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Abstract: Screw piles (often referred to as helical piles) are widely used to resist axial and lateral
loads as deep foundations. Multi-helix piles experience complex interactions between the plates
which depend on the soil properties, pile stiffness, helix diameter, and the number of helix plates
among other factors. Design methods for these piles are typically highly empirical and there remains
significant uncertainty around calculating the compression capacity. In this study, a database of
1667 3D finite element analyses was developed to better understand the effect of different inputs on
the compression capacity of screw piles in clean sands. Following development of the numerical
database, various machine learning methods such as linear regression, neural networks, support
vector machines, and Gaussian process regression (GPR) models were trained and tested on the
database in order to develop a prediction tool for the pile compression capacity. GPR models, trained
on the numerical data, provided excellent predictions of the screw pile compression capacity. The
test dataset root mean square error (RMSE) of 29 kN from the GPR model was almost an order of
magnitude better than the RMSE of 225 kN from a traditional theoretical approach, highlighting
the potential of machine learning methods for predicting the compression capacity of screw piles in
homogenous sands.

Keywords: screw piles; sand; finite element analysis; Plaxis 3D; machine learning; Gaussian process
regression; neural network; deep learning

1. Introduction

The use of screw piles has increased significantly in recent years mainly due to their
excellent performance under axial loading, their relatively low noise and vibration com-
pared to impact driven piles, and their suitability for a wide range of ground conditions.
The in-service performance of the screw piles largely depends on the embedded pile length
L, helix diameter D, pile shaft diameter d, spacing between the helix plates S (for multi-helix
anchors), installation method, as well as the properties of the soil deposit. Screw piles are
ideally installed in a pitch-matched manner [1] to avoid disturbance to the soil which could
then have a detrimental effect on post-installation pile capacity [2]. Pitch-matching is where
the rate of vertical advancement of the pile per rotation ∆z, corresponds to the distance
between the helix leading edge and the end of the helix and is usually defined with the
advancement ratio AR:

AR =
∆z
Ph

(1)

where Ph is the geometric pitch of the helical plate. Sharif et al. [2] suggested that the
torque required to install a screw pile can be predicted based upon a unique factor that
relates the observed installation torque to pile capacity, which is typically determined based
upon published empirical techniques (for example [1]). Therefore, predicting the screw
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piles capacity can be important for assessing both installation and in-service performance.
Current methods for predicting the compression capacity of screw piles rely on empirical
factors to account for the efficiency of load transfer between helix plates. These empirical
factors tend to follow simple linear equations and are dependent on a small number
of variables (e.g., soil friction angle, and normalized spacing). These simple factors are
incapable of fully capturing the complex interaction behavior between the screw pile
helix plates.

Several studies have investigated the effect of inter-helix spacing on the load transfer
mechanism of screw piles in sands. For multi-helix piles, two modes of failure have been
suggested: (1) cylindrical shear (CS, also referred to as perimeter shear or envelope failure)
between adjacent plates and (2) individual plate bearing [3]. Livneh and El Naggar [4]
investigated the behavior of the screw piles under axial compressive and tensile loads
through full-scale testing and numerical modelling. They suggested that the ground-line
load–displacement response of a screw pile consisted of three distinct stages: (I) a linear
elastic stage, (II) a nonlinear stage with little interaction between helix plates (individual
plate bearing), and (III) a near-linear stage where significant interaction occurs between the
helix plates and a cylindrical shear failure mechanism forms around the trailing helix plates.
Alwan and El Naggar [5] used 3D finite element (FE) modelling to study the load transfer
mechanism of screw piles with various normalized helix spacing (S/D) and showed that the
load transfer mechanism of the screw piles depends on the selected failure criteria. They
demonstrated that the load-transfer mechanism in compression is primarily cylindrical
shear for S/D = 1 and individual plate bearing for S/D ≥ 1.5 based on a failure criteria
of 25 mm (≈5% of D) displacement at pile head. Using a failure criteria of 8–10% of D
at pile head, the cylindrical shear behavior was dominant for spacing ratio ≤ 1.5, and
individual plate bearing governed for S/D > 1.5. They further suggested that using a failure
criteria of 12% of D, the load transfer is cylindrical shear for S/D ≤ 2, and individual
plate bearing for S/D ≥ 3. Zhang [6] suggested that for screw piles in sand with S/D < 2,
cylindrical shear behavior will occur. Donal and Calyton [7] and Livro [8] reported when
S/D > 3 independent plate bearing will occur. Moreover, Salhi et al. [9] reported for
S/D = 1.5–2 is the optimal normalized helix spacing, and Knappet et al. [10] recommended
an S/D > 3 for individual plate bearing in sandy soil.

