The Geological Structure and Tectonic Complexity of Northern Thessaly That Hosted the March 2021 Seismic Crisis
Abstract
:1. Introduction
2. Geological Setting
2.1. Alpine Structural Evolution
2.2. Alpine Tectonostratigraphy
2.3. Alpine Tectonics
3. Post-Alpine Geology
3.1. Post-Alpine Lithostratigraphy
- Basal formation of the Upper Miocene unconformably lying over the alpine basement, with a maximum thickness of 55 m. It consists of mud, sandy and silty clay, with granule and gravel layers, representing alluvial fan deposits that filled the initial stage of the basin’s formation. mostly of fluvio-torrential origin.
- The gray-green lignite-bearing formation of the Upper Miocene, consisting of lignite beds, mostly at the upper members, within clayey silts, sandy clays, sands, clays, and rarely silts. Fine-grained sand passes into medium- and coarse-grained toward the lower members. Conglomerate intercalations also occur, rarely solid. Fossils lack. The lithofacies represent a fluvial environment developed by a meandering river. Maximum thickness of 150 m.
- The overlying clastic deposits separated into (i) a 50 m-thick, fine-clastic lower member of Upper Miocene, consisting of friable and rarely stiff siltstones, sandy clays, sands, with local intercalations of conglomerates, and (ii) a 30 m-thick, coarse-clastic, unconformably overlying upper member of Upper Pliocene, consisting of unconsolidated to loose breccio-conglomerate with sand and boulders.
- The Pleistocene deposits divided into two members: (i) the Upper Pliocene? to Lower Pleistocene (Villafranchian), 70 m-thick, terrestrial deposits composed by khaki sandy clays with mud, and hard, solid, white limestone intercalations, and (ii) the Upper Pleistocene, 60 m-thick, terraces and talus cone deposits, consisting of brown mud with sandy gravels and conglomerates, occasionally in thin interbeds.
- The Holocene eluvial deposits and river terraces. They can reach 25 m of thickness.
3.2. Post-Alpine and Active Tectonical Setting
The Domeniko-Amouri Basin Tectonic Setting
4. The 2021 Seismic Sequence
4.1. Ground Deformation Phenomena
4.2. The Seismic Sources
5. Discussion
6. Conclusions and Open Questions
- The focal mechanisms of the two mainshocks revealed NW-SE-striking fault rather than WNW-ESE. Both show almost pure normal dip-slip motion. Consequently, a NE-SW oriented extension is indicated instead of N-S.
- The faulting and σ3 directions of the two 2021 mainshocks better match the corresponding directions of the previous P2 extensional phase.
- The Domeniko-Amouri basin and the Titarissios valley were full of ground ruptures and liquefaction phenomena, and while where there was a relief, landslides and rockfalls also occurred. Most of the time, ground ruptures followed the general trend suggested by the focal mechanisms.
- The InSAR images, along with the observation of neotectonically formed slickensides on old shear zones of the gneiss and schist comprising alpine basement, suggest a main rupturing path during the first major event with a possible secondary and steeper one aiming at the Titarissios valley (through the Titarissios fault). If we also add the hypocentral location and the nodal plane geometry, a bifurcated rupture can be inferred, possibly by a low-angle, detachment-type normal fault and its upward branch.
- Our inferred tectonic setting includes the occurrence of a low-angle, detachment-type fault dipping to the north, with the steeper parallel to sub-parallel normal faults in its hanging-wall corresponding to branches bifurcating from the detachment’s surface. The Zarkos blind fault can be considered as the almost emerged seismogenic source, while two of its NNW-SSE-trending and ENE-dipping segments were activated during the double event of March 3 and 4.
