
Received: 4 November 2024

Revised: 11 January 2025

Accepted: 14 January 2025

Published: 1 February 2025

Citation: Pech-Pérez, A.; Ricárdez-

Montiel, A.A.; Pech-Ricárdez, A.A.

Non-Destructive Estimation of

Moisture Percentage in Fired Red

Brick Using Digital Image Processing

and Artificial Intelligence. Constr.

Mater. 2025, 5, 7. https://doi.org/

10.3390/constrmater5010007

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Non-Destructive Estimation of Moisture Percentage in Fired Red
Brick Using Digital Image Processing and Artificial Intelligence
Andrés Pech-Pérez 1,2,*, Aida Alejandra Ricárdez-Montiel 2 and Aida Andrea Pech-Ricárdez 3

1 Instituto Tecnológico de Oaxaca, Avenida Ingeniero Víctor Bravo Ahuja 125, Esquina Calzada Tecnológico,
Oaxaca de Juárez 68030, Oaxaca, Mexico

2 Smart Ray Geosolutions, Privada de Rosales 107, Colonia Reforma, Oaxaca de Juárez 68050, Oaxaca, Mexico;
andrespech@yahoo.com

3 Independent Visual Artist, Privada de Rosales 107, Colonia Reforma, Oaxaca de Juárez 68050, Oaxaca, Mexico;
aidapech97@gmail.com

* Correspondence: andres.pp@itoaxaca.edu.mx

Abstract: In this study, we present a novel methodology for reducing uncertainties in
detecting high-permeability regions in bricks by integrating brick imagery, color theory,
unsupervised learning, and petrophysical concepts. Leveraging smartphone technology,
our methodology identifies and analyzes moisture regions in red bricks, demonstrating its
potential as a cost-effective tool for moisture characterization. This approach complements
specialized moisture detection devices, highlighting the versatility of existing technol-
ogy. Applied within the context of traditional red brick manufacturing in San Agustín
Yatareni, Oaxaca, México, our results show that this methodology effectively identifies
moisture-related anomalies, with water absorption values verified according to the NMX-
C-404-ONNCCE-2012 and NMX-C-037-ONNCCE-2013 Mexican standards. We observed
a significant inverse correlation between luminosity and moisture content, and a direct
correlation between hue and moisture content. These findings suggest a reliable, non-
invasive indicator of moisture levels, potentially improving the longevity of construction
materials. The broader applicability of this approach in construction material analysis,
particularly for bricks incorporating organic fibers, underscores its value as a tool for qual-
ity control. Furthermore, the integration of smartphone technology and interdisciplinary
techniques contributes to advancing sustainable construction practices and improving
material durability.

Keywords: smartphone technology; color formats; image processing; fired red brick;
unsupervised learning

1. Introduction
The challenge of understanding how brick properties change in the presence of mois-

ture necessitates the use of advanced quantitative interpretation techniques, which should
be integrated with geophysical and petrophysical methods. In this paper, we introduce an
innovative interdisciplinary approach to identify high-permeability bricks, demonstrating
that moisture percentage can be inferred from the combined utilization of brick images
obtained with smartphones, color theory, color formats, unsupervised learning, and the
fluid distribution above the free water level [1]. Our findings reveal that bricks with anoma-
lously high permeability show significant variations in the bulk volume of water (BVW)
when compared to conventional bricks. We emphasize the importance of linking moisture
content, or bulk volume of water (BVW) values, with water saturation (Sw). The key to
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understanding permeability lies in the pore structure, wherein capillary-bound water,
represented by BVW, is typically found in the pores. BVW quantifies the pore geometry,
which is influenced by the size, shape, and arrangement of grains, thereby relating it to
both permeability and porosity [1]. As mentioned before, highly permeable bricks are
characterized by a notably lower moisture content or BVW.

Brick is one of the oldest and most influential building materials in history, originating
over 6000 years ago in ancient Mesopotamia [2]. Initially made from sun-dried mud, bricks
evolved with the introduction of kiln firing by civilizations such as the Sumerians, Babylo-
nians, and Egyptians, which enhanced their durability [2]. The Romans further advanced
brickmaking, using fired clay bricks to construct some structures [2]. In Mesoamerica, the
Mayans used red bricks in the construction of pyramids, such as those in Comalcalco, a
key trading port with significant architectural developments [3]. Throughout the Middle
Ages, brick was integral to the construction of cathedrals, castles, and urban infrastructure
in Europe, contributing to the distinct Gothic architectural style. In the Modern Age, bricks
were used extensively in Northern European architecture and Georgian England [2]. Today,
brick remains a versatile and durable material in contemporary architecture, valued for its
strength and aesthetic appeal [4,5].

