1923–2023: One Century since Formulation of the Effective Stress Principle, the Consolidation Theory and Fluid–Porous-Solid Interaction Models
Abstract
:1. Introduction
2. Effective Stress Principle
2.1. Definition of ES and Attributed Physical Meaning
2.2. A Simple Example Aimed to Clarify the Conventional Nature of ES Concept
2.3. What Do Rock, Soil and Other Porous Media Have in Common from the Viewpoint of Mechanical Behavior? Strain Mechanics of Porous Media at Several Scales of Observation
2.3.1. Rock
2.3.2. Soil
2.3.3. Metallic Powders and Lead Shots
2.4. Theory
2.4.1. Problem Setting
2.4.2. Equations of Elasticity
2.4.3. Theoretical Proof of the ESP
- The stress, σij, acting over the boundary surface of a representative volume of the two-phase medium, can be decomposed as follows (Figure 3):σij = (σij – p δij) + p δij
- 2.
- The stress field associated with the second term on the right side of Equation (14), (p δij), which is now applied over Σ1 and Σ2, i.e., the whole boundary surface, is a well-known solution consisting of a uniform isotropic pressure equal to p (see Ref. [42]) for whatever boundary or pore surface shape, whereas the stress at a point associated with the first term (σij − p δij) is an unknown tensor, ψ0ij = ψ0ij(σkl − p δkl), which depends only on the differential stress (σkl − p δkl) (Figure 3). We are not interested in calculating the solution ψij for each point but at achieving information about its features, namely at comparing the local stress and strain fields in a porous medium subjected to a pore pressure, with those into an identical one in dry condition.
- 3.
- Although the superposition principle is generally not valid in the case of nonlinear elastic material (specifically, nonlinear elasticity of the model defined in Section 2.4.1. is related to a varying boundary pore surface), it can be proved that, in the special case in which one of the two stress systems consists of a uniform hydrostatic pressure, applied to the whole boundary, i.e., on the external and pore surfaces, such a principle is applicable. Preliminary, it is recalled that two geometrically similar elastic bodies, undergoing the same external stress, show the same local stress at corresponding points; in other words, the system of Equation (10) provides solutions that depend only on boundary surface shape and not on its size (see Ref. [9]).Let us consider a sample of porous medium, with an undeformed boundary surface ΣI. Imagine applying a stress σa over the outer surface and then subsequently unloading the sample and applying a pressure, p, on the whole boundary surface. Let ΣII denote the deformed surface after application of σa and by ΣIII that was obtained after the application of p alone (Figure 3). Let ψa(x) denote the stress field associated with σa and by ψp(x), which is associated with p. The solution associated with the latter boundary condition is the well-known constant isotropic tensor, ψpij(x) = p δij. In this case, as the pressure, p, produces a cubic strain (which implies geometric similarity), it follows that the surface ΣIV is geometrically similar to ΣII, i.e., the one that would be obtained for p = 0. Therefore, the solution ψa(x) fulfils the boundary conditions (11) also over ΣIV. Taking into account that the solution ψpij = p δij fulfils the boundary condition relating to a uniform pressure for whatever boundary shape, we obtain the following:ψij(σakl + p δkl) = ψaij(σakl) + p δijMoreover, both terms on the right side fulfil the boundary conditions on ΣIV.
- 4.
- The solution of Equation (10), associated with the boundary stress of Equation (13), is given by the superposition principle, by the sum of ψ0ij and p:ψij = ψ0ij (σkl − p δkl) + p δijEquation (16) is not an ES law but rather a representation of the local stress field on a smaller scale than pores. This plays a key role in the here-developed model, as it allows us to evaluate the relevant properties of local stresses within the material and can clarify several significant aspects of ESP. The stress field inside the material that constitutes a saturated porous body includes the following:
- A term (p δkl) which produces only a small volume reduction (cubic strain), in accordance with the intrinsic bulk modulus of the solid, Ks, with no pore-shape change;
- A term ψ0ij, which depends on (σkl – p δkl) and which produces the often-more-evident strain at the macroscopic scale, in terms of aggregate volume and shape change, as well as pore surface shape deformation. It should be noted that this stress and strain depend exclusively on the differential stress (σkl − p δkl), i.e., Terzaghi’s ES. This provides a first explanation of the ESP for stress–strain behavior of rock. Two identical porous bodies, one subjected to pore pressure and one in dry condition but undergoing to the same differential stress (σkl − p δkl), show macroscopic strains which differ only by a small volume change associated with p.
- 5.
- The role of the differential stress (σkl − p δkl) and pressure, p, in stress–strain and strength behavior of different porous media can be depicted as follows:
- Stress–strain behavior: The differential stress (σ − p) is responsible for the variation in the geometry of the pores and/or grain spatial arrangement, which, with the same material, controls all the mechanical and hydraulic characteristics of the porous medium itself. The pressure (p) produces a volume strain which, in many geotechnical engineering applications, is often modest or negligible but may be significant in low-porosity rocks subjected to high pressures in the Earth’s crust. Such a strain is associated with a geometrically similar transformation of the porous medium geometry with no pore/void shape change. In the study of stress–strain behavior of soils and rocks (and a great variety of other porous media), this volume variation is often taken into account by means of the Equation (6), as it is measured together with that due to the other stresses acting on the sample or on the generic representative volume.
- Strength (and inelastic) behavior: All of the above illustrated inelastic deformations (fracture in rocks and concrete, reciprocal displacements between particles in soils, ductile strain of grains in metal powders or lead shots) are practically exclusively controlled by forces acting on areas of high stress concentration, such as fracture tips in rock, contact areas in soils, and dislocations at the crystal lattice scale within metallic grains or lead spheres, in which pore pressure is negligible with respect to the maximum local stresstensor component, denoted by ψ0Max:ψ0Max >> pThis implies that, for the maximum local stress component, Equation (16) becomes as follows:ψMax ≈ ψ0Max(σkl − p δkl)Therefore, in areas of stress concentration, the maximum local stress component fully depends on Terzaghi’s ES. As a consequence, any variation in the geometry of the cracks and fractures, as well as in the arrangement of the particles in porous granular media, is controlled exclusively by Terzaghi ES (Equation (1)).