- Special attention needs to be given (i) tp the role of inherited structures in seismogenesis deviating from standard rules and known criteria, especially blind faults in mountains without any morphotectonic feature, and (ii) to the unknown, hidden, active faults and their role in SHA, especially close or under the modern urban areas and along lifelines. New methodologies and scientific tools are needed to identify the weak zones and the associated earthquake patterns.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doutsos, T. Postalpine geodynamik thessaliens (Griechenland). Z. Dtsch. Geol. Ges. 1980, 131, 685–698. [Google Scholar]
- Kilias, A.; Fasoulas, H.; Priniotakis, M.; Sfeikos, A.; Frisch, W. HP/LT-metamorphic conditions and deformation at the tectonic window of Kranea (W. Thessaly, Northern/Central Greece). Bull. Geol. Soc. Greece 1991, 25, 275–292. [Google Scholar]
- Sfeikos, A.; Bohringer, C.H.; Frisch, W.; Kilias, A.; Rayschbacher, L. Kinematics of Pelagonian nappes in the Kranea area, North Thessaly. Bull. Geol. Soc. Greece 1991, 25, 101–115. [Google Scholar]
- Doutsos, T.; Pe-Piper, G.; Boronkay, K.; Koukouvelas, I. Kinematics Of The Central Hellenides. Tectonics 1993, 12, 936–953. [Google Scholar] [CrossRef]
- Parcharidis, I.; Pavlopoulos, A.; Migiros, G. Recognition of fault structures with images processing LANDSAT TM in the Tyrnavos area (East Thessaly). Bull. Geol. Soc. Greece 1994, 30, 337–343, (In Greek with English abstract). [Google Scholar]
- Ferrière, J.; Reynaud, J.; Pavlopoulos, A.; Bonneau, M.; Migiros, G.; Chanier, F.; Proust, J.; Gardin, S. Geologic Evolution and Geodynamic Controls of the Tertiary Intramontane Piggyback Meso-Hellenic Basin, Greece. Bull. Société Géologique Fr. 2004, 175, 361–381. [Google Scholar] [CrossRef]
- Kilias, A.; Falalakis, G.; Sfeikos, A.; Gkarlaouni, C.; Papadimitriou, E.; Vamvaka, A.; Karakostas, V. Molassic basins in Hellenides: The Mesohellenic trough and the Thrace basin. Their structural evolution and geotectonic significance. Electronic Edition. J. Virtual Explor. 2015, 48, 1–21. [Google Scholar]
- Kilias, A.D.; Vamvaka, A.; Falalakis, G.; Sfeikos, A.; Papadimitriou, E.; Gkarlaouni, C.H.; Karakostas, B. The Mesohellenic Trough and the Paleogene Thrace basin on the Rhodope massif, their structural evolution and geotectonic significance in the Hellenides. J. Geol. Geosci 2015, 4, 198. [Google Scholar] [CrossRef] [Green Version]
- Caputo, R.; Pavlides, S. Late Cainozoic Geodynamic Evolution of Thessaly and Surroundings (Central-Northern Greece). Tectonophysics 1993, 223, 339–362. [Google Scholar] [CrossRef]
- Caputo, R.; Bravard, J.; Helly, B. The Pliocene-Quaternary Tecto-Sedimentary Evolution of the Larissa Plain (Eastern Thessaly, Greece). Geodin. Acta 1994, 7, 219–231. [Google Scholar] [CrossRef]
- Caputo, R. Inference of a Seismic Gap from Geological Data: Thessaly (Central Greece) as a Case Study. Ann. Geophys. 1995, 38, 1–19. [Google Scholar] [CrossRef]
- Institute of Geology and Mineral Exploration. Geological Map of Greece, “Gonni” Sheet, 1:50.000 Scale; IGME: Athens, Greece, 1985. [Google Scholar]
- Institute of Geology and Mineral Exploration. Geological Map of Greece, “Larissa” Sheet, 1:50.000 Scale; IGME: Athens, Greece, 1985. [Google Scholar]