Fired red brick is a cornerstone of construction globally, prized for its durability and
versatility. However, its performance can be significantly compromised by moisture within
its structure. Moisture can degrade mechanical strength, promote mold formation, and
reduce thermal insulation, ultimately affecting the integrity of buildings [6]. Fired clay
ceramics exhibit long-term moisture-induced expansion due to a slow chemical reaction
with atmospheric water [7]. This expansion, though it decreases over time, is significant
and often underestimated. Early recognition of moisture expansion as a cause of cracking
in brickwork was delayed, likely because older masonry used soft lime mortars [8]. This
expansion is driven by the slow diffusion of water within the solid phases of the ceramic
matrix [7]. This moisture expansion is directly linked to mass gain. While accelerated by
high-temperature steaming, the expansion progresses slowly under normal atmospheric
conditions, underscoring the persistent risk of cracking in brick structures over time [7].
Various studies have shown that temperature and moisture content are critical factors
influencing the thermal conductivity of insulating materials [9]. Specifically, moisture
transfer in building envelopes significantly impacts heat transfer processes, especially in
hot and humid areas [9]. These studies highlight the issue that the thermal conductivity
of commonly used insulation materials increases with rising temperature and humidity,
underscoring moisture as a critical issue in bioclimatic structures [9].

Eco-friendly bricks, particularly those containing bagasse fibers, may face challenges
in the future regarding biological degradation. This study introduces a methodology that
can assist in performing quality control for bricks that incorporate organic fibers. The
inclusion of organic materials in construction materials aims to enhance their sustainability
and mechanical properties [10]. However, these fibers can introduce vulnerability to
microbial attack, particularly in humid environments. Different investigations have been
conducted to evaluate the growth of microorganisms on construction materials containing
various percentages of organic fibers [10]. Although the firing process reduces organic
matter, residual fibers can still pose a risk of biological degradation. Due to the amount
of organic matter, this firing process could also increase the number and size of voids in
the bricks. Long-term exposure to moisture may compromise the durability and structural
integrity of eco-friendly building materials. Further research is needed to understand
the influence of moisture on eco-friendly bricks, particularly those containing organic
fibers [11]. Considering that moisture can lead to biological degradation in eco-friendly
bricks, it is crucial to assess whether their heightened porosity and water absorption could
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accelerate this process, potentially compromising their structural integrity over time [11].
The short-term improvements in compressive strength and bending resistance [10] might
not translate into long-term durability, especially if the bricks are more susceptible to
moisture-related issues due to increased porosity. Bricks that contain organic fibers have
demonstrated low performance in capillarity tests [11]. This is crucial for eco-friendly
bricks, where maintaining structural integrity over time is a key concern, especially in the
context of climate change and increased seismic activity. As climate change intensifies
weather patterns and moisture exposure, and as earthquakes become more frequent or
severe, the durability of these bricks must be rigorously assessed to ensure their long-term
performance in increasingly unpredictable environments. In the specialized literature, there
is also a lack of information about the scalability of eco-friendly bricks and the potential
challenges in maintaining consistent quality when applied to larger construction projects,
such as the associated infrastructure required for the development of the Interoceanic
Corridor. This is a major infrastructure project in México aimed at creating a trade and
logistics route between the Atlantic and Pacific Oceans.

The non-destructive evaluation of moisture content in fired red bricks is crucial for en-
suring the safety of structures. Traditional moisture measurement techniques, like drilling,
are intrusive and costly, limiting their application in construction and conservation. Ap-
proaches that rely on a single non-destructive method often result in limited accuracy [12].
However, recent advancements have demonstrated that a more accurate quantitative as-
sessment of moisture content in saline brick walls can be achieved using a combination
of machine learning and two complementary non-destructive methods [12]. The cost of
inadequate moisture management can be substantial, leading to millions of dollars in
damages, structural repairs, downtime, and long-term operational costs. According to
the United States Environmental Protection Agency [6], proper moisture management is
essential to avoid significant costs, emphasizing the need for effective moisture control
measures from the outset of construction projects.

