3.
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Table 3. Mechanical parameters of Section 5.3.

Soil γ (kN/m3) c (kN/m2) ϕ (◦) E (MPa) v

S1 18.8 19.8 15.7 10 0.4
S2 19 22.7 16.9 12 0.4
S3 19.5 39.3 24.2 14 0.35
S4 19 27.6 21.3 12 0.35
S5 19 35.7 27.4 15 0.3

The proposed factors of safety are Fs
MC = 1.142 and Fs

Cut = 1.126, differing merely
by 1.4%.

Still, significant differences exist in the failure mechanism of the slope in the limit
equilibrium state; as shown in Figure 11, it is obvious that the finite strength reduction
with tensile–shear composite yield surface can obtain almost the same shear sliding surface
at the front edge of the slope compared with the intact M–C shear yield criterion, the
difference lies in the plastic zone obtained by the tension-shear failure extends from the top
of the slope to a certain depth in a nearly vertical state, which is consistent with the vertical
tension cracks in the actual project. The positions of tensile cracks obtained by the two
methods are also different. Again, the intact M–C surface results in extending the tensile
failure zone to the left model boundary.
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For a multilayered slope, such as this example, Equation (42) is not applicable to
evaluate the depth of the tension crack because we are even unclear what layers are
selected while calculating cm and φm in this equation.

6. Conclusions

For complex slopes such as layered slopes, the failure mechanism is recognizable only
by numerical methods such as the finite element method with tension strength cut-off.
With meshes finer and finer, the factor of safety approximates above its accurate value. For
deeper slopes of angle exceeding 70, the factor of safety differs significantly using the intact
Mohr–Coulomb yielding surface and its cut-off version; for gentle slopes, the difference in
the factor of safety is ignorable, but an essential difference exists in the failure mechanism,
especially near the slope top. The empirical estimate (42) is suitable only for homogenous
slopes, and its lower bounds of the depth of the tension cracks match better with the values
from the proposed procedure.

The Gauss–Seidel iteration-based projection–contraction algorithm, abbreviated by
GSPC, is very well qualified to calculate numerical constitutive integration in the strength
reduction technique for slope stability analysis using the Mohr–Coulomb yielding surface
and its cut-off version. The displacement-controlled method (DCM) tailored for the elastic-
perfectly plastic deformation analysis is easy to bring the slope into the limit equilibrium
state, only at which is the failure mechanism able to be accurately recognized.
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Appendix A Algorithm of GSPC

The Gauss–Seidel iteration-based projection–contraction algorithm, abbreviated by
GSPC and recently developed by the authors [21], is fitted to the mixed complementarity
problem, abbreviated by MiCP. The numerical constitutive integration of non-associative
plasticity with non-smooth surfaces can be reduced to the MiCP. Some commercial software
products, such as MSC, are implementing this algorithm.

GSPC is even easier to program than the Gauss elimination method. For integrity, the
algorithm pseudocodes are written here.

GSPC is invoked in this way

(λ, σ) = GSPC
(

λ0, σ0
)

The input arguments of λ0 and σ0 are the initial guess of λ and σ, respectively. In
general, λ0 = 0, σ0 = σe, with σe defined in Equation (13). Here and subsequent, all the
notations are explained in the text.

The pseudocode of GSPC is listed as follows, parameter ν = 0.9; parameter γ = 1.9;
parameter µ= 0.4.

Step 0: Let β I = βE = 1; k = 0;
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Step:1
¯
λ = max[λ− β IfI(λ, σ), 0];

¯
σ = σ − βEfE

(¯
λ, σ

)
;

if ‖
¯
λ− λ‖∞ ≤ ελ‖

¯
λ‖∞ and ‖¯σ − σ‖∞ ≤ εσ‖

¯
σ‖∞

then λ =
¯
λ; σ =

¯
σ; break;

rλ =
β I‖fI(λ,σ)−fI

(¯
λ,σ

)
‖

2

‖λ−
¯
λ‖2

;

while rλ > ν

β I =
2
3 β Imin

(
1, 1

rλ

)
;
¯
λ = max[λ− β IfI(λ, σ), 0];

rλ =
β I‖fI(λ,σ)−fI

(¯
λ,σ

)
‖

2

‖λ−
¯
λ‖2

;

end(while);

rσ =
βE‖fE

(¯
λ,σ

)
−fE

(¯
λ,

¯
σ

)
‖

2

‖σ−¯
σ‖2

;

while rσ > ν

βE = 2
3 βEmin

(
1, 1

rσ

)
;
¯
σ = σ − βEfE

(¯
λ, σ

)
;

rσ =
βE‖fE

(¯
λ,σ

)
−fE

(¯
λ,

¯
σ

)
‖

2

‖σ−¯
σ‖2

;

end(while);

dλ

(
λ,

¯
λ

)
=

(
λ−

¯
λ

)
− β I

[
fI(λ, σ)− fI

(¯
λ, σ

)]
;

α =

(
λ−

¯
λ

)T

dλ

(
λ,

¯
λ

)
‖dλ

(
λ,

¯
λ

)
‖

2

2

; λ = λ− γαdλ

(
λ,

¯
λ

)
;

if rλ ≤ µ then β I = 1.5β I ;

dσ

(
σ,

¯
σ

)
=

(
σ − ¯

σ

)
− βE

[
fE

(¯
λ, σ

)
− fE

(¯
λ,

¯
σ

)]
;

α =

(
σ−¯

σ

)T
dσ

(
σ,

¯
σ

)
‖dσ

(
σ,

¯
σ

)
‖

2

2

; σ = σ − γαdσ

(
σ,

¯
σ

)
;

if rσ ≤ µ then βE = 1.5βE;
Step 2. k = k + 1; go to Step 1.
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