- Institute of Geology and Mineral Exploration. Geological Map of Greece, “Elasson” Sheet, 1:50.000 Scale; IGME: Athens, Greece, 1987. [Google Scholar]
- Institute of Geology and Mineral Exploration. Geological Map of Greece, “Farkadon” Sheet, 1:50.000 Scale; IGME: Athens, Greece, 1998. [Google Scholar]
- Brunn, J.H. Contribution a l’ étude geologique du Pinde serpentrional et d’ une partie de la Macedoine occidentale. Ann. Géologiques Pays Hélléniques 1956, 7, 1–346. [Google Scholar]
- Aubouin, J. Contribution a L’étude Gèologique De La Gréce Septentrionale: Les Confins De L’epire Et De La Thessalie. Ann. Géologiques Pays Hélléniques 1959, 10, 1–483. [Google Scholar]
- Godfriaux, I. Etude geologique de l’ Olympe (Grece). Ann. Géologiques Pays Hélléniques 1968, 19, 1–280. [Google Scholar]
- Mercier, J. Etude géologique des zones internes des Hellénides en Macédoine centrale (Grece). Ann. Géologiques Pays Hélléniques 1968, 20, 1–792. [Google Scholar]
- Smith, A.G. Alpine deformation and the oceanic areas of the Tethys, Mediterranean and Atlantic. Geol. Soc. Am. Bull. 1971, 82, 2039–2070. [Google Scholar] [CrossRef]
- Dewey, J.; Pitman, W.; Ryan, W.; Bonnin, J. Plate Tectonics And The Evolution Of The Alpine System. Geol. Soc. Am. Bull. 1973, 84, 3137. [Google Scholar] [CrossRef]
- Smith, A.G.; Moores, E.M. The Hellenides. In Datafor Orogenic Studies: Mesozoic? Cenozoic Orogenic Belts. Geol. Soc. Lond. Spec. Publ. 1974, 4, 154–185. [Google Scholar]
- Jacobshagen, V.; Dürr, S.; Kockel, F.; Kopp, K.O.; Kowalczyk, G. Structure and geodynamic evolution of the Aegean region. In Alps, Apennines, Hellenides; Closs, H., Roeder, D., Schmidt, K., Eds.; Schweizerbart: Stuttgart, Germany, 1978; pp. 537–564. [Google Scholar]
- Robertson, A.; Dixon, J. Introduction: Aspects of the Geological Evolution of the Eastern Mediterranean. Geol. Soc. Lond. Spec. Publ. 1984, 17, 1–74. [Google Scholar] [CrossRef]
- Mountrakis, D. Geology of Greece; University Studio Press: Thessaloniki, Greece, 1985; p. 207. (In Greek) [Google Scholar]
- Mountrakis, D. The Pelagonian Zone In Greece: A Polyphase-Deformed Fragment Of The Cimmerian Continent And Its Role In The Geotectonic Evolution Of The Eastern Mediterranean. J. Geol. 1986, 94, 335–347. [Google Scholar] [CrossRef]
- Kilias, A.; Alonso-Chaves, F.M.; Orozco, M.; Soto, J.I. Extensional collapse of the Hellenides: A review. Rev. Soc. Geológica España 2002, 15, 129–139. [Google Scholar]
- Kilias, A.; Falalakis, G.; Sfeikos, A.; Papadimitriou, E.; Vamvaka, A.; Gkarlaouni, C. The Thrace Basin in the Rhodope Province of NE Greece—A Tertiary Supradetachment Basin and its Geodynamic Implications. Tectonophysics 2013, 595–596, 90–105. [Google Scholar] [CrossRef]
- Kilias, A. The Hellenides: A multiphase deformed orogenic belt, its structural architecture, kinematics and geotectonic setting during the Alpine orogeny: Compression vs Extension, the dynamic peer for the orogen making. A synthesis. J. Geol. Geosci. 2021, 5, 1–56. [Google Scholar]