Digital image processing presents a promising solution for non-invasively estimat-
ing the moisture content in fired red bricks. By capturing high-resolution images and
analyzing them with advanced algorithms, it could be possible to detect and quantify
moisture economically and effectively. Despite its potential, there is a scarcity of studies on
this approach, and no established methodology exists for using digital image processing
to estimate the moisture percentage or identify patterns associated with fractures and
moisture levels in bricks. In the current digital era, process automation is vital for efficiency
and competitiveness across various sectors. Unsupervised learning, a branch of artificial
intelligence, allows machines to learn from data without human supervision, making it
a powerful tool for automating imaging processes in the construction industry [13,14].
Identifying the hidden patterns in images of construction materials can help architects and
engineers develop more effective bioclimatic strategies and create waterproof materials
tailored to specific needs [6].

Photographing large areas for purposes such as structural inspection poses technical
and logistical challenges. Achieving complete coverage, coordinating multiple cameras,
and managing large volumes of data are significant obstacles. While unmanned aerial
vehicles (UAVs) equipped with infrared cameras are used in various fields, their integration
into the construction sector remains limited [15]. Ensuring image quality under varying
lighting and weather conditions further complicates this task [16].

Building upon these longstanding challenges, our study seeks to integrate modern
digital and AI-driven methodologies to address the impact of moisture on fired red brick,
particularly in traditional settings. This study hypothesizes that applying digital image
processing techniques, combined with artificial intelligence algorithms, can develop a
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reliable methodology to estimate moisture percentage and detect fractures in fired red
bricks non-destructively. This approach aims to provide the construction industry with an
effective tool for material evaluation and quality control, thereby enhancing efficiency and
sustainability in building projects.

In this context, our research offers a methodology that combines digital image analysis
with AI techniques to deliver non-destructive moisture estimates. The primary objective
of this study is to address critical knowledge gaps by adapting methodologies from in-
dustries like the energy sector, where digital image processing is extensively utilized to
estimate moisture content in soils and crops [17] and to detect fractures [18]. By leveraging
these techniques, this research identifies the visual characteristics and specific patterns
related to moisture levels and fracturing in captured images. The findings could have
practical applications in construction and building conservation, offering innovative, non-
invasive tools for assessing material integrity. This interdisciplinary approach could not
only enhance current practices but also contribute to the sustainability and resilience of
construction materials.

2. Production of Fired Red Bricks in San Agustín Yatareni,
Oaxaca, México

San Agustín Yatareni, located in the Central Valley of Oaxaca (see Figure 1) and
approximately 5 km from the state capital, is renowned for its traditional production of
artisanal fired red bricks. Bordered by San Andrés Huayapam to the north, Oaxaca de
Juárez to the west, Tlalixtac de Cabrera to the east, and Santa Lucía del Camino and San
Sebastian Tutla to the south, this municipality has cultivated a brick-making tradition
deeply embedded in its culture and economy for generations. The following description of
the brick-manufacturing process is based on interviews conducted with local artisans.

• Clay extraction: the process begins with the extraction of clay from natural deposits
(quarries) in the San Agustín Yatareni area. The local soil type, pellic vertisol, is char-
acterized by high plasticity and significant expansion when wet, and by contraction
when dry. Pellic vertisols are often darker than other vertisols, usually being black or
very dark brown due to the high organic matter content or specific mineral composi-
tions. This clay is ideal for brick production. The tradition of brickmaking in this area
dates back to the 1960s.

• Clay preparation: the preparation of clay for brick production includes impurity
removal through crushing, maturation via solar and air exposure, and sieving to
achieve uniform granulometry. To produce a batch of 500 bricks, the clay is combined
with water, sawdust, yellow soil, black soil, and yocuela to attain the desired plasticity.
The resulting mortar is then allowed to rest for two days to ensure uniform consistency
before molding.

• Molding: the mortar is hand-molded into bricks using traditional wooden molds
called marks. This process involves pressing and compacting the mortar to form the
characteristic rectangular and elongated shape. The molds are cleaned and sanded
after every eight bricks are formed to ensure consistent quality.

• Outdoor drying: this stage is critical to the quality of newly molded bricks, as it
ensures moisture removal and enhances their solidity and stability. The bricks are
initially sun-dried outdoors for three to eight days and then moved to covered drying
areas, where natural factors such as sunlight, wind, and humidity continue to influence
the drying process.