Elsherbiny and El Naggar [11] studied the axial response of the helical piles through
numerical analyses and field tests. They proposed a method for calculating the bearing
capacity of double helix screw piles in sand which included a reduction factor and helix
efficiency factor to account for interaction between the helix plates. They suggested the
theoretical compressive capacity, Qc, of a screw pile at a normalized displacement of 5% of
diameter can be given by the following:

Qc = γ′H2 A2NqR + Ehγ′H1 A1NqR +
πd
2

H2
e f f γ′Ks tan δ (2)

where:
γ′ is the effective unit weight of the soil
H2 is the depth to bottom helix
A2 is the surface area of bottom helix
Nq is the bearing capacity factor (=eπ tan ϕ tan2

(
45 + ϕ

2

)
)

D is the helix diameter
d is the shaft diameter
H1 is the depth to top helix
A1 is the surface area of top helix
ϕ is the soil peak angle of internal friction
δ is the shaft–soil interface friction angle (=0.65 ϕ adopted in this paper)
He f f is the effective shaft length (=H1 − D)
R is a bearing capacity reduction factor
Eh is a helix efficiency factor
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There is little agreement in the literature for the optimum value of the normalized helix
spacing. Many of the previous experimental studies focused on the response from full-scale
tests where it was not possible to identify the development of soil strains between helix
plates during loading. The complex soil-structure interaction with multiple dependent soil
and geometric parameters makes it challenging for traditional theoretical methods to fully
capture the response.

Machine learning (ML) methods offer a more powerful means of capturing this com-
plex behavior compared with traditional theoretical approaches. Machine learning methods
have been applied to numerous problems in geotechnical analysis including for estimating
the capacity of driven piles ([12–14] and others), bored piles ([15,16], and others). For
screw piles, Wang et al. [17] employed artificial neural networks (ANN) to predict the
uplift capacity of screw piles in sand, based on data from 36 small-scale laboratory tests.
Similarly, Wang et al. [18] used gradient-boosting decision trees, fine-tuned with particle
swarm optimization on a dataset derived from centrifuge tests. Peres et al. [19] employed
ML techniques to predict the installation torque of helical piles. Nevertheless, the literature
on the application of machine learning (ML) in the design of helical piles remains limited.

In this study, the relationship between the pile response and the load bearing mecha-
nism of the screw piles with different spacing of helix plates under compressive loading
in sands was investigated through 3D finite element (FE) modelling. Screw piles with
different inter-helix spacing, length, and helix diameter with varying soil properties were
modelled in 3DFE and analyzed under compressive loading. A number of different ML
models were then trained on the outputs of the 3DFE models to provide a tool capable
of predicting the pile capacity with improved accuracy over the traditional theoretical
methods with minimum computation time. Further insights into the effect of inter-helix
spacing and other parameters were obtained through the trained ML models.