- Clarification on stress–strain behavior of granular media: The above drawn considerations about the strength behavior of porous media are also valid in those deformations in soils and granular media that are often improperly considered nonlinear elastic, i.e., those in the pre-failure phase, as they are in fact inelastic. The trend of a strain process and the reciprocal displacements between particles are controlled, with excellent approximation, exclusively by Terzaghi’s ES, (σ − p) (Equation (1)), even in the case of high pressures. However, in this latter case, it is often considered convenient to use the Skempton–Nur–Byerlee expression of the ES (Equation (6)), rather than that of Terzaghi (Equation (1)), in order to also take into account the volume variation due to the above considered term, p, as it is measured experimentally together with the volume variation due to particle rearrangement. Anyway, it should be taken into account that this choice is purely conventional (Section 2.2).
2.4.4. Choice between ESP Formulations
2.5. Historical Remarks and Overview of Several Theoretical Approaches
2.5.1. The Early Works
2.5.2. Successive Studies and Formulations
2.5.3. Currently Open Issues about Fractured Rock and Fracturing Processes
3. Fluid Flow, Consolidation, and Fluid–Rock Interaction
3.1. The Early Approaches by Terzaghi and Fillunger
ρs dvs/dt = (Z − ∇Ps)
∂ρs/∂t = −∇∙(ρs vs)
∂vs/∂t + vs∂vs/∂z = 1/(ns ρs) (Z − ∂(ns P)/∂z)
∂n/∂t = −∂(n vw)/∂z
∂n/∂t = ∂(ns vs)/∂z
3.2. BiotApproach
3.3. Homogenization Approach
3.4. Theory of Porous Media
3.5. Hydraulic Behavior of Porous Fractured Media
3.5.1. Single-Porosity and Dual-Porosity Models and Their Main Limits
3.5.2. Multiple Porosity Models and Still Open Issues
Φ23 = C2 n2 ∂p2/∂t + Φ12
Φj,j+1 = Cjnj ∂pj/∂t + Φj−1,j
ΦN = CNnN ∂pN/∂t + ΦN−1,N
ΦN = ∇∙KN ∇hN
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
References
- Terzaghi, K. The shearing resistance of saturated soils. ISSMGE 1936, 1, 54–56. [Google Scholar]
- Terzaghi, K. Die Berechnung der Durchlassigkeitsziffer des Tones aus Dem Verlauf der Hidrodynamichen Span-Nungserscheinungen, Akademie der Wissenschaften in Wien; Mathematish-Naturwissen-SchaftilicheKlasse: Mainz, Germany, 1923; pp. 125–138. [Google Scholar]
- Fillunger, P. Erdbaumechanik? Selbstverl. d. Verf.: Wien, Austria, 1936. [Google Scholar]
- Fillunger, P. Versuche uber die ZugfestigkeitbeiallseitigemWasserdruck. Osterr. Wochenschr. Offentl. Baudienst 1915, 29, 443–448. [Google Scholar]
- Skempton, A.W. Effective Stress in Soil, Concrete and Rocks; Butterworth & Company Ltd.: London, UK, 1960; pp. 4–16. [Google Scholar]
- Nur, A.; Byerlee, J.D. An exact effective stress law for elastic deformation of rock with fluids. J. Geophys. Res. 1971, 76, 6414–6419. [Google Scholar] [CrossRef]
- Biot, M.A. General Theory of Three-Dimensional Consolidation. J. Appl. Phys. 1941, 12, 155. [Google Scholar] [CrossRef]
- Suklje, L. Rheological Aspects of Soil Mechanics; Wiley-Interscience: London, UK, 1969. [Google Scholar]
- Guerriero, V.; Mazzoli, S. Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review. Geosciences 2021, 11, 119. [Google Scholar] [CrossRef]
- Robin, A. Note on Effective Pressure. J. Geophys. Res. 1973, 78, 2434–2437. [Google Scholar] [CrossRef]
- Hampton, J.C.; Boitnott, G.N. The misnomer of “Effective Stress” and its relation to Biot Coefficients. In Proceedings of the 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, WA, USA, 17–20 June 2018. ARMA-2018-1130. [Google Scholar]
- Terzaghi, K.; Rendulic, L. Die wirksame Flachenporositat des Betons. Zeitschr. Osten. Ing. Arch. Ver. 1934, 1/2, 1–9. [Google Scholar]
- Terzaghi, K.; Fröhlich, O.K. Theorie der Setzung von Tonschichten; Eine EinfüHrung in Die AnalytischeTonmechanik; Leipzig Wien Deuticke: Wien, Austria, 1936. [Google Scholar]
- Khalili, N.; Romero, E.; Marinho, F.A. State of the Art Report. Advances in Unsaturated Soil Mechanics: Constitutive modeling, experimental investigation, and field instrumentation. In Proceedings of the 20th ICSMGE-State of the Art and Invited Lectures—Rahman and Jaksa, Sydney, Australia, 1–5 May 2022; Australian Geomechanics Society: Sydney, Australia, 2022. [Google Scholar]
- Laloui, L. Mechanics of Unsaturated Geomaterials; ISTE Ltd.: London, UK, 2010. [Google Scholar]
- D’Onza, F.; Gallipoli, D.; Wheeler, S.; Casini, F.; Vaunat, J.; Khalili, N.; Laloui, L.; Mancuso, C.; Mašín, D.; Nuth, M.; et al. Benchmark of constitutive models for unsaturated soils. Géotechnique 2011, 61, 283–302. [Google Scholar] [CrossRef] [Green Version]
- Nasser Khalili, N.; Russell, A.; Khoshghalb, A. Unsaturated Soils: Research & Applications; CRC Press: London, UK, 2014. [Google Scholar]
- Lade, P.V.; De Boer, R. The concept of effective stress for soil, concrete and rock. Gèotecnique 1997, 47, 61–78. [Google Scholar] [CrossRef]
- Zimmerman, R.W. Compressibility of Sandstones; Elsevier: Amsterdam, The Netherlands, 1991; ISBN 9780444883254. [Google Scholar]
- Cheng, A.H.D. Poroelasticity; Springer: Cham, Switzerland, 2016; p. 877. [Google Scholar]
- Zimmerman, R.W. Compressibility of Two-Dimensional Cavities of Various Shapes. J. Appl. Mech. 1986, 53, 500–504. [Google Scholar] [CrossRef]
- Zimmerman, R.W.; Somerton, W.; King, M. Compressibility of Porous Rocks. J. Geophys. Res. 1986, 91, 12765–12777. [Google Scholar] [CrossRef]