• Firing in kilns: after outdoor drying, the bricks are fired in kilns with capacities of 500
to 1000 pieces, reaching temperatures up to 1000 ◦C, typically fueled by sawdust. The
firing process, lasting 8 to 36 h depending on the kiln type and conditions, involves
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continuous temperature fluctuations. This delicate stage hardens the bricks, imparts
their characteristic red color, and may cause variations in color and shape due to
fire dynamics.

• Cooling and storage: after cooling in the kiln for up to eight days, the bricks are
removed and stored for sale or for use in construction. Traditional fired red bricks
typically measure 5 × 13 × 26 cm or 5 × 13 × 27 cm, with slight variations arising from
the wooden molds, which measure 5.3 × 14 × 28 cm. In construction, approximately
55 bricks are used per square meter. This study examines four types of bricks: first-
class, second-class, decorative (apparent or special), and spongy (refractory). Notably,
the production of second-class bricks has been discontinued.
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The pores in fired red bricks typically include a range of types, from closed pores to
interconnected voids, which influence their thermal insulation, mechanical strength, and
moisture absorption properties.

3. Color Theory and Color Formats
The color wheel (see Figure 2a) is a graphical representation of colors, arranged in a

circular spectrum and organized according to their relationships in terms of hue, saturation,
and brightness [19,20]. In its most common form, the wheel includes primary colors (red,
blue, and yellow), secondary colors (obtained by mixing two primary colors), and tertiary
colors (created by mixing a primary color with a secondary color) (see Figure 2a). The
color formats used in images are based on specific color models related to the color wheel.
Understanding the relationship between the color wheel and color formats is essential for
achieving effective and consistent visual results [21].

In Figure 3, the painting utilized to illustrate the methodology for estimating the
moisture percentage is presented, while Figure 4 depicts the corresponding color formats
derived from that painting.

The color values of a pixel in an image are typically represented using color models,
such as the RGB (red, green, and blue) model or the CMYK (cyan, magenta, yellow, or
black) model, depending on the device. Pixels are organized in rows and columns in a
grid to form a complete image. The greater the number of pixels in an image, the higher
its resolution, and, thus, its level of detail and visual quality. Image resolution is typically
expressed in pixels per inch and determines the amount of detail that an image can present
within a given physical space [21].
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Rooted in color theory and optics, the RGB (red, green, and blue) model is based
on additive color synthesis, where different intensities of red, green, and blue light are
combined to generate millions of colors [21]. In the RGB model, each color component is
represented by a light intensity ranging from 0 to 255. By varying these intensities, colors
can be mixed to produce everything from pure red to full-spectrum white light [21].

The YUV format is a critical standard in the video industry and in multimedia trans-
mission, particularly for the representation and compression of images and video sequences.
While less familiar than the RGB model, YUV is essential for encoding and transmitting
visual content, especially in television and video applications. Originating in the color
television industry, YUV is designed to align with human visual perception by focusing on
the luminance (Y) and chrominance (U and V) components rather than on direct color repre-
sentation, as in RGB [22]. The YUV model separates the brightness information (luminance)
from the color information (chrominance), with luminance (Y) representing the image’s
brightness, and chrominance (U and V) capturing the color details. Specifically, the U
component represents the difference between blue and luminance, while the V component
represents the difference between red and luminance. This separation allows the YUV
format to prioritize luminance, which significantly impacts the perceived image quality as
changes in brightness are more detectable to the human eye than variations in color [22]. By
focusing on luminance, the YUV format enables greater compression efficiency, reducing
file sizes while maintaining visual quality. This is because the human eye is more sensitive
to brightness differences than to color, allowing for a more aggressive compression of
color information without noticeable degradation in image quality [22]. This efficiency is
crucial for video transmission over networks and playback on mobile devices. Conversion
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between YUV and RGB is necessary when displaying content on devices that use the RGB
model, such as monitors and screens [22].
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The HSV (hue, saturation, and value) color model is a system that decomposes color
information into three principal components: hue, which defines the color tone; saturation,
which represents the intensity or purity of the color; and value, which determines the
brightness or luminance of the color (see Figure 4) [22]. The HSV model is extensively
utilized in image processing and computer graphics due to its ability to separate chromatic
and luminance information. This separation facilitates the manipulation and detection of
colors in applications such as image editing and computer vision. The HSV format allows
for a more intuitive adjustment of colors and the detection of specific color ranges within an
image. It is commonly used in tasks such as object segmentation, color adjustment during
image editing, and edge detection [22].
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4. Artificial Intelligence: Unsupervised Learning
While color theory provides foundational insights into moisture-related color varia-