2. 3D FE Modelling
2.1. Methodology

An FE model was developed using the Plaxis 3D (v20) software to simulate the screw
pile behavior. An extensive parametric study to further the understanding of the behavior
of helical piles in different soil conditions was undertaken. In all analysis cases the soil
was modelled using the linear elastic-perfectly plastic Mohr–Coulomb constitutive soil
model in Plaxis. The helix plates were simplified as circular disks without pitch, and a
linear elastic model was used to represent the pile materials, as specified in Table 1. The
width and breadth of all models was 40 × 40 m and the depth of the model was 30 m in
order to minimize boundary effects on the results of numerical analyses (see Figure 1b).
Mesh generation was undertaken with fine 15-node triangular elements and a very fine
local meshing was applied in the vicinity of the pile because of considerable changes of
soil stresses and strains in this zone. The pile shaft and helix plates were modelled by plate
elements with virtual thickness. To simulate the pile and soil interaction, interface elements
with property based on Mohr–Coulomb criteria with shear strength reduction factor of
(Rint) 0.65 were selected [20]. The piles were wished-in-place and no installation effects
were considered (discussed later). The authors acknowledge that 2D axis-symmetric FE
analysis would offer similar accuracy and significant improvements in computation time,
however, this was unavailable to the authors at the time of undertaking the analysis.

Table 1. Pile material properties adopted in this paper.

Parameters Values

Poisson ratio, υ 0.33
Pile unit weight, γ (kN/m3) 78

Modulus of elasticity of pile, Ep (GPa) 210
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Figure 1. (a) Screw pile geometry (adapted from [2]) and (b) dimensions of the 3DFE model. 
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Figure 1. (a) Screw pile geometry (adapted from [2]) and (b) dimensions of the 3DFE model.

2.2. Validation

In order to validate the 3DFE modelling approach, three separate field test piles from
the literature were modelled and the groundline response was compared with the field test
results. Sakr [21] performed full-scale tests to investigate the axial capacity of screw piles in
sand. The ST-1 test reported in [21] had an embedded length, L, of 9 m and shaft diameter,
d, of 0.324 m, and a helix diameter, D, of 0.76 m, installed in medium to dense sand, was
selected to calibrate the numerical analyses. The soil properties used were adopted directly
from Sakr [21] and are provided in Table 2. Elsherbiny and El Naggar [11] performed
5 screw pile tests in sand with pile PA-1 being selected for validations in this paper. Pile
PA-1 is a single helix pile with an embedded length, L, of 5.5 m and helix diameter, D,
of 0.61 m, embedded in a medium-dense sand deposit. The soil properties adopted in
modelling PA-1 are given in Table 3. Livneh and El Naggar [4] carried out field tests at two
clayey silt sites (site 1 and site 2). While silt/clayey sites are not the focus of the paper, this
validation is included to further showcase the performance of the FE modelling approach.
The test performed at site 1 with properties listed in Table 4 were considered for validation
in this study. Figure 2 shows that in all three cases, the 3DFE provided excellent predictions
of the field test response.

Table 2. Soil properties for ST-1 analysis (from [21]).

Parameters Values

Internal friction angle, ϕ (deg) 35
Dilation angle, ψ (deg) 0

Cohesion, c (kPa) 0.1
Poisson ratio, υ 0.3

Unit weight, γ (kPa) 18
Modulus of elasticity, E (MPa) 50
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Table 3. Soil properties for PA-1 analysis (from [11]).

Parameters Values

Internal friction angle, ϕ (deg) 25
Dilation angle, ψ (deg) 0

Cohesion, c (kPa) 0.1
Poisson ratio, υ 0.3

Unit weight, γ (kPa) 20
Modulus of elasticity, E (MPa) 50

Table 4. Soil properties for site 1 analysis (from [4]).

Layers Depth to
(m)

γ′

(kN/m3)
c

(kPa)
ϕ

(deg)
E

(MPa)

Stiff brown sandy clayey silt 2.4 17.3 10 28 100
Very stiff brown clayey silt 4.1 17.5 21 27 85

Stiff grey clayey silt 5.8 16.5 9 23 100
Very stiff grey sandy clayey silt 7.3 15 20 30 400

Dense grey silt >7.3 17 19 34 65
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Figure 2. Validation of 3DFE modelling against field test data from (a) Sakr [21], (b) Livneh and El
Naggar [11] and (c) Elsherbiny and El Naggar [4].