- Zimmerman, R.W.; Myer, L.R.; Cook, N.G.W. Grain and Void Compression in Fractured and Porous Rocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1994, 31, 179–184. [Google Scholar] [CrossRef] [Green Version]
- David, E.C.; Brantut, N.; Schubnel, A.; Zimmerman, R.W. Sliding crack model for nonlinearity and hysteresis in the uniaxial stress–strain curve of rock. Int. J. Rock Mech. Min. Sci. 2012, 52, 9–17. [Google Scholar] [CrossRef]
- Garg, S.K.; Nur, A. Effective Stress Laws for Fluid-Saturated Porous Rocks. J. Geophys. Res. 1973, 78, 5911–5921. [Google Scholar] [CrossRef]
- Walsh, J.B. The effect of cracks on the compressibility of rock. J. Geophys. Res. 1965, 70, 381–389. [Google Scholar] [CrossRef]
- Walsh, J.B. The effect of cracks on the uniaxial elastic compression of rocks. J. Geophys. Res. 1965, 70, 399–411. [Google Scholar] [CrossRef]
- Walsh, J.B. The effect of cracks in rocks on Poisson’s ratio. J. Geophys. Res. 1965, 70, 5249–5257. [Google Scholar] [CrossRef]
- Walsh, J.B.; Grosenbaugh, M.A. A New Model for Analyzing the Effect of Fractures on Compressibility. J. Geophys. Res. 1979, 84, 3532–3536. [Google Scholar] [CrossRef]
- Zimmerman, R.W. The Effect of Pore Structure on the Pore and Bulk Compressibilities of Consolidated Sandstones. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1984. [Google Scholar]
- Zimmerman, R.W. The effect of microcracks on the elastic moduli of brittle materials. J. Mater. Sci. Lett. 1985, 4, 1457–1460. [Google Scholar] [CrossRef]
- Pimienta, L.; Fortin, J.; Guéguen, Y. New method for measuring Compressibility and Poroelasticitycoeffcients in porous and permeable rocks. J. Geophys. Res. Solid Earth 2017, 122, 2670–2689. [Google Scholar] [CrossRef]
- Price, N.J.; Cosgrove, J.W. Analysis of Geological Structures; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Secor, D.T. Role of fluid pressure in jointing. Am. J. Sci. 1965, 263, 633–646. [Google Scholar] [CrossRef]
- Secor, D.T. Mechanics of natural extension fracturing at depth in the earth’s crust. In Research in Tectonics; Baer, A.J., Norris, D.K., Eds.; Geological Survey of Canada Paper 68–52; Geological Survey of Canada: Ottawa, ON, Canada, 1969; pp. 3–48. [Google Scholar]
- Bai, T.; Pollard, D.D. Fracture spacing in layered rocks: A new explanation based on the stress transition. J. Struct. Geol. 2000, 22, 43–57. [Google Scholar] [CrossRef]
- Bai, T.; Pollard, D.D. Closely spaced fractures in layered rocks: Initiation mechanism and propagation kinematics. J. Struct. Geol. 2000, 22, 1409–1425. [Google Scholar] [CrossRef]
- Pollard, D.D.; Segall, P. Theoretical displacement and stresses near fractures in rock: With applications to fault, joints veins, dikes, and solution surfaces. In Fracture Mechanics of Rock; Atkinson, B.K., Ed.; Academic Press: London, UK, 1987; pp. 277–350. [Google Scholar]
- Pollard, D.D.; Aydin, A. Progress in understanding jointing over the past century. GSA Bull. 1988, 100, 1181–1204. [Google Scholar] [CrossRef]
- Olson, J.; Pollard, D.D. Inferring paleostresses from natural fracture patterns: A new method. Geology 1989, 17, 345–348. [Google Scholar] [CrossRef]
- Davy, P.; Le Goc, R.; Darcel, C. A model of fracture nucleation, growth and arrest, and consequences for fracture density and scaling. J. Geophys. Res. Solid Earth 2013, 118, 1393–1407. [Google Scholar] [CrossRef] [Green Version]
- Timoshenko, S.; Goodier, N.J. Theory of Elasticity; McGraw-Hill Book Company: New York, NY, USA, 1951. [Google Scholar]
- Griffith, A.A. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A 1921, 221, 163–198. [Google Scholar] [CrossRef] [Green Version]
- Murrell, S.A.F. A criterion for brittle fracture of rocks and Concrete under triaxial stress and the effect of pore pressure on the criterion. In Proceedings of the 5th Rock Mechanics Symposium, Minneapolis, MN, USA, May 1962; Fairhurst, C., Ed.; Pergamon Press: Oxford, UK, 1963; pp. 563–577. [Google Scholar]
- Murrell, S.A.F. The theory of the propagation of elliptical Griffith cracks under various conditions of plane strain or plane stress: Part I. Br. J. Appl. Phys. 1964, 15, 1195–1223. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshits, E.M. Theory of Elasticity; Pergamon Press: Oxford, UK, 1970. [Google Scholar]
- Eringen, A.C. Continuum Mechanics at the Atomic Scale. Cryst. Lattice Def. Amorph. Mater. 1977, 120, 109–130. [Google Scholar]
- Ari, N.; Eringen, A.C. Nonlocal stress field at Griffith crack. Cryst. Lattice Def. Amorph. Mater. 1983, 10, 33–38. [Google Scholar]
- Burgers, W.G. Crystal plasticity. In Elasticity, Plasticity and Structure of Matter; Houwink, R., Ed.; Cambridge University Press: Cambridge, UK, 1937. [Google Scholar]
- Eringen, A.C. Nonlocal Continuum Field Theories; Springer: New York, NY, USA, 2002. [Google Scholar]
- Jaeger, J.C.; Cook, N.G.W.; Zimmerman, R.W. Fundamentals of Rock Mechanics; Wiley-Blackwell: Oxford, UK, 2007; ISBN 978-0632057597. [Google Scholar]
- Rudeloff, M.; Panzerbieter, O. Versuche uber den Porendruck des WassersimMauerwerk. In MitteilungenausdemKöniglichenMaterialprüfungsamtzu Berlin-Lichterfelde-West. Ergänzungsheft 1; Springer: Berlin, Germany, 1912. [Google Scholar]
- Skempton, A.W. Significance of Terzaghi’s concept of effective stress (Terzaghi’s discovery of effective stress). In From Theory to Practice in Soil Mechanics; Bjerrum, L., Casagrande, A., Peek, R.B., Skempton, A.W., Eds.; John Wiley & Sons: New York, NY, USA; London, UK, 1960. [Google Scholar]