tions, artificial intelligence enhances our ability to quantify and interpret these changes
across image datasets. AI algorithms can analyze historical data, climate patterns, budget
constraints, and other factors to create optimal architectural designs. Notable examples
include the work of the architect Michael Hansmeyer, who employs generative algorithms
to create complex and visually stunning architectural structures. Recently, advanced pro-
grams for architectural design, such as MidJourney, have been developed [23]. The visual
representations generated by these tools exhibit a high degree of aesthetic quality. AI
demonstrates its precise processing capabilities by automatically incorporating the char-
acteristics of an object into a digital image, even without explicit input in the form of
keywords. Additionally, it is important to highlight the undeniable advantage of the speed
at which these tools create outputs [24,25].

Unsupervised learning is a branch of artificial intelligence that focuses on processing
data without labels or prior supervision. This technique is applied in four steps: in the first
step, the attributes are extracted; in the second, dimensionality is reduced; in the third, data
groups with similar characteristics are identified; and, in the fourth step, the segmented
information is mapped back to the original image [18].

(a) Attribute selection: attribute selection in unsupervised learning involves choosing
which features of the data are most important for the computer to correctly process the
information. For example, if the goal is to identify the most illuminated regions of a
painting, such as the one illustrated in Figure 3 [26], which depicts a perspective view of
a tourist walkway in Oaxaca, attributes must first be extracted from a digital photograph
of the painting. The computer must process the input information corresponding to these
attributes to distinguish the regions of interest. Attributes can correspond to the various
combinations of RGB or YUV values (see Figures 4–6) present in each pixel. In Figure 5, the
attribute representing the contours of the buildings is visible. This attribute was obtained
through a genuine combination of RGB values, wherein the edges were emphasized [27].
Identifying the most relevant attributes in an image may require several iterations to
clearly determine which features are most significant [13,14]. Artistic paintings can display
a diverse spectrum of tones, ranging from dark areas to bright and luminous regions.
Similarly, images of construction materials, such as bricks, also reveal a distinct array of
visual characteristics. In the RGB (red, green, and blue) color model, darker (“wet”) areas
of a brick might be represented by lower values across each color channel, whereas brighter
(“dry”) regions would be indicated by higher values. In contrast, when analyzing the
same brick image within the YUV color space, the differentiation between dry and wet
areas may be attributed to the luminance (Y) and chrominance (U and V) components.
Here, luminance reflects the intensity of brightness, while chrominance captures subtle
variations in moisture and texture. This comparison highlights how the choice of color
representation can significantly influence the perception of visual characteristics, whether
in artistic paintings or in construction materials. Once the key attributes are identified, the
next step is to simplify data complexity through dimensionality reduction, ensuring that
the essential visual characteristics are preserved for effective analysis.

(b) Dimensionality reduction (PCA): dimensionality reduction is an essential math-
ematical technique that simplifies multidimensional data, enabling more effective man-
agement of design projects. Figure 7 illustrates information related to three attributes
derived from the painting presented in Figure 3. With these three attributes, the data
can be visualized in three dimensions. Data can be projected onto a plane to facilitate
simpler visualization. One of the most fundamental and powerful methods in this context
is principal component analysis (PCA) [13,14]. PCA aims to transform a high-dimensional
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dataset into a reduced set of variables, known as principal components. Figure 8 displays
the results obtained after applying principal component analysis (PCA) to reduce the
dimensionality of a problem associated with the study of attributes derived from the image
of the painting shown in Figure 3. The objective is to automatically identify and isolate
the most illuminated region of the painting. As mentioned before, in Figure 8, the dataset
has been projected into a two-dimensional space, allowing for a clearer visualization of the
different clusters associated with the various characteristics of the painting.
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(c) Clustering: in the expansive realm of machine learning, clustering emerges as a
powerful and versatile technique within the realm of unsupervised learning. Unsupervised
learning is distinguished by its ability to extract knowledge from data without the use
of prior labels, with clustering serving as a fundamental pillar in this domain [13,14].
Clustering, or group segmentation, is a process that involves dividing a dataset into groups
or clusters, where the elements within each group are more similar to each other than to
those elements outside the group. Figure 9 shows the result obtained after applying the
K-means technique to detect three clusters of points.
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The clustering process is crucial for the organization, understanding, and simplifica-
tion of complex data. Clustering has applications across a wide range of fields, making it
an essential tool in data analysis [13,14].

