Stability Analysis of Earth Dam Slopes Based on the Second-Order Work Criterion in Finite Element Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Shear Strength Reduction Technique
2.2. Limit-State Criteria in Strength Reduction Technique
2.3. Second-Order Work Instability Criterion
2.3.1. Introduction
2.3.2. Implementation Procedure of the Second-Order Work Criterion for Slope Stability in a FE Code
3. Results
3.1. Heuristic Case: Application for a Homogeneous Slope
3.2. Application for an Existing Earth Dam
4. Discussion
5. Conclusions
- The failure of the geomaterial is described with a criterion based on a physical consideration rather than on the non-convergence of the numerical computation.
- Obtaining the safety factor before the occurrence of the non-convergence allows us to overcome the numerical crash of the FEM code. This can be useful for parametric studies related to sensitivity analyses or probabilistic analyses that require the automation of a large number of simulations.
- The failure surface emerges naturally without any a priori shape assumptions by computing the local second-order work.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cala, M.; Flisiak, J.; Tajdus, A. Slope stability analysis with modified shear strength reduction technique. In Proceedings of the Ninth International Symposium on Landslides, Rio de Janeiro, Brazil, 28 June–2 July 2004; Volume 4, pp. 1085–1089. [Google Scholar]
- Xu, B.; Low, B. Probabilistic stability analyses of embankments based on finite-element method. J. Geotech. Geoenvironmental Eng. 2006, 132, 1444–1454. [Google Scholar] [CrossRef]
- Cheng, Y.M.; Lansivaara, T.; Wei, W.B. Two-dimensional slope stability analysis by limit equilibrium and strength reduction techniques. Comput. Geotech. 2007, 34, 137–150. [Google Scholar] [CrossRef]
- Cho, S.E. Probabilistic assessment of slope stability that considers the spatial variability of soil properties. J. Geotech. Geoenvironmental Eng. 2010, 136, 975–984. [Google Scholar] [CrossRef]
- Li, D.Q.; Jiang, S.H.; Cao, Z.J.; Zhou, W.; Zhou, C.B.; Zhang, L.M. A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties. Eng. Geol. 2015, 187, 60–72. [Google Scholar] [CrossRef]
- Liu, L.L.; Cheng, Y.M.; Zhang, S.H. Conditional random field reliability analysis of a cohesion-frictional slope. Comput. Geotech. 2017, 82, 173–186. [Google Scholar] [CrossRef]
- Rafiei Renani, H.; Martin, C.D. Factor of safety of strain-softening slopes. J. Rock Mech. Geotech. Eng. 2020, 12, 473–483. [Google Scholar] [CrossRef]
- Sun, C.; Chai, J.; Luo, T.; Xu, Z.; Chen, X.; Qin, Y.; Ma, B. Nonlinear shear-strength reduction technique for stability analysis of uniform cohesive slopes with a general nonlinear failure criterion. Int. J. Geomech. 2021, 21, 06020033. [Google Scholar] [CrossRef]
- Griffiths, D.V.; Lane, P. Slope stability analysis by finite elements. Geotechnique 1999, 49, 387–403. [Google Scholar] [CrossRef]
- Laouafa, F.; Darve, F. Modeling of slope failure by a material instability mechanism. Comput. Geotech. 2002, 29, 301–325. [Google Scholar] [CrossRef]
- Duncan, J.M. State of the art: Limit equilibrium and finite-element analysis of slopes. J. Geotech. Eng. 1996, 122, 577–596. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Humpheson, C.; Lewis, R. Associated and non-associated visco-plasticity in soils mechanics. J. Geotech. 1975, 25, 671–689. [Google Scholar] [CrossRef]
- Diederichs, M.S.; Lato, M.; Hammah, R.; Quinn, P. Shear strength reduction (SSR) approach for slope stability analyses. In Proceedings of the 1st Canada–US Rock Mechanics Symposium, Vancouver, BC, Canada, 27–31 May 2007; pp. 319–327. [Google Scholar]
- Huang, M.; Jia, C.Q. Strength reduction FEM in stability analysis of soil slopes subjected to transient unsaturated seepage. Comput. Geotech. 2009, 36, 93–101. [Google Scholar] [CrossRef]
- Laouafa, F.; Prunier, F.; Daouadji, A.; Gali, H.A.; Darve, F. Stability in geomechanics, experimental and numerical analyses. Int. J. Numer. Anal. Methods Geomech. 2011, 35, 112–139. [Google Scholar] [CrossRef]
- Wautier, A.; Bonelli, S.; Nicot, F. Micro-inertia origin of instabilities in granular materials. Int. J. Numer. Anal. Methods Geomech. 2018, 42, 1037–1056. [Google Scholar] [CrossRef]
- Abramson, L.W. Slope Stability and Stabilization Methods; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Nicot, F.; Daouadji, A.; Laouafa, F.; Darve, F. Second-order work, kinetic energy and diffuse failure in granular materials. Granul. Matter 2011, 13, 19–28. [Google Scholar] [CrossRef]