- Robertson, A.; Dixon, J.; Brown, S.; Collins, A.; Morris, A.; Pickett, E.; Sharp, I.; Ustaömer, T. Alternative Tectonic Models For The Late Palaeozoic-Early Tertiary Development of Tethys in the Eastern Mediterranean Region. Geol. Soc. Lond. Spec. Publ. 1996, 105, 239–263. [Google Scholar] [CrossRef]
- Lister, G.; Banga, G.; Feenstra, A. Metamorphic Core Complexes of Cordilleran Type in the Cyclades, Aegean Sea, Greece. Geology 1984, 12, 221–225. [Google Scholar] [CrossRef]
- Kilias, A.; Fasoulas, C.; Priniotakis, M.; Sfeikos, A.; Frisch, W. Deformation And HP/LT Metamorphic Conditions at the Tectonic Window of Kranea (W–Thessaly, Northern Greece). Z. Dtsch. Geol. Ges. 1991, 142, 87–96. [Google Scholar] [CrossRef]
- Kilias, A.; Vamvaka, A.; Fassoulas, C.; Falalakis, G.; Avgerinas, S.; Sfeikos, A.; Pipera, K.; Katrivanos, E.; & Thomaidou, E. A geological cross-section through northern Greece from Pindos to Rhodope Mountain Ranges: A field guide across the External and Internal Hellenides. J. Virtual Explor. 2016, 50, 1–107. [Google Scholar] [CrossRef]
- Dinter, D.; Royden, L. Late Cenozoic Extension in Northeastern Greece: Strymon Valley Detachment System and Rhodope Metamorphic Core Complex. Geology 1993, 21, 45. [Google Scholar] [CrossRef]
- Kilias, A. Tectonic evolution of the Olympus—Ossa mountains: Emplacement of the blueschists unit in eastern Thessaly and exhumation of Olympus—Ossa carbonate dome as a result of tertiary extension (Central Greece). Min. Wealth 1995, 96, 7–22. [Google Scholar]
- Forster, M.; Lister, G. Detachment Faults in the Aegean Core Complex of Ios, Cyclades, Greece. Geol. Soc. Lond. Spec. Publ. 1999, 154, 305–323. [Google Scholar] [CrossRef]
- Vergely, P. Tectoniques des Ophiolites Dans les Hellénides Internes Déformation, Métamorphisme et Phénomènes Sédimentaires. Conséquences sur l’ Évolution des Region Téthysiennes Occidentales. Ph.D. Thesis, University Paris-Sud, Orsay, Bures-sur-Yvette, France, 1984. [Google Scholar]
- Mountrakis, D.; Sapountzis, E.; Kilias, A.; Eleftheriadis, G.; Christofides, G. Paleogeographic Conditions in the Western Pelagonian Margin in Greece During the Initial Rifting of the Continental Area. Can. J. Earth Sci. 1983, 20, 1673–1681. [Google Scholar] [CrossRef]
- Shermer, E.; Lux, D.; Burchfiel, B.C. Age and tectonic significance of metamorphic events in the mt. Olympos region, Greece. Bull. Geol. Soc. Greece 1989, 23, 13–27. [Google Scholar]
- Kilias, A.; Fassoulas, C.; Mountrakis, D. Tertiary Extension of Continental Crust and Uplift of Psiloritis Metamorphic Core Complex in the Central Part of the Hellenic Arc (Crete, Greece). Geol. Rundsch. 1994, 83, 417–430. [Google Scholar] [CrossRef]
- Kilias, A.; Mountrakis, D. Structural Geology of the Central Pelagonian Zone (Kamvounia Mountains, North Greece). Z. Der Dtsch. Geol. Ges. 1987, 138, 211–237. [Google Scholar] [CrossRef]
- Schermer, E.; Lux, D.; Burchfiel, B. Temperature-Time History Of Subducted Continental Crust, Mount Olympos Region, Greece. Tectonics 1990, 9, 1165–1195. [Google Scholar] [CrossRef] [Green Version]
- Schermer, E. Mechanisms of Blueschist Creation and Preservation in an A-Type Subduction Zone, Mount Olympos Region, Greece. Geology 1990, 18, 1130. [Google Scholar] [CrossRef]