For the painting previously described, the data clusters may be associated with combi-
nations of various attributes derived from the RGB or YUV values. The number of attributes
corresponds to the number of dimensions in the dataset.



Constr. Mater. 2025, 5, 7 11 of 45

Constr. Mater. 2025, 6, x FOR PEER REVIEW 11 of 47 
 

 

Figure 8. Application of the PCA algorithm to the attributes presented in Figure 7, which were ob-
tained from the painting shown in Figure 3. 

(c) Clustering: in the expansive realm of machine learning, clustering emerges as a 
powerful and versatile technique within the realm of unsupervised learning. Unsuper-
vised learning is distinguished by its ability to extract knowledge from data without the 
use of prior labels, with clustering serving as a fundamental pillar in this domain [13,14]. 
Clustering, or group segmentation, is a process that involves dividing a dataset into 
groups or clusters, where the elements within each group are more similar to each other 
than to those elements outside the group. Figure 9 shows the result obtained after apply-
ing the K-means technique to detect three clusters of points. 

 

Figure 9. Application of the K-means algorithm to the attributes presented in Figure 7, which were 
obtained from the painting shown in Figure 3. The clusters identified by K-means are represented 
using different colors. 

Figure 9. Application of the K-means algorithm to the attributes presented in Figure 7, which were
obtained from the painting shown in Figure 3. The clusters identified by K-means are represented
using different colors.

The K-means algorithm is used to identify and group similar data points into clusters.
K-means groups the data points into clusters by repeatedly assigning them to the nearest
centroid and updating the centroids until they stabilize.

The key advantage of the K-means algorithm is its simplicity and efficiency, making it
fast and scalable for large datasets. It is easy to implement and understand, providing clear
and well-defined clusters.

As mentioned before, Figure 9 illustrates the results obtained after applying the K-
means technique to identify three clusters of points with similar characteristics.

The algorithm differentiates these clusters using distinct colors. Figures 10–12 present
the various characteristics of the painting associated with the three groups identified
through the application of PCA and the K-means algorithm.

Figure 12 shows a group of pixels corresponding to the most illuminated area of the
painting, which was automatically identified by PCA and the K-means algorithm.

When applying principal component analysis (PCA) to paintings in RGB format, we
analyze how the primary colors—red, green, and blue—combine to form the image. PCA
identifies the color combinations that exhibit the greatest variability within the painting.

For instance, the analysis may reveal distinct combinations of blue and yellow in the
depiction of a sky with clouds, while darker shades of blue and brown might be associated
with areas representing buildings. In contrast, when PCA is applied to the YUV format, the
analysis focuses on separating luminance (Y) from the chrominance (U and V) information.

Luminance corresponds to the brightness of the image, while chrominance conveys
color and saturation details. PCA, when applied to the YUV format, may demonstrate
that luminance is more critical for representing detail and intensity, whereas chrominance
emphasizes color nuances and subtle variations. Similarly, when applying the K-means
clustering to paintings in RGB format, we classify pixels based on their red, green, and
blue values.

This method enables the identification of those regions within the painting that share
similar colors. For example, the K-means algorithm might group the yellow pixels of the
sky into one cluster and the blue pixels of the clouds into another. In the YUV format,
the K-means algorithm would cluster pixels based on luminance and chrominance values,
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facilitating the segmentation of the image into regions with similar brightness levels and
color variations. In Figure 13, three groups are identified, which may correspond to the
areas with buildings and the illuminated zone presented in Figure 3.
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PCA and K-means methods have their disadvantages. The primary limitations of PCA
include its assumption of linear relationships and its extreme sensitivity to the scaling of
attributes. Conversely, K-means clustering depends on the initial placement of centroids,
is sensitive to outliers, and does not guarantee convergence [13,14]. PCA enables the
visualization of data along the direction of maximum variance.

For instance, when taking a photograph of a group of people, the goal is to position
them in such a way that everyone appears in the photo. If the people are arranged in a line,
the direction of maximum variance aligns with the direction of the line [28].
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Therefore, the camera should be positioned perpendicular to the line of people to
capture everyone in the frame. PCA identifies new dimensions, known as principal
components, which summarize the essential information of the dataset [13,14,28].

(d) Image segmentation: the illuminated region in Figure 12 was delineated through
the application of K-means and PCA techniques. In this particular example, the clusters
identified by the K-means algorithm exhibit some dispersion (see Figure 9).