2.3. Developing 3DFE Dataset

In order to investigate the effect of helix spacing on the screw pile response, two
batches of analyses with a total 1667 3DFE models were conducted. In all models, dry
sand was assumed with the water table supposed to be well below the base of the model.
The results from these analyses were interrogated to examine the influence of different
input parameters on the load–displacement response. For batch 1 analyses, the base case
pile geometry and soil conditions were used and the helix spacing (S) was varied. The
patterns of shear strain development around screw piles with different helix spacing was
studied. In batch 2 analyses, the soil conditions and pile geometries were varied to provide
a database with more general applicability. The base case pile geometry used in batch 1
analyses considers a 3-helix pile with length (L) of 10 m, shaft diameter (d) of 0.1 m, helix
diameter (D) of 0.4 m and helix thickness of 0.02 m. The base case soil considered in this
study was a medium dense sand, with specification listed in Table 5.

Table 5. Base case soil properties used for batch 1 analyses.

Soil Input Parameters Values

Internal friction angle, ϕ (deg) 30
Dilation angle, ψ (deg) 0

Cohesion, c (kPa) 0
Poisson ratio, υ 0.33

Unit weight, γ (kPa) 18
Modulus of elasticity, E (MPa) 48

For batch 2 analyses, the screw pile geometry and soil properties were varied (7 differ-
ent input features) using different combinations of the values shown in Table 6. Each 3DFE
model used a homogenous soil profile or pile geometry. The values in Table 6 were chosen
to cover the range of values of screw pile experiments reported in the literature.
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Table 6. The soil and pile geometrical features used in batch 2 analyses.

Feature Number Feature Value

1 Unit weight, γ (kN/m3) 16, 18, 20, 22
2 Internal friction angle, ϕ (deg) 25, 30, 35
3 Modulus of elasticity, E (MPa) 18, 48, 78
4 Number of helix plates, n 2, 3
5 Pile length, L (m) 8, 10, 12, 15
6 Helix diameter, D (m) 0.3, 0.4, 0.5
7 Inter–helix spacing ratio, S/D 1–14

3. FE Modelling Results

Figure 3 shows that the axial load–displacement response for screw piles in compres-
sion can be considered as three stages as described by Livneh and El Naggar [4]. The pile
load–displacement response as well as the development of shear strain within the soil
around screw piles with inter-helix spacing of small (S/D = 3), moderate (S/D = 5), and
large (S/D = 8) are presented in Figures 4–6. For S/D > 6 little interaction occurs between
the plates and therefore the curve is restricted to the stages I and II (i.e., stage III is never
reached). The displacement at which the transition between elastic stages I and plastic
stage II occurs is referred to as the plastic transition point (wTp) and the displacement at
which the transition between II (no helix interaction) and III (helix interaction) occurs is
referred to as cylindrical shear transition point wTcs (see Figure 3). The plastic transition
point wTp appears to be independent of the inter-helix spacing while the distance between
wTp and wTcs increases with the values of S/D as would be expected (as larger displacement
is required to mobilize interaction between the plates which are further apart). The loads
corresponding to displacements wTp and wTcs are referred to as the plastic transition load
QTp and the cylindrical shear transition load, QTcs.
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For piles with small S/D < 3, shown in Figure 4, the shear strains initially form at the
vicinity of helix plates, when the loading value passes QTp and the soil response moves
from elastic (stage I) to plastic (stage II). As the loading increases, the shear strains around
each helix plate develop and create a cylindrical shear zone when the force reaches QTcs
and the pile response enters stage III. As the loading increases further, the magnitudes of
the shear strains between the helix plates increase and the strained zone spreads toward
the ground surface from the top plate (see points D to F in Figure 4b). These patterns are in
agreement with those reported by [6,9,10,22]. For piles with an S/D of 5 (shown in Figure 5),
similar behavior was noted. As the load increases from QTp, the shear strains were first
concentrated in the vicinity of the helix plates (stage II) and eventually extended within
the soil between the helix plates to form the cylindrical shear zone when the applied load
exceeded QTcs (stage III). In this case, much larger displacements, wtcs, were required to
mobilize the cylindrical shear zone. For piles with an S/D of 8 (shown in Figure 6), the
first two stages were noted. It is clear from Figure 6b that full plate interaction and the
cylindrical shear zone do not form even after large displacements.