- Katsikatsos, G.; Migiros, G.; Triantaphyllis, M.; Mettos, A. Geological Structure of Internal Hellenides (E. Thessaly, SW Macedonia, Euboea, Attica, Northern Cyclades islands and Lesvos); Institute of Geological and Mineral Exploration (IGME): Athens, Greece, 1986; pp. 191–212. [Google Scholar]
- Kilias, A.; Frisch, W.; Avgerinas, A.; Dunkl, I.; Falalakis, G.; Gawlick, H.J. Alpine architecture and kinematics of deformation of the northern Pelagonian nappe pile in the Hellenides. Austrian J. Earth Sci. 2010, 103, 4–28. [Google Scholar]
- Kilias, A.; Vamvaka, A.; Falalakis, G.; Sfeikos, A.; Papadimitriou, E.; Gkarlaouni, C.; Karakostas, B. The Mesohellenic Trough and the Thrace Basin. Two Tertiary Molassic Basins in Hellenides: Do they Really Correlate? Bull. Geol. Soc. Greece 2013, 47, 551–562. [Google Scholar] [CrossRef] [Green Version]
- Pavlides, S.; Mountrakis, D. Extensional Tectonics of Northwestern Macedonia, Greece, Since the Late Miocene. J. Struct. Geol. 1987, 9, 385–392. [Google Scholar] [CrossRef]
- Mercier, J.; Sorel, D.; Vergely, P.; Simeakis, K. Extensional Tectonic Regimes in the Aegean Basins During the Cenozoic. Basin Res. 1989, 2, 49–71. [Google Scholar] [CrossRef]
- Mountrakis, D.; Tranos, M.; Papazachos, C.; Thomaidou, E.; Karagianni, E.; Vamvakaris, D. Neotectonic and Seismological Data Concerning Major Active Faults, and the Stress Regimes of Northern Greece. Geol. Soc. Lond. Spec. Publ. 2006, 260, 649–670. [Google Scholar] [CrossRef] [Green Version]
- Dimitriou, D.; Giakoupis, P. Mine Research of Coal Deposit in Elassona: Domeniko Sub-Area; IGME: Athens, Greece, 1998. (In Greek) [Google Scholar]
- Godfriaux, I. Etude géologique de la région de l’Olympe (Grèce). Ann. Géologiques Pays Hélléniques 1970, 19, 1–281. [Google Scholar]
- Doutsos, T.; Koukouvelas, J.; Zelilidas, A.; Kontopoulos, N. Intracontinental Wedging and Post-Orogenic Collapse in the Mesohellenic Trough. Geol. Rundsch. 1994, 83, 257–275. [Google Scholar] [CrossRef]
- Ferriere, J.; Chanier, F.; Reynaud, J.Y.; Pavlopoulos, A.; Ditbanjong, P.; Migiros, G.; Coutand, I.; Stais, A.; Bailleul, J. Tectonic control of the Meteora conglomeratic formations (Mesohellenic basin, Greece). Bull. Société Géologique Fr. 2011, 182, 437–450. [Google Scholar] [CrossRef]
- Vamvaka, A.; Kilias, A.; Mountrakis, D.; Papaoikonomou, J. Geometry and Structural Evolution of the Mesohellenic Trough (Greece): A New Approach. Geol. Soc. Lond. Spec. Publ. 2006, 260, 521–538. [Google Scholar] [CrossRef]
- Papazachos, B.C.; Papazachou, K. The Earthquakes of Greece; Ziti Publications: Thessaloniki, Greece, 2003; p. 304. [Google Scholar]
- Lazos, I. Crustal Deformation Analysis of Thessaly (Central Greece) Before the March 2021 Earthquake Sequence near Elassona-Tyrnavos (Northern Thessaly). Acta Geodyn. Geomater. 2021, 18, 379–385. [Google Scholar] [CrossRef]
- IG-NOA. Available online: http://bbnet.gein.noa.gr/HL/databases/database (accessed on 15 April 2021).
- Kiratzi, A.; Louvari, E. Focal Mechanisms of Shallow Earthquakes in the Aegean Sea and the Surrounding Lands Determined by Waveform Modelling: A New Database. J. Geodyn. 2003, 36, 251–274. [Google Scholar] [CrossRef]
- GFZ, German Research Centre for Geosciences. Available online: https://geofon.gfz-potsdam.de (accessed on 15 April 2021).