- Oka, F. Validity and limits of the effective stress concept in geomechanics. Mech. Cohes. Frict. Mater. 1996, 1, 219–234. [Google Scholar] [CrossRef]
- De Buhan, P.; Dormieux, L. On the validity of the effective stress concept for assessing the strength of saturated porous materials: A homogenization approach. J. Mech. Phys. Solids 1996, 44, 1649–1667. [Google Scholar] [CrossRef]
- Bluhm, J.; De Boer, R. Effective stresses—A clarification. Arch. Appl. Mech. 1996, 66, 479–492. [Google Scholar]
- Biot, M.A.; Willis, D.G. The elastic coefficients of the theory of consolidation. J. Appl. Mech. 1957, 24, 594–601. [Google Scholar] [CrossRef]
- Auriault, J.L.; Sanchez-Palencia, E. Etude du comportement d’un milieu poreux saturé déformable (Study of macroscopic behavior of a deformable saturated porous medium). J. Mécanique 1977, 16, 575–603. [Google Scholar]
- Geertsma, J. The effect of fluid pressure decline on volumetric changes of porous rocks. Trans. AIME 1957, 210, 331–340. [Google Scholar] [CrossRef]
- De Boer, R. Theory of Porous Media, Highlights in the Historical Development and Current State; Springer: Berlin, Germany; New York, NY, USA, 2000; p. 618. [Google Scholar]
- Coussy, O. Mechanics and Physics of Porous Solids; Wiley: Chichester, UK, 2010. [Google Scholar]
- Ehlers, W. Constitutive equations for granular materials in geomechanical context. In Continuum Mechanics in Environmental Sciences and Geophysics; Hutter, K., Ed.; Springer: Wien, Austria, 1993; pp. 313–402. [Google Scholar]
- Ehlers, W. Challenges of porous media models in geo- and biomechanical engineering including electro-chemically active polymers and gels. Int. J. Adv. Eng. Sci. Appl. Math. 2009, 1, 1–24. [Google Scholar] [CrossRef]
- Auriault, J.L. Dynamic behavior of a porous medium saturated by a Newtonian fluid. Int. J. Eng. Sci. 1980, 18, 775–785. [Google Scholar] [CrossRef]
- Bonnet, G.; Auriault, J.L. Dynamics of saturated and deformable porous media: Homogenization theory and determination of the solid-liquid coupling coefficients. In Physics of Finely Divided Matter; Boccara, N., Daoud, Z.M., Eds.; Springer: Les Houches, France, 1985; pp. 306–316. [Google Scholar]
- Chateau, X.; Dormieux, L. Micromechanics of saturated and unsaturated porous media. Int. J. Numer. Anal. Methods Geomech. 2002, 26, 831–844. [Google Scholar] [CrossRef]
- Mei, C.C.; Auriault, J.-I. Mechanics of heterogeneous porous media with several spatial scales. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1989, 426, 391–423. [Google Scholar] [CrossRef]
- Terada, K.; Ito, T.; Kikuchi, N. Characterization of the mechanical behaviors of solid-fluid mixture by the homogenization method. Comput. Methods Appl. Mech. Eng. 1998, 153, 223–257. [Google Scholar] [CrossRef]
- Bear, J.; Cheng, A.H.D. Modeling Groundwater Flow and Contaminant Transport; Springer: Dordrecht, The Netherlands; London, UK, 2010; p. 834. [Google Scholar]
- Ene, H.I.; Poliševski, D. Thermal Flow in Porous Media; D. Reidel: Dordrecht, The Netherlands; Boston, MA, USA, 1987; p. 194. [Google Scholar]
- Hornung, U. Homogenization and Porous Media; Springer: New York, NY, USA, 1997; p. 279. [Google Scholar]
- Lévy, T. Propagation of waves in a fluid-saturated porous elastic solid. Int. J. Eng. Sci. 1979, 17, 1005–1014. [Google Scholar] [CrossRef]
- Sanchez-Palencia, E. Non-Homogeneous Media and Vibration Theory; Springer: Berlin, Germany; New York, NY, USA, 1980; p. 398. [Google Scholar]
- Moyne, C.; Murad, M.A. Electro-chemo-mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure. Int. J. Solids Struct. 2002, 39, 6159–6190. [Google Scholar] [CrossRef]
- De Boer, R. Theory of Porous Media—Past and Present. ZAMM 1998, 78, 441–466. [Google Scholar] [CrossRef]
- De Boer, R. Theoretical poroelasticity—A new approach. Chaos Solitons Fractals 2005, 25, 861–878. [Google Scholar] [CrossRef]
- De Boer, R. Reflections on the development of the theory of porous media. Appl. Mech. Rev. 2003, 56, R27–R42. [Google Scholar] [CrossRef]
- De Boer, R. Introduction to the Porous Media Theory. In IUTAM Symposium on Theoretical and Numerical Methods in Continuum Mechanics of Porous Materials. Solid Mechanics and Its Application; Ehlers, W., Ed.; Springer: Dordrecht, The Netherlands, 2001; Volume 87. [Google Scholar] [CrossRef]
- Morland, L.W. A simple constitutive theory for a fluid-saturate porous solid. J. Geophys. Res. 1972, 77, 890–900. [Google Scholar] [CrossRef]
- Didwania, A.K.; De Boer, R. Saturated Compressible and Incompressible Porous Solids: Macro- and Micromechanical Approaches. Transp. Porous Media 1999, 34, 101–115. [Google Scholar] [CrossRef]
- Bowen, R.M. Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 1980, 18, 1129–1148. [Google Scholar] [CrossRef]
- Bowen, R.M. Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 1982, 20, 697–735. [Google Scholar] [CrossRef]
- De Boer, R. The thermodynamic structure and constitutive equations for fluid-saturated compressible and incompressible elastic porous solids. Int. J. Solids Struct. 1998, 35, 4557–4573. [Google Scholar] [CrossRef]
- Crochet, M.J.; Naghdi, P.M. On constitutive equations for flow of fluid through an elastic solid. Int. J. Eng. Sci. 1966, 4, 383–401. [Google Scholar] [CrossRef]
- Atkin, R.J.; Craine, R.E. Continuum theories of mixtures: Basic theory and historical development. Q. J. Mech. Appl. Math. 1976, 29, 209–244. [Google Scholar] [CrossRef]