- Khoa, H.D.V. Modélisations des Glissements de Terrain Comme un Problème de Bifurcation. Ph.D. Thesis, Institut National Polytechnique de Grenoble, Grenoble, France, 2005. [Google Scholar]
- Hill, R. A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 1958, 6, 236–249. [Google Scholar] [CrossRef]
- Prunier, F.; Chomette, B.; Brun, M.; Darve, F. Dimensionnement de problèmes géomécaniques quasistatiques grâce à un critère de stabilité matériel sous Cast3M. In Proceedings of the Club Cast3M 2014, Paris, France, 28 November 2014. [Google Scholar]
- Kakogiannou, E.; Sanavia, L.; Nicot, F.; Darve, F.; Schrefler, B.A. A porous media finite element approach for soil instability including the second-order work criterion. Acta Geotech. 2016, 11, 805–825. [Google Scholar] [CrossRef]
- Darve, F.; Servant, G.; Laouafa, F.; Khoa, H.D.V. Failure in geomaterials: Continuous and discrete analyses. Comput. Methods Appl. Mech. Eng. 2004, 193, 3057–3085. [Google Scholar] [CrossRef]
- Prunier, F.; Laouafa, F.; Lignon, S.; Darve, F. Bifurcation modeling in geomaterials: From the second-order work criterion to spectral analyses. Int. J. Numer. Anal. Methods Geomech. 2009, 33, 1169–1202. [Google Scholar] [CrossRef]
- Hu, J.; Li, Z.; Darve, F.; Feng, J. Advantages of second-order work as a rational safety factor and stability analysis of a reinforced rock slope. Can. Geotech. J. 2020, 57, 661–672. [Google Scholar] [CrossRef]
- Seyed-Kolbadi, S.M.; Sadoghi-Yazdi, J.; Hariri-Ardebili, M.A. An Improved Strength Reduction-Based Slope Stability Analysis. Geosciences 2019, 9, 55. [Google Scholar] [CrossRef]
- Mouyeaux, A.; Carvajal, C.; Bressolette, P.; Peyras, P.; Breul, P.; Bacconnet, C. Probabilistic stability of an earth dam by Stochastic Finite Element Method based on field data. Comput. Geotech. 2018, 101, 34–47. [Google Scholar] [CrossRef]
- Lafifi, B.; Darve, F.; Nouaouria, S.; Guenfoud, M. Utilisation du critère de stabilité de Hill en milieu non saturé pour la modélisation des glissements de terrain de la région de Constantine. In Proceedings of the 19ème Congrès Français de Mécanique, Marseille, France, 18–24 August 2011; pp. 1–7. [Google Scholar]
- Cast3M. Finite Element Code Cast3m. Available online: http://www-cast3m.cea.fr/ (accessed on 21 August 2023).
- Chen, W.F.; Liu, X.L. Limit Analysis in Soil Mechanics; Elsevier: Amsterdam, The Netherlands, 2012; Volume 52. [Google Scholar]
- Wautier, A.; Mouyeaux, A.; Nicot, F.; Wan, R.; Darve, F. Mechanical Stability Analysis of Engineering Structures with Use of the Bifurcation Domain Concept. In Multiscale Processes of Instability, Deformation and Fracturing in Geomaterials, Proceedings of the 12th International Workshop on Bifurcation and Degradation in Geomaterials, Perth, Australia, 28 November–1 December 2022; Springer: Cham, Switzerland, 2022; pp. 3–12. [Google Scholar]
Properties | Cohesion–Frictional Soil |
---|---|
Dry unit weight (kN·m−3) | 20.0 |
Cohesion (kPa) | 10.0 |
Friction angle (°) | 30.0 |
Dilatancy angle (°) | 10.0 |
Elastic modulus (MPa) | 50.0 |
Poisson ratio | 0.33 |
Properties | Coarse Sands (UPS and DOS) | Sandy Silts (COR) |
---|---|---|
Dry unit weight (kN·m−3) | 19.8 | 17.9 |
Cohesion (kPa) | 8.9 | 13.4 |
Friction angle (°) | 34.8 | 34.1 |
Dilatancy angle (°) | 12.0 | 12.0 |
Elastic modulus (MPa) | 45.0 | 40.0 |
Poisson ratio | 0.33 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mouyeaux, A.; Carvajal, C.; Nicot, F.; Wautier, A.; Peyras, L. Stability Analysis of Earth Dam Slopes Based on the Second-Order Work Criterion in Finite Element Modeling. Geotechnics 2023, 3, 1117-1134. https://doi.org/10.3390/geotechnics3040061
Mouyeaux A, Carvajal C, Nicot F, Wautier A, Peyras L. Stability Analysis of Earth Dam Slopes Based on the Second-Order Work Criterion in Finite Element Modeling. Geotechnics. 2023; 3(4):1117-1134. https://doi.org/10.3390/geotechnics3040061
Chicago/Turabian StyleMouyeaux, Anthony, Claudio Carvajal, François Nicot, Antoine Wautier, and Laurent Peyras. 2023. "Stability Analysis of Earth Dam Slopes Based on the Second-Order Work Criterion in Finite Element Modeling" Geotechnics 3, no. 4: 1117-1134. https://doi.org/10.3390/geotechnics3040061
APA StyleMouyeaux, A., Carvajal, C., Nicot, F., Wautier, A., & Peyras, L. (2023). Stability Analysis of Earth Dam Slopes Based on the Second-Order Work Criterion in Finite Element Modeling. Geotechnics, 3(4), 1117-1134. https://doi.org/10.3390/geotechnics3040061