4. Application of Machine Learning Methods to Predict Compression Capacity
4.1. Training and Testing Datasets

In order to develop datasets for training and testing machine learning models, the full
dataset of 1667 3DFE models was postprocessed to extract the compression capacity (Qc),
which in this paper was defined as a load that produces a vertical settlement of 10 percent
of the largest helix diameter [23]. The dataset used seven input features including pile
geometrical input features pile diameter D, normalized helix spacing S/D, number of helix
plates n, and pile embedded length L, along with soil features of peak friction angle ϕ, soil
Young’s modulus E, and soil unit weight. The target feature was the compression capacity
(Qc). The compression capacity from each 3DFE model along with the input features
form the training and testing samples (one sample per 3DFE model). For the training and
validation 80% of the 1667 samples were randomly selected while the remaining 20% were
retained as the holdout (or test) dataset for testing the trained models. To compare the
performance of different ML models 10-fold cross validation was used on the training
dataset and these validation metrics were compared along with the test dataset metrics to
assess the best performing models.

4.2. Machine Learning Models

In this paper, 27 different machine learning models were trained using the regression
learner application in Matlab [24] to quickly assess which machine learning models per-
formed best. The application provides tools for model training, including cross-validation,
to prevent overfitting and ensure generalizability. Performance metrics such as root mean
squared error (RMSE), mean absolute error (MAE), and coefficient of determination (R-
squared) were used for model evaluation. The machine learning methods tested include
the following:

• Linear regression models: Simple and multiple linear regression, enabling the mod-
elling of relationships between predictors and a continuous response variable.

• Support vector machines (SVM) with various kernel functions (linear, quadratic, cubic,
and Gaussian).

• Decision trees and ensembles: Including regression trees, bagged trees, boosted trees,
and random forests.

• Gaussian process regression (GPR): With different kernel functions (squared exponen-
tial, Matern, rational quadratic, etc.).

• Neural networks: Bilayer and trilayer basic feedforward neural networks which can
model complex, non-linear relationships through hidden layers.

Further description of the mathematical basis for the various ML models can be found
in Sheil et al. [25]. The default models as per the Matlab regression learner app [24] were
used. All the GPR and NN models were trained using the hyperparameter settings as listed
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in Tables 7 and 8, respectively. Each of the 27 models were trained on the training dataset.
The models were then used to predict the compression capacity for the testing dataset.

Table 7. Hyperparameter settings used in Gaussian process regression (GPR) models.

Hyperparameter Setting

Basis Function Constant
Use Isotropic Kernel Yes

Kernel Scale Automatic
Signal Standard Deviation Automatic

Sigma Automatic
Standardize Data Yes

Optimize Numeric Parameters Yes

Table 8. Hyperparameter settings used in neural network (NN) models.

Hyperparameter Setting

Number of Fully Connected Layers Default = 1, Bilayered = 2, Trilayered = 3
Layer Size (all layers) Default = 10, Medium NN = 25, Wide NN = 100

Activation ReLu
Iteration Limit 1000

Regularization Strength (Lambda) 0
Standardize Data Yes

Optimize Numeric Parameters Yes

5. Results and Discussion

The list of ML models trained and the performance metrics for each model are com-
pared in Table 9. The table is ranked based on the RMSE of the test dataset. The best
performing models were Gaussian process regression models followed by neural networks.
The single best performing model, ranked based on RMSE test and MAE test, was the
rational quadratic Gaussian process regression (RQGPR). Other GPR models with differ-
ent kernel functions (e.g., Matern 5/2 GPR and squared exponential GPR) had similar
performance metrics.