This dispersion can be mitigated by combining and considering additional attributes.
Figure 13 presents the clusters shown in Figure 7 in light of the modification of one of
the attributes. Attributes are instrumental in data representation and in enhancing the
algorithm’s ability to uncover patterns and hidden structures. Certain attributes may be
more informative for a specific problem. Informative attributes significantly influence
clustering and dimensionality reduction as they contain critical information about the
underlying data structure.

Some unsupervised learning algorithms are capable of capturing nonlinear relation-
ships or interactions between attributes, while others may be less sensitive to these factors.
As described above, in Figure 13, three distinct groups are observed, which may correspond
to those areas with buildings and the illuminated zone of the painting (Figure 3).

It is essential to emphasize that PCA identifies the directions of maximum variance in
the data, often revealing underlying trends and relationships between the variables. This
helps to reduce data complexity while preserving essential information.

In contrast, the K-means algorithm clusters data based on similarities, facilitating
the identification of natural groupings within the data. By combining PCA and K-means
methods, it is possible to detect complex patterns that might not be immediately apparent,
aiding in informed decision-making and the extraction of valuable insights from complex
datasets. Figure 14 shows the result of applying PCA to the data presented in Figure 13.

Constr. Mater. 2025, 6, x FOR PEER REVIEW 15 of 47 
 

informative for a specific problem. Informative attributes significantly influence cluster-
ing and dimensionality reduction as they contain critical information about the underly-
ing data structure. 

Some unsupervised learning algorithms are capable of capturing nonlinear relation-
ships or interactions between attributes, while others may be less sensitive to these factors. 
As described above, in Figure 13, three distinct groups are observed, which may corre-
spond to those areas with buildings and the illuminated zone of the painting (Figure 3). 

It is essential to emphasize that PCA identifies the directions of maximum variance 
in the data, often revealing underlying trends and relationships between the variables. 
This helps to reduce data complexity while preserving essential information. 

In contrast, the K-means algorithm clusters data based on similarities, facilitating the 
identification of natural groupings within the data. By combining PCA and K-means 
methods, it is possible to detect complex patterns that might not be immediately apparent, 
aiding in informed decision-making and the extraction of valuable insights from complex 
datasets. Figure 14 shows the result of applying PCA to the data presented in Figure 13. 

In contrast, Figure 15 presents the outcome of applying K-means clustering to the 
data shown in Figure 14. In PCA, appropriate attribute selection enhances the capture of 
principal variations, while irrelevant attributes will negatively impact simplification. 

In K-means analysis, the choice of attributes affects the quality of the clusters, poten-
tially leading to erroneous groupings [13,14]. 

Figures 16 and 17 present the images associated with those regions that correspond 
to the sky and buildings of the painting shown in Figure 3. Similar to its application in 
painting restoration, PCA could be employed to highlight the most relevant features that 
influence the estimation of moisture levels in bricks. 

Applying PCA to artworks, such as paintings, helps identify significant details like 
colors or patterns; its application to brick images can reveal textural patterns, color varia-
tions, and visual features related to moisture. 

 

Figure 14. Application of PCA to the attributes illustrated in Figure 13. Figure 14. Application of PCA to the attributes illustrated in Figure 13.

In contrast, Figure 15 presents the outcome of applying K-means clustering to the
data shown in Figure 14. In PCA, appropriate attribute selection enhances the capture of
principal variations, while irrelevant attributes will negatively impact simplification.
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In K-means analysis, the choice of attributes affects the quality of the clusters, poten-
tially leading to erroneous groupings [13,14].

Figures 16 and 17 present the images associated with those regions that correspond
to the sky and buildings of the painting shown in Figure 3. Similar to its application in
painting restoration, PCA could be employed to highlight the most relevant features that
influence the estimation of moisture levels in bricks.

Constr. Mater. 2025, 6, x FOR PEER REVIEW 16 of 47 
 

 

Figure 15. Application of the K-means algorithm to the points shown in Figure 14. 

 

Figure 16. Cluster 1: the dark area of the painting illustrated in Figure 3, considering the attributes 
illustrated in Figure 13. 

Figure 16. Cluster 1: the dark area of the painting illustrated in Figure 3, considering the attributes
illustrated in Figure 13.



Constr. Mater. 2025, 5, 7 16 of 45Constr. Mater. 2025, 6, x FOR PEER REVIEW 17 of 47 
 

 

Figure 17. Cluster 2: the illuminated area of the painting illustrated in Figure 3, considering the 
attributes illustrated in Figure 13. 