- Dell’Isola, F.; Guarascio, M.; Hutter, K. A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi’s effective stress principle. Arch. Appl. Mech. 2000, 70, 323–337. [Google Scholar] [CrossRef] [Green Version]
- Brochard, L.; Vandamme, M.; Pellenq, R.J.-M. Poromechanics of microporous media. J. Mech. Phys. Solids 2012, 60, 606–622. [Google Scholar] [CrossRef]
- Li, C.; Borja, R.I.; Regueiro, R.A. Dynamics of porous media at finite strain. Comput. Methods Appl. Mech. Eng. 2004, 193, 3837–3870. [Google Scholar] [CrossRef]
- Uzuoka, R.; Borja, R.I. Dynamics of unsaturated poroelastic solids at finite strain. Int. J. Numer. Anal. Methods Geomech. 2012, 36, 1535–1573. [Google Scholar] [CrossRef]
- MacMinn, C.W.; Dufresne, E.R.; Wettlaufer, J.S. Large Deformations of a Soft Porous Material. Phys. Rev. Appl. 2016, 5, 044020. [Google Scholar] [CrossRef] [Green Version]
- Bowen, R.M.; Lockett, R.R. Inertial effects in poroelasticity. J. Appl. Mech. 1983, 50, 334–342. [Google Scholar] [CrossRef]
- De Boer, R.; Ehlers, W.; Liu, Z. One-dimensional transient wave propagation in fluid saturated incompressible porous media. Arch. Appl. Mech. 1993, 63, 59–72. [Google Scholar] [CrossRef]
- Achanta, S.; Cushman, J.H.; Okos, M.R. On multicomponent, multiphase thermomechanics with interfaces. Int. J. Eng. Sci. 1994, 32, 1717–1738. [Google Scholar] [CrossRef]
- Huyghe, J.M.; Janssen, J.D. Quadriphasic mechanics of swelling incompressible porous media. Int. J. Eng. Sci. 1997, 35, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Bennethum, L.S.; Murad, M.A.; Cushman, J.H. Macroscale thermodynamics and the chemical potential for swelling porous media. Transp. Porous Media 2000, 39, 187–225. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, Z.; Chen, Y.; Yang, Q. On the effective stress coefficient of saturated fractured rocks. Comput. Geotech. 2020, 123, 103564. [Google Scholar] [CrossRef]
- Guerriero, V.; Mazzoli, S.; Iannace, A.; Vitale, S.; Carravetta, A.; Strauss, C. A permeability model for naturally fractured carbonate reservoirs. Mar. Pet. Geol. 2013, 40, 115–134. [Google Scholar] [CrossRef]
- Hooker, J.N.; Laubach, E.; Marrett, R. Fracture-aperture size—Frequency, spatial distribution, and growth processes in strata-bounded and non-strata-bounded fractures, Cambrian Mesón Group, NW Argentina. J. Struct. Geol. 2013, 54, 54–71. [Google Scholar] [CrossRef]
- Marrett, R.; Ortega, O.J.; Kelsey, C.M. Extent of power-law scaling for natural fractures in rock. Geology 1999, 27, 799–802. [Google Scholar] [CrossRef]
- Ortega, O.; Marrett, R. Prediction of macrofracture properties using microfracture information, Mesaverde Group sandstones, San Juan Basin, New Mexico. J. Struct. Geol. 2000, 22, 571–588. [Google Scholar] [CrossRef]
- Ortega, O.J.; Marrett, R.A.; Laubach, S.E. Scale-independent approach to fracture intensity and average spacing measurement. AAPG Bull. 2006, 90, 193–208. [Google Scholar] [CrossRef]
- Guerriero, V.; Iannace, A.; Mazzoli, S.; Parente, M.; Vitale, S.; Giorgioni, M. Quantifying uncertainties in multi-scale studies of fractured reservoir analogues: Implemented statistical analysis of scan line data from carbonate rocks. J. Struct. Geol. 2010, 32, 1271–1278. [Google Scholar] [CrossRef]
- Guerriero, V.; Vitale, S.; Ciarcia, S.; Mazzoli, S. Improved statistical multi-scale analysis of fractured reservoir analogues. Tectonophysics 2011, 504, 14–24. [Google Scholar] [CrossRef]
- Hooker, J.N.; Laubach, S.E.; Marrett, R. A universal power-law scaling exponent for fracture apertures in sandstones. GSA Bull. 2014, 126, 1340–1362. [Google Scholar] [CrossRef]
- Anders, M.H.; Laubach, S.E.; Scholz, C.H. Microfractures: A review. J. Struct. Geol. 2014, 69, 377–394. [Google Scholar] [CrossRef] [Green Version]
- Guerriero, V.; Mazzoli, S.; Vitale, S. Multi-scale statistical analysis of scan line data from reservoir analogues. Rend. Online Soc. 2009, 5, 104–107. [Google Scholar]
- Sibson, R.H. Interactions between Temperature and Pore-Fluid Pressure during Earthquake Faulting and a Mechanism for Partial or Total Stress Relief. Nat. Phys. Sci. 1973, 243, 66–68. [Google Scholar] [CrossRef]
- Rudnicki, J.W. Slip on an impermeable fault in a fluid saturated rock mass. In Earthquake Source Mechanic; Das, S., Boatwrigth, J., Scholz, C.H., Eds.; American Geophysical Union: Washington, DC, USA, 1986. [Google Scholar]
- Rudnicki, J.W.; Rice, J.R. Effective normal stress alteration due to pore pressure changes induced by dynamic slip propagation on a plane between dissimilar materials. J. Geophys. Res. 2006, 111, B10308. [Google Scholar] [CrossRef] [Green Version]
- Acosta, M.; Passelègue, F.X.; Schubnel, A.; Violay, M. Dynamic weakening during earthquakes controlled by fluid thermodynamics. Nat. Commun. 2018, 9, 3074. [Google Scholar] [CrossRef]
- Ishikawa, T.; Tanimizu, M.; Nagaishi, K.; Matsuoka, J.; Tadai, O.; Sakaguchi, M.; Hirono, T.; Mishima, T.; Tanikawa, W.; Lin, W.; et al. Coseismic fluid–rock interactions at high temperatures in the Chelungpu fault. Nat. Geosci. 2008, 1, 679–683. [Google Scholar] [CrossRef]
- Di Toro, G.; Han, R.; Hirose, T.; De Paola, N.; Nielsen, S.; Mizoguchi, K.; Ferri, F.; Cocco, M.; Shimamoto, T. Fault lubrication during earthquakes. Nature 2011, 471, 494–498. [Google Scholar] [CrossRef]