- Chatzipetros, A.; Pavlides, S.; Foumelis, M.; Sboras, S.; Galanakis, D.; Pikridas, C.; Bitharis, S.; Kremastas, E.; Chatziioannou, A.; Papaioannou, I. The Northern Thessaly strong earthquakes of March 3 and 4, 2021, and their Neotectonic Setting. Bull. Geol. Soc. Greece 2021, 58, 222. [Google Scholar] [CrossRef]
- Caputo, R.; Helly, B.; Pavlides, S.; Papadopoulos, G. Palaeoseismological Investigation of the Tyrnavos Fault (Thessaly, Central Greece). Tectonophysics 2004, 394, 1–20. [Google Scholar] [CrossRef]
- Caputo, R.; Piscitelli, S.; Oliveto, A.; Rizzo, E.; Lapenna, V. The use of Electrical Resistivity Tomographies in Active Tectonics: Examples from the Tyrnavos Basin, Greece. J. Geodyn. 2003, 36, 19–35. [Google Scholar] [CrossRef]
- Caputo, R.; Chatzipetros, A.; Pavlides, S.; Sboras, S. The Greek Database of Seismogenic Sources (Gredass): State-Of-The-Art for Northern Greece. Ann. Geophys. 2012, 55, 859. [Google Scholar] [CrossRef]
- Sboras, S. The Greek Database of Seismogenic Sources: Seismotectonic Implications for North Greece. Ph.D. Thesis, University of Ferrara, Ferrara, Italy, 2011. [Google Scholar]
- Caputo, R. Geological and structural study of the recent and active brittle deformation of the Neogene-Quaternary Basins of Thessaly (Central Greece). Ph.D. Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 1990. [Google Scholar]
- Galanakis, D.; Sboras, S.; Konstantopoulou, G.; Xenakis, M. Neogene-Quaternary Tectonic Regime and Macroseismic Observations in the Tyrnavos-Elassona Broader Epicentral Area of the March 2021, Intense Earthquake Sequence. Bull. Geol. Soc. Greece 2021, 58, 200. [Google Scholar] [CrossRef]
- Karakostas, V.; Papazachos, C.; Papadimitriou, E.; Foumelis, M.; Kiratzi, A.; Pikridas, C.; Kostoglou, A.; Kkallas, C.; Chatzis, N.; Bitharis, S.; et al. The March 2021 Tyrnavos, Central Greece, Doublet (Μw6.3 and Mw6.0): Aftershock Relocation, Faulting Details, Coseismic Slip and Deformation. Bull. Geol. Soc. Greece 2021, 58, 131. [Google Scholar] [CrossRef]
- Kassaras, I.; Kapetanidis, V.; Ganas, A.; Karakonstantis, A.; Papadimitriou, P.; Kaviris, G.; Kouskouna, V.; Voulgaris, N. Seismotectonic Analysis of the 2021 Damasi-Tyrnavos (Thessaly, Central Greece) Earthquake Sequence and Implications on the Stress Field Rotations. J. Geodyn. 2022, 150, 101898. [Google Scholar] [CrossRef]
- Michas, G.; Pavlou, K.; Avgerinou, S.; Anyfadi, E.; Vallianatos, F. Aftershock Patterns of the 2021 Mw6.3 Northern Thessaly (Greece) Earthquake. J. Seismol. 2022, 26, 201–225. [Google Scholar] [CrossRef]
- Papathanassiou, G.; Valkaniotis, S.; Ganas, A.; Stampolidis, A.; Rapti, D.; Caputo, R. Floodplain Evolution and its Influence on Liquefaction Clustering: The Case Study of March 2021 Thessaly, Greece, Seismic Sequence. Eng. Geol. 2022, 298, 106542. [Google Scholar] [CrossRef]
- Ganas, A.; Valkaniotis, S.; Briole, P.; Serpetsidaki, A.; Kapetanidis, V.; Karasante, I.; Kassaras, I.; Papathanassiou, G.; Karamitros, I.; Tsironi, V.; et al. Domino-Style Earthquakes along Blind Normal Faults in Northern Thessaly (Greece): Kinematic Evidence from Field Observations, Seismology, SAR Interferometry and GNSS. Bull. Geol. Soc. Greece 2021, 58, 37. [Google Scholar] [CrossRef]
- Koukouvelas, I.; Nikolakopoulos, K.; Kyriou, A.; Caputo, R.; Belesis, A.; Zygouri, V.; Verroios, S.; Apostolopoulos, D.; Tsentzos, I. The March 2021 Damasi Earthquake Sequence, Central Greece: Reactivation Evidence Across the Westward Propagating Tyrnavos Graben. Geosciences 2021, 11, 328. [Google Scholar] [CrossRef]
- Papadopoulos, G.; Agalos, A.; Karavias, A.; Triantafyllou, I.; Parcharidis, I.; Lekkas, E. Seismic and Geodetic Imaging (Dinsar) Investigation of the March 2021 Strong Earthquake Sequence in Thessaly, Central Greece. Geosciences 2021, 11, 311. [Google Scholar] [CrossRef]