In order to further explore the model capability and to assess how much training data
(i.e., 3DFE models) was needed to train the model with high accuracy, the RQGPR model
was selected and retrained with subsets of the training dataset, starting with 2% of the full
training dataset and increasing in increments of 2% up to 100%. The effect of the training
set size on the RMSE for the RQGPR model is shown in Figure 7a. Substantial improvement
in both test and validation performance is seen up to a training set size of ~200 samples,
after which the rate of improvement decreases before levelling out at around 600 samples.
Only marginal improvement in both validation and test RMSE is seen, once more than
600 samples are used.

For the RQGPR models trained on the full training dataset, the predicted response is
plotted against the true response (from 3DFE models) in Figure 7b for both the training
dataset (blue circles) and testing dataset (red circles). It can be seen, as reflected in the
performance metrics, that that RQGPR provides excellent predictions for both the training
and testing datasets. For comparison with traditional capacity calculation methods, the
theoretical pile capacity prediction approach proposed by Elsherbiny and El Naggar [11],
was implemented in Matlab and used to calculate the compression capacity (green cross).
The RMSE for the theoretical approach is 225 kN, almost an order of magnitude greater
than the RMSE of 29 kN from the RQGPR model. It is evident that the trained RQGPR
significantly outperforms the theoretical approach in this case.



Geotechnics 2024, 4 819

Geotechnics 2024, 4, FOR PEER REVIEW  14 
 

 

Quadratic SVM 57.5 0.96 35.1 36.2 60.3 0.96 9.1 
Fine Tree 77.2 0.93 44.4 37.7 67.6 0.94 4.8 
Narrow Neural Network 71.2 0.94 42.3 42.8 68.9 0.94 91.4 
Boosted Trees 74.7 0.93 47.1 44.3 73.9 0.93 16.9 
Bagged Trees 76.5 0.93 47.7 46.2 77.2 0.93 18.4 
Interactions Linear 71.3 0.94 47.6 50.3 77.7 0.93 7.2 
Stepwise Linear 71.8 0.94 47.9 50.5 78.1 0.93 117.6 
Coarse Gaussian SVM 89.6 0.90 50.8 49.6 91.3 0.90 9.5 
Medium Tree 99.8 0.88 66.5 64.5 100.6 0.88 7.2 
Linear 109.8 0.85 76.9 80.5 117.6 0.83 8.4 
Efficient Linear Least Squares 111.5 0.85 77.1 80.1 118.0 0.83 11.8 
Fine Gaussian SVM 124.9 0.81 69.8 61.6 119.7 0.83 8.6 
Linear SVM 116.6 0.83 71.1 73.7 122.8 0.82 7.7 
Robust Linear 127.2 0.80 72.6 73.2 131.2 0.79 5.8 
Coarse Tree 136.6 0.8 94.8 93.9 140.3 0.8 6.7 
SVM Kernel 243.4 0.3 163.5 134.4 224.1 0.4 119.8 
Efficient Linear SVM 234.4 0.3 173.7 170.9 230.6 0.4 11.5 

 
Figure 7. (a) RMSE vs. training set size for RQGPR model and (b) predicted capacity vs. true capacity 
comparison between RQGPR model and theoretical pile capacity approach. 

The GPR model can also be used to provide insights into the influence of different 
features on the pile capacity. Conditional expectation plots for each input feature are 
provided in Figure 8. On average, the effect of increasing normalized helix spacing, S/D, 
can be seen to significantly increase pile capacity up until a helix spacing of between 6 to 
7 after which further increase of the spacing has no influence. Therefore, the optimum S/D 
ratio based on this analysis is considered to be approximately 6. The effect of increasing 
helix diameter D, pile length L, or soil unit weight 𝛾′ are seen to have an almost linear 
increase in pile capacity. Increasing the friction angle is seen to have a non-linear convex 
response while increasing the soil Young’s modulus is seen to have a non-linear concave 
response.  