- Hirose, T.; Bystricky, M. Extreme dynamic weakening of faults during dehydration by coseismic shear heating. Geophys. Res. Lett. 2007, 34, L14311. [Google Scholar] [CrossRef]
- Di Toro, G.; Goldsby, D.; Tullis, T. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature 2004, 427, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Tse, S.T.; Rice, J.R. Crustal earthquake instability in relation to the depth variation of frictional slip properties. J. Geophys. Res. 1986, 91, 9452–9472. [Google Scholar] [CrossRef] [Green Version]
- Rattez, H.; Veveakis, M. Weak phases production and heat generation control fault friction during seismic slip. Nat. Commun. 2020, 11, 350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubbert, M.; Rubey, W. Role of fluid pressure in mechanics of overthrust faulting. Geol. Soc. Am. 1959, 70, 115–166. [Google Scholar] [CrossRef]
- Nur, A.; Booker, J.R. Aftershocks Caused by Pore Fluid Flow? Science 1972, 175, 885–887. [Google Scholar] [CrossRef]
- Marone, C.; Scholz, C.H. The depth of seismic faulting and the upper transition from stable to unstable slip regimes. Geophys. Res. Lett. 1988, 15, 621–624. [Google Scholar] [CrossRef] [Green Version]
- Chiarabba, C.; Buttinelli, M.; Cattaneo, M.; De Gori, P. Large earthquakes driven by fluid overpressure: The Apennines normal faulting system case. Tectonics 2020, 39, e2019TC006014. [Google Scholar] [CrossRef]
- Rice, J.R. Heating and weakening of faults during earthquake slip. J. Geophys. Res. 2006, 111, B05311. [Google Scholar] [CrossRef] [Green Version]
- Rice, J.R.; Rudnicki, J.W.; Tsai, V.C. Shear Localization in Fluid-Saturated Fault Gouge by Instability of Spatially Uniform, Adiabatic, Undrained Shear. In Proceedings of the AGU Fall Meeting 2005, San Francisco, CA, USA, 5–9 December 2005. Abstract Number T13E-05. [Google Scholar]
- Rice, J.R.; Rudnicki, J.W.; Platt, J.D. Stability and localization of rapid shear in fluid-saturated fault gouge: 1. Linearized stability analysis. J. Geophys. Res. Solid Earth 2014, 119, 4311–4333. [Google Scholar] [CrossRef] [Green Version]
- Rice, J.R.; Sammis, C.G.; Parsons, R. Off-fault secondary failure induced by a dynamic slip-pulse. Bull. Seismol. Soc. Am. 2005, 95, 109–134. [Google Scholar] [CrossRef] [Green Version]
- Scuderi, M.M.; Marone, C.; Tinti, E.; Di Stefano, G.; Collettini, C. Precursory changes in seismic velocity for the spectrum of earthquake failure modes. Nat. Geosci. 2016, 9, 695–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scuderi, M.; Collettini, C.; Marone, C. Frictional stability and earthquake triggering during fluid pressure stimulation of an experimental fault. Earth Planet. Sci. Lett. 2017, 477, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Scholz, C.H. Earthquakes and friction laws. Nature 1998, 391, 37–42. [Google Scholar] [CrossRef]
- Scuderi, M.M.; Collettini, C. The role of fluid pressure in induced vs. triggered seismicity: Insights from rock deformation experiments on carbonates. Sci. Rep. 2016, 6, 24852. [Google Scholar] [CrossRef] [Green Version]
- Hubbert, M.K.; Willis, D.G. Mechanics of Hydraulic Fracturing. Trans. AIME 1957, 210, 153–168. [Google Scholar] [CrossRef]
- Fyfe, W.S.; Price, N.J.; Thompson, A.B. Fluids in the Earth’s Crust; Elsevier: New York, NY, USA, 1978; p. 383. [Google Scholar]
- Engelder, T.; Lacazette, A. Natural hydraulic fracturing. In Rock Joints; Barton, C., Stephansson, O., Eds.; Balkema: Rotterdam, The Netherlands, 1990; pp. 35–43. [Google Scholar]
- Detournay, E.; Cheng, A.H.-D. Plane strain analysis of a stationary hydraulic fracture in a poroelastic medium. Int. J. Solids Struct. 1991, 27, 1645–1662. [Google Scholar] [CrossRef]
- Renshaw, C.E.; Harvey, C.F. Propagation velocity of a natural hydraulic fracture in a poroelastic medium. J. Geoph. Res. 1994, 99, 21667–21677. [Google Scholar] [CrossRef]
- Berchenko, I.; Detournay, E.; Chandler, N. Propagation of natural hydraulic fractures. Int. J. Rock Mech. Min. Sci. 1997, 34, 63.e1–63.e11. [Google Scholar] [CrossRef]
- Vitale, S.; Dati, F.; Mazzoli, S.; Ciarcia, S.; Guerriero, V.; Iannace, A. Modes and timing of fracture network development in poly-deformed carbonate reservoir analogues, Mt. Chianello, southern Italy. J. Struct. Geol. 2012, 37, 223–235. [Google Scholar] [CrossRef]
- Odling, N.E.; Gillespie, P.; Bourgine, B.; Castaing, C.; Chiles, J.P.; Christensen, N.P.; Fillion, E.; Genter, A.; Olsen, C.; Thrane, L.; et al. Variations in fracture system geometry and their implications for fluid flow in fractures hydrocarbon reservoirs. Pet. Geosci. 1999, 5, 373. [Google Scholar] [CrossRef]
- Guerriero, V.; Dati, F.; Giorgioni, M.; Iannace, A.; Mazzoli, S.; Vitale, S. The role of stratabound fractures for fluid migration pathways and storage in well bedded carbonates. Ital. J. Geosci. 2015, 134, 383–395. [Google Scholar] [CrossRef]
- Mazzoli, S.; Vitale, S.; Delmonaco, G.; Guerriero, V.; Margottini, C.; Spizzichino, D. ‘Diffuse faulting’ in the Machu Picchu granitoid pluton, Eastern Cordillera, Peru. J. Struct. Geol. 2009, 31, 1395–1408. [Google Scholar] [CrossRef]
- Gillespie, P.A.; Johnston, J.D.; Loriga, M.A.; McCaffrey, K.L.W.; Walsh, J.J.; Watterson, J. Influence of layering on vein systematics in line samples. In Fractures, Fluid Flow and Mineralisation; McCaffrey, K.L.W., Lonergan, L., Wilkinson, J.J., Eds.; Geological Society: London, UK, 1999; Volume 155, pp. 35–56. [Google Scholar] [CrossRef]