- De Novellis, V.; Reale, D.; Adinolfi, G.; Sansosti, E.; Convertito, V. Geodetic Model Of The March 2021 Thessaly Seismic Sequence Inferred from Seismological and Insar Data. Remote Sens. 2021, 13, 3410. [Google Scholar] [CrossRef]
- Kontoes, C.; Alatza, S.; Chousianitis, K.; Svigkas, N.; Loupasakis, C.; Atzori, S.; Apostolakis, A. Coseismic Surface Deformation, Fault Modeling, And Coulomb Stress Changes of the March 2021 Thessaly, Greece, Earthquake Sequence based on InSAR and GPS Data. Seismol. Res. Lett. 2022, 93, 2584–2598. [Google Scholar] [CrossRef]
- Song, C.; Yu, C.; Meldebekova, G.; Li, Z. Normal Fault Slips of the March 2021 Greece Earthquake Sequence from In-SAR Observations. J. Geod. Geoinf. Sci. 2022, 5, 50–59. [Google Scholar] [CrossRef]
- Yang, J.; Xu, C.; Wen, Y.; Xu, G. Complex Coseismic and Postseismic Faulting During the 2021 Northern Thessaly (Greece) Earthquake Sequence Illuminated by InSAR Observations. Geophys. Res. Lett. 2022, 49, 1–10. [Google Scholar] [CrossRef]
- Pavlides, S.B.; Sboras, S. Recent Earthquake Activity of March 2021 in Northern Thessaly Unlocks New Scepticism on Faults. Turkish J. Earth Sci. 2021, 30 (Suppl. I-1), 851–861. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmith, J.K. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar]
- Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1992, 82, 1018–1040. [Google Scholar] [CrossRef]
- King, G.C.P.; Ouyang, Z.X.; Papadimitriou, P.; Deschamps, A.; Gagnepain, J.; Houseman, G.; Jackson, J.A.; Soufleris, C.; Virieux, J. The Evolution of the Gulf of Corinth (Greece): An Aftershock Study of the 1981 Earthquakes. Geophys. J. Int. 1985, 80, 677–693. [Google Scholar] [CrossRef]
- Rigo, A.; Lyon-Caen, H.; Armijo, R.; Deschamps, A.; Hatzfeld, D.; Makropoulos, K.; Papadimitriou, P.; Kassaras, I. A Microseismic Study in the Western Part of the Gulf of Corinth (Greece): Implications for Large-Scale Normal Faulting Mechanisms. Geophys. J. Int. 1996, 126, 663–688. [Google Scholar] [CrossRef] [Green Version]
- Bernard, P.; Briole, P.; Meyer, B.; Lyon-Caen, H.; Gomez, J.M.; Tiberi, C.; Lebrun, B. The Ms= 6.2, June 15, 1995 Aigion earthquake (Greece): Evidence for low angle normal faulting in the Corinth rift. J. Seismol. 1997, 1, 131–150. [Google Scholar] [CrossRef]
- Sorel, D. A Pleistocene and Still-Active Detachment Fault and the Origin of the Corinth-Patras Rift, Greece. Geology 2000, 28, 83–86. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sboras, S.; Pavlides, S.; Kilias, A.; Galanakis, D.; Chatziioannou, A.; Chatzipetros, A. The Geological Structure and Tectonic Complexity of Northern Thessaly That Hosted the March 2021 Seismic Crisis. Geotechnics 2022, 2, 935-960. https://doi.org/10.3390/geotechnics2040044
Sboras S, Pavlides S, Kilias A, Galanakis D, Chatziioannou A, Chatzipetros A. The Geological Structure and Tectonic Complexity of Northern Thessaly That Hosted the March 2021 Seismic Crisis. Geotechnics. 2022; 2(4):935-960. https://doi.org/10.3390/geotechnics2040044
Chicago/Turabian StyleSboras, Sotiris, Spyros Pavlides, Adamantios Kilias, Dimitris Galanakis, Athanasios Chatziioannou, and Alexandros Chatzipetros. 2022. "The Geological Structure and Tectonic Complexity of Northern Thessaly That Hosted the March 2021 Seismic Crisis" Geotechnics 2, no. 4: 935-960. https://doi.org/10.3390/geotechnics2040044
APA StyleSboras, S., Pavlides, S., Kilias, A., Galanakis, D., Chatziioannou, A., & Chatzipetros, A. (2022). The Geological Structure and Tectonic Complexity of Northern Thessaly That Hosted the March 2021 Seismic Crisis. Geotechnics, 2(4), 935-960. https://doi.org/10.3390/geotechnics2040044