0 500 1000 1500
Training Set Size, mtrain

20

40

60

80

100

120

140

R
M

SE
 [k

N
]

Validation
Test

0 500 1000 1500 2000 2500
True Response, Q [kN]

0

500

1000

1500

2000

2500

Pr
ed

ic
te

d 
R

es
po

ns
e,

 Q
 [k

N
]

Perfect Prediction
Elsherbiny and El Naggar
GPR (training set)
GPR (test set)

(a) (b) 

Figure 7. (a) RMSE vs. training set size for RQGPR model and (b) predicted capacity vs. true capacity
comparison between RQGPR model and theoretical pile capacity approach.

Table 9. Trained ML models and performance metrics.

Model Type RMSE
(Validation)

R-Squared
(Validation)

MAE
(Valida-

tion)
MAE
(Test)

RMSE
(Test)

R-Squared
(Test)

Training Time
(s)

Rational Quadratic GPR 33.1 0.99 16.2 14.5 30.0 0.99 130.0
Matern 5/2 GPR 33.0 0.99 16.1 14.6 30.3 0.99 71.5
Squared Exponential GPR 34.5 0.99 18.1 16.3 30.9 0.99 48.0
Trilayered Neural Network 45.9 0.97 25.5 23.1 35.8 0.98 132.2
Medium Neural Network 74.4 0.93 41.0 22.3 36.1 0.98 95.4
Exponential GPR 38.6 0.98 17.9 16.0 36.5 0.98 74.5
Bilayered Neural Network 56.0 0.96 34.1 22.1 37.0 0.98 116.9
Wide Neural Network 43.5 0.98 20.2 19.2 38.1 0.98 114.4
Cubic SVM 41.7 0.98 22.9 21.5 38.7 0.98 12.3
Medium Gaussian SVM 43.1 0.98 24.1 21.4 39.5 0.98 9.7
Least Squares Regression 59.8 0.96 39.6 33.9 54.4 0.96 119.6
Quadratic SVM 57.5 0.96 35.1 36.2 60.3 0.96 9.1
Fine Tree 77.2 0.93 44.4 37.7 67.6 0.94 4.8
Narrow Neural Network 71.2 0.94 42.3 42.8 68.9 0.94 91.4
Boosted Trees 74.7 0.93 47.1 44.3 73.9 0.93 16.9
Bagged Trees 76.5 0.93 47.7 46.2 77.2 0.93 18.4
Interactions Linear 71.3 0.94 47.6 50.3 77.7 0.93 7.2
Stepwise Linear 71.8 0.94 47.9 50.5 78.1 0.93 117.6
Coarse Gaussian SVM 89.6 0.90 50.8 49.6 91.3 0.90 9.5
Medium Tree 99.8 0.88 66.5 64.5 100.6 0.88 7.2
Linear 109.8 0.85 76.9 80.5 117.6 0.83 8.4
Efficient Linear Least
Squares 111.5 0.85 77.1 80.1 118.0 0.83 11.8
Fine Gaussian SVM 124.9 0.81 69.8 61.6 119.7 0.83 8.6
Linear SVM 116.6 0.83 71.1 73.7 122.8 0.82 7.7
Robust Linear 127.2 0.80 72.6 73.2 131.2 0.79 5.8
Coarse Tree 136.6 0.8 94.8 93.9 140.3 0.8 6.7
SVM Kernel 243.4 0.3 163.5 134.4 224.1 0.4 119.8
Efficient Linear SVM 234.4 0.3 173.7 170.9 230.6 0.4 11.5

The GPR model can also be used to provide insights into the influence of different
features on the pile capacity. Conditional expectation plots for each input feature are
provided in Figure 8. On average, the effect of increasing normalized helix spacing, S/D,
can be seen to significantly increase pile capacity up until a helix spacing of between 6 to 7
after which further increase of the spacing has no influence. Therefore, the optimum S/D
ratio based on this analysis is considered to be approximately 6. The effect of increasing helix
diameter D, pile length L, or soil unit weight γ′ are seen to have an almost linear increase
in pile capacity. Increasing the friction angle is seen to have a non-linear convex response
while increasing the soil Young’s modulus is seen to have a non-linear concave response.
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There are a number of limitations in the analysis provided in this paper which require
further discussion:

• The linear elastic perfectly plastic constitutive soil model was used for the 3DFE anal-
ysis. This model is the most widely used constitutive model for soil behavior, but
it has limitations compared to more advanced models. Its advantages include its
straightforward formulation, making it easy to understand simple input parameters
which are intuitive and easy to obtain from common soil tests, and it is computation-
ally efficient compared to more complex models. However, it should be noted that
significant drawbacks include its inability to accurately capture the soil strength as
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described by critical state soil mechanics, its inability to capture nonlinear stress–strain
behavior, and its inability to account for the evolution of soil fabric anisotropy under
loading. Future work will focus on the use of more advanced soil models, such as
the SANISAND family of models, to provide more accurate predictions of the soil
response. It should also be noted that the 3DFE analysis used in this paper did not
include installation effects, which have been shown to have a significant influence on
the response of screw piles, particularly regarding the pullout resistance [2,26].

• The database 3DFE model was initially developed in an adhoc manner and therefore
not optimized to provide the best ML training outcomes with the minimum number of
models. Potential biases exist within the dataset where sample points may be clustered
around certain input features. Better planning at an early stage and using approaches
such as Latin hypercube, Sobol sampling, or active learning approaches may require
fewer FE models to achieve similar ML model accuracy. Future work will explore the
use of different sampling strategies to optimize the production of training data and
the training of the ML models.

• All the 3DFE models analyzed in this paper assumed dry homogenous sand. Future
work will explore the effect of water table depth and layered soils on the compression
capacity [27].

• Future work will also focus on using physics informed machine learning approaches
and incorporating multi-modal data, for example low-fidelity theoretical models
along with high-fidelity 3DFE models and experimental field test data, similar to the
approach suggested in Surysentana et al. [28].

6. Conclusions

In this study a database of 1667 3DFE models was created in order to explore the
factors which affect the bearing capacity of screw piles in dry sand. Machine learning
models including linear regression, neural networks, support vector machines and Gaussian
process regression models were then trained on the numerical database in order to develop
a predictive tool for quickly estimating the screw pile capacity. The main conclusions were
the following:

• Out of the 27 different machine learning models tested, Gaussian process regression
models offered the best performance when ranked based on MAE on the test dataset.
The ML models offered an almost 10-fold improvement in RMSE when compared
with traditional theoretical methods.

• The best performing model ranked based on MAE (test) and RMSE (test) was the
rational quadratic Gaussian process regression (RQGPR). This model was explored
further. Training the model using subsets of the full training database indicated very
good predictions could be obtained using only 200 randomly selected training samples
(3DFE models), and only marginal improvements were seen once the number of
training samples increased beyond 600. Similar accuracy could potentially be achieved
with less training data through improved parameter space sampling methods such as
Latin hypercube sampling or the Sobol methods.

• Further insights into the factors affecting the screw pile capacity were obtained through
conditional expectation plots which indicate an inter-helix spacing of ~6 helix diame-
ters may be optimum.

• Traditional theoretical methods used for screw pile design suffer from an inability to
fully capture the complex soil-structure interaction which occurs in multi-helix screw
piles. This paper shows the potential for ML models as a design tool which can have
significantly higher accuracy than traditional design approaches. Future work will
focus on training ML models on multi-modal data including field test results.

• The database developed in this paper and used for training and trained ML models
has been made available open access on Github (https://github.com/igoed1/Screw-
pile-3DFE-and-ML-models.git).

https://github.com/igoed1/Screw-pile-3DFE-and-ML-models.git
https://github.com/igoed1/Screw-pile-3DFE-and-ML-models.git
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