- Gillespie, P.A.; Howard, C.B.; Walsh, J.J.; Watterson, J. Measurement and characterisation of spatial distributions of fractures. Tectonophysics 1993, 226, 113–141. [Google Scholar] [CrossRef]
- Iannace, A.; Galluccio, L.; Guerriero, V.; Mazzoli, S.; Parente, M.; Vitale, S. Dolomites within the Mesozoic carbonates of Southern Apennines (Italy): Genetic models and reservoir implications. Rend. Online Soc. 2008, 2, 109–114. [Google Scholar]
- Giorgioni, M.; Iannace, A.; D’Amore, M.; Dati, F.; Galluccio, L.; Guerriero, V.; Mazzoli, S.; Parente, M.; Strauss, C.; Vitale, S. Impact of early dolomitization on multi-scale petrophysical heterogeneities and fracture intensity of low-porosity platform carbonates (albian-cenomanian, southern apennines, Italy). Mar. Pet. Geol. 2016, 73, 462–478. [Google Scholar] [CrossRef]
- Hobbs, D.W. The formation of tension joints in sedimentary rocks: An explanation. Geol. Mag. 1967, 104, 550–556. [Google Scholar] [CrossRef]
- Ladeira, F.L.; Price, N.J. Relationship between fracture spacing and bed thickness. J. Struct. Geol. 1981, 3, 179–183. [Google Scholar] [CrossRef]
- Narr, W.; Suppe, J. Joint spacing in sedimentary rocks. J. Struct. Geol. 1991, 13, 1037–1048. [Google Scholar] [CrossRef]
- Gross, M.R. The origin and spacing of cross joints: Examples from Monterey Formation, Santa Barbara Coastline, California. J. Struct. Geol. 1993, 15, 737–751. [Google Scholar] [CrossRef]
- Bai, T.; Pollard, D.D. Spacing of fractures in a multilayer at fracture saturation. Int. J. Fract. 2000, 100, 23–28. [Google Scholar] [CrossRef]
- Bai, T.; Pollard, D.D.; Gao, H. Explanation for fracture spacing in layered materials. Nature 2000, 403, 753–756. [Google Scholar] [CrossRef] [PubMed]
- Rives, T.; Razack, M.; Petit, J.-P.; Rawnsley, K.D. Joint spacing: Analogue and numerical simulations. J. Struct. Geol. 1992, 14, 925–937. [Google Scholar] [CrossRef]
- Bao, H.; Zhai, Y.; Lan, H.; Zhang, K.; Qi, Q.; Yan, C. Distribution characteristics and controlling factors of vertical joint spacing in sand-mud interbedded strata. J. Struct. Geol. 2019, 128, 103886. [Google Scholar] [CrossRef]
- Hooker, J.N.; Katz, R.F. Vein spacing in extending, layered rock: The effect of synkinematic cementation. Am. J. Sci. 2015, 315, 557–588. [Google Scholar] [CrossRef]
- Olson, J.E. Joint pattern development: Effects of subcritical crack growth and mechanical crack interaction. J. Geophys. Res. 1993, 98, 12251–12265. [Google Scholar] [CrossRef]
- Olson, J.E. Predicting fracture swarms—The influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock. Geol. Soc. Lond. Spec. Publ. 2004, 231, 73–88. [Google Scholar] [CrossRef]
- Schöpfer, M.P.J.; Arslan, A.; Walsh, J.J.; Childs, C. Reconciliation of contrasting theories for fracture spacing in layered rocks. J. Struct. Geol. 2011, 33, 551–565. [Google Scholar] [CrossRef]
- Burland, J. Interaction between structural and geotechnical engineers. In Proceedings of the Evening Meeting—IstructE/ICE Annual Joint Meeting, London, UK, 26 April 2006. [Google Scholar]
- De Boer, R.; Ehlers, W. The development of the concept of effective stresses. Acta Mech. 1990, 83, 77–92. [Google Scholar] [CrossRef]
- De Boer, R.; Schiffman, R.L.; Gibson, R.E. The origins of the theory of consolidation: The Terzaghi—Fillunger dispute. Géotechnique 1996, 46, 175–186. [Google Scholar] [CrossRef]
- Heinrich, G.; Desoyer, K. HydromechanischeGrundlagenfür die Behandlung von stationären und instationärenGrundwasserströmungen. Ing.-Arch. 1955, 23, 73–84. [Google Scholar] [CrossRef]
- Heinrich, G.; Desoyer, K. HydromechanischeGrundlagenfür die Behandlung von stationären und instationärenGrundwasserströmungen, II Mitteilung. Ing.-Arch. 1956, 24, 81–84. [Google Scholar] [CrossRef]
- De Boer, R. Highlights in the historical development of the porous media theory: Toward a consistent macroscopic theory. Appl. Mech. Rev. 1996, 49, 201–262. [Google Scholar] [CrossRef]
- Biot, M.A. Le problème de la consolidation des matières argileuses sous une charge (The problem of consolidation of clay material under load). Ann. Soc. Sci. Brux. 1935, B55, 110–113. [Google Scholar]
- Biot, M.A. Theory of Elasticity and Consolidation for a Porous Anisotropic Solid. J. Appl. Phys. 1955, 26, 182. [Google Scholar] [CrossRef]
- Biot, M.A. Nonlinear and semilinear rheology of porous solids. J. Geophys. Res. 1973, 78, 4924–4937. [Google Scholar] [CrossRef]
- Biot, M.A. General solutions of the equations of elasticity and consolidation for a porous material. J. Appl. Mech. 1956, 23, 91–96. [Google Scholar] [CrossRef]
- Biot, M.A. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 1962, 33, 1482–1498. [Google Scholar] [CrossRef]
- Biot, M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. 1. Low-frequency range. J. Acoust. Soc. Am. 1956, 28, 168–178. [Google Scholar] [CrossRef]
- Biot, M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. 2. Higher frequency range. J. Acoust. Soc. Am. 1956, 28, 179–191. [Google Scholar] [CrossRef]
- Biot, M.A. Generalized theory of acoustic propagation in porous dissipative media. J. Acoust. Soc. Am. 1962, 34, 1254–1264. [Google Scholar] [CrossRef]
- Biot, M.A. Variational Lagrangian-thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion. Int. J. Solids Struct. 1977, 13, 579–597. [Google Scholar] [CrossRef]
- Zimmerman, R.W. Pore compressibility under uniaxial strain. In Proceedings of the 6th International Symposium Land Subsidence, Ravenna, Italy, 24–29 September 2000; pp. 57–65. [Google Scholar]
- Coussy, O.; Dormieux, L.; Detournay, E. From Mixture Theory ToBiot’s Approach For Porous Media. Int. J. Solids Struct. 1998, 35, 4619–4635. [Google Scholar] [CrossRef]
- Barenblatt, G.I.; Zhelto, I.P.; Kochina, I.N. Basic Concepts of the Theory of Seepage of Homogeneous Liquids in Fissured Rocks. J. Appl. Math. Mech. 1960, 24, 1286–1303. [Google Scholar] [CrossRef]
- Warren, J.E.; Root, P.J. The behavior of naturally fractured reservoirs. SPE J. 1963, 3, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Kazemi, H. Pressure Transient Analysis of Naturally Fractured Reservoirs with Uniform Fracture Distribution. SPE J. 1969, 9, 451–462. [Google Scholar] [CrossRef]
- De Swaan, O.A. Analytic Solutions for Determining Naturally Fractured Reservoir Properties by Well Testing. SPE J. 1976, 16, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Ozkan, E.; Ohaeri, U.; Raghavan, R. Unsteady Flow to a Well Produced at a Constant Pressure in a Fractured Reservoir. SPE Form. Eval. 1987, 2, 186–200. [Google Scholar] [CrossRef]
- Al-Ahmadi, H.A.; Wattenbarger, R.A. Triple-porosity Models: One Further Step Towards Capturing Fractured Reservoirs Heterogeneity. In Proceedings of the SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia, 15–18 May 2011. [Google Scholar] [CrossRef]
- Liu, C.-Q. Exact solution for the compressible flow equations through a medium with triple-porosity. Appl. Math. Mech. 1981, 2, 457–462. [Google Scholar] [CrossRef]
- Liu, C.-Q. Exact solution of unsteady axisymmetrical two-dimensional flow through triple porous media. Appl. Math. Mech. 1983, 4, 717–724. [Google Scholar] [CrossRef]
- Abdassah, D.; Ershaghi, I. Triple-Porosity Systems for Representing Naturally Fractured Reservoirs. SPE Form. Eval. 1986, 1, 113–127. [Google Scholar] [CrossRef]
- Jalali, Y.; Ershaghi, I. Pressure Transient Analysis of Heterogeneous Naturally Fractured Reservoirs. In Proceedings of the SPE California Regional Meeting, Ventura, CA, USA, 8–10 April 1987. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.; Ershaghi, I. Pressure Transient Analysis of Dually Fractured Reservoirs. SPE J. 1996, 1, 93–100. [Google Scholar] [CrossRef]
- Liu, J.; Bodvarsson, G.S.; Wu, Y.-S. Analysis of flow behavior in fractured lithophysal reservoirs. J. Contam. Hydrol. 2003, 62–63, 189–211. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-S.; Liu, H.H.; Bodvarsson, G.S. A triple-continuum approach for modeling flow and transport processes in fractured rock. J. Contam. Hydrol. 2004, 73, 145–179. [Google Scholar] [CrossRef] [Green Version]
- Dreier, J. Pressure-Transient Analysis of Wells in Reservoirs with a Multiple Fracture Network. Master’s Thesis, Colorado School of Mines, Golden, CO, USA, 2004. Available online: https://hdl.handle.net/11124/78537 (accessed on 10 May 2020).
- Dreier, J.; Ozkan, E.; Kazemi, H. New Analytical Pressure-Transient Models to Detect and Characterize Reservoirs with Multiple Fracture Systems. In Proceedings of the SPE International Petroleum Conference in Mexico, Puebla, Mexico, 8–9 November 2004. [Google Scholar] [CrossRef]
- Ozkan, E.; Brown, M.; Raghavan, R.; Kazemi, H. Comparison of Fractured Horizontal-Well Performance in Conventional and Unconventional Reservoirs. In Proceedings of the SPE Western Regional Meeting, San Jose, CA, USA, 24–26 March 2009. [Google Scholar] [CrossRef]
- Brown, M.; Ozkan, E.; Raghavan, R.; Kazemi, H. Practical Solutions for Pressure Transient Responses of Fractured Horizontal Wells in Unconventional Reservoirs. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 4–7 October 2009. [Google Scholar] [CrossRef]
- Kim, J.; Sonnenthal, E.L.; Rutqvist, J. Formulation and sequential numerical algorithms of coupled fluid/heat flow and geomechanics for multiple porosity materials. Int. J. Numer. Methods Eng. 2012, 92, 425–456. [Google Scholar] [CrossRef] [Green Version]
- Spagnuolo, A.M.; Wright, S. Analysis of a multiple-porosity model for single-phase flow through naturally fractured porous media. J. Appl. Math. 2003, 2003, 327–364. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Wang, Y.; Killough, J.E. Beyond dual-porosity modeling for the simulation of complex flow mechanisms in shale reservoirs. Comput. Geosci. 2016, 20, 69–91. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerriero, V. 1923–2023: One Century since Formulation of the Effective Stress Principle, the Consolidation Theory and Fluid–Porous-Solid Interaction Models. Geotechnics 2022, 2, 961-988. https://doi.org/10.3390/geotechnics2040045
Guerriero V. 1923–2023: One Century since Formulation of the Effective Stress Principle, the Consolidation Theory and Fluid–Porous-Solid Interaction Models. Geotechnics. 2022; 2(4):961-988. https://doi.org/10.3390/geotechnics2040045
Chicago/Turabian StyleGuerriero, Vincenzo. 2022. "1923–2023: One Century since Formulation of the Effective Stress Principle, the Consolidation Theory and Fluid–Porous-Solid Interaction Models" Geotechnics 2, no. 4: 961-988. https://doi.org/10.3390/geotechnics2040045
APA StyleGuerriero, V. (2022). 1923–2023: One Century since Formulation of the Effective Stress Principle, the Consolidation Theory and Fluid–Porous-Solid Interaction Models. Geotechnics, 2(4), 961-988. https://doi.org/10.3390/geotechnics2040045