5. Mexican Norms Utilized in This Study 
(a) NOM-018-ENER-2011 [29]: “Thermal Insulators for Buildings. Characteristics and 

Testing Methods” 

• Objective: to establish the technical requirements for thermal insulators to en-
sure effective heat transfer control in construction. 

(b) NMX-C-228-ONNCCE-2010 [30]: “Construction Industry. Thermal Insulating Mate-
rials. Determination of Moisture Adsorption and Water Absorption” 

• Objective: to standardize the method for assessing moisture adsorption and wa-
ter absorption in thermal insulating materials. 

(c) NMX-C-037-ONNCCE-2013 [31]: “Construction Industry. Masonry. Determination 
of Total and Initial Water Absorption in Blocks, Bricks, or Masonry Units. Testing 
Method” 

• Objective: to provide a standardized test for measuring water absorption in ma-
sonry materials. 

(d) The NMX-C-404-ONNCCE-2012 [32] standard specifies the requirements and testing 
methods for the ceramic bricks used in construction. This standard guarantees the 
quality and durability of ceramic bricks in buildings. 

6. Methodology 
Images of the four types of bricks showing varying moisture levels were obtained. 

Images corresponding to the fired red bricks, categorized as first-class, second-class, ap-
parent, and spongy, were obtained. These bricks are predominantly used in residential 
construction in the state of Oaxaca. For all images, the smartphone was positioned at the 
same distance from the brick under consistent illumination conditions. One face of the 

Figure 17. Cluster 2: the illuminated area of the painting illustrated in Figure 3, considering the
attributes illustrated in Figure 13.

Applying PCA to artworks, such as paintings, helps identify significant details like col-
ors or patterns; its application to brick images can reveal textural patterns, color variations,
and visual features related to moisture.

5. Mexican Norms Utilized in This Study
(a) NOM-018-ENER-2011 [29]: “Thermal Insulators for Buildings. Characteristics and

Testing Methods”

• Objective: to establish the technical requirements for thermal insulators to ensure
effective heat transfer control in construction.

(b) NMX-C-228-ONNCCE-2010 [30]: “Construction Industry. Thermal Insulating Materi-
als. Determination of Moisture Adsorption and Water Absorption”

• Objective: to standardize the method for assessing moisture adsorption and
water absorption in thermal insulating materials.

(c) NMX-C-037-ONNCCE-2013 [31]: “Construction Industry. Masonry. Determination of
Total and Initial Water Absorption in Blocks, Bricks, or Masonry Units. Testing Method”

• Objective: to provide a standardized test for measuring water absorption in
masonry materials.

(d) The NMX-C-404-ONNCCE-2012 [32] standard specifies the requirements and testing
methods for the ceramic bricks used in construction. This standard guarantees the
quality and durability of ceramic bricks in buildings.

6. Methodology
Images of the four types of bricks showing varying moisture levels were obtained.

Images corresponding to the fired red bricks, categorized as first-class, second-class, ap-
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parent, and spongy, were obtained. These bricks are predominantly used in residential
construction in the state of Oaxaca. For all images, the smartphone was positioned at the
same distance from the brick under consistent illumination conditions. One face of the
brick, associated with its largest dimension, was in contact with the free water surface
to ensure the capillary rise of the water. First-class bricks are characterized by their red
color, which is derived from the clay used and the high temperatures applied during the
firing process. Their rough texture and rustic appearance also contribute to their aesthetic
appeal. In construction, first-class fired red bricks are highly regarded, not only for their
traditional look but also for their structural load-bearing capacity, making them a versatile
and reliable material.

The second-class fired red brick, depicted in Figure 18a, differs from the first-class
brick in that it often exhibits imperfections or aesthetic defects, such as color variations,
deformations, or irregular dimensions. These characteristics make it less suitable for
applications that require a uniform and attractive appearance. However, the second-class
brick is a more economical alternative to the first-class brick, making it appropriate for
projects where aesthetics are not the primary concern and budget constraints are significant.
It is essential to ensure that this brick meets the standards set by relevant building codes,
particularly in regions like Oaxaca, which is located in a highly active seismic zone.
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Figure 18. Images of: (a) second-class brick, (b) spongy brick, (c) first-class brick, and (d) apparent
brick, showing the presence of moisture. In the experiments, water rises by capillarity. The experiment
involved placing the base of the brick in direct contact with water, enabling the upward movement
of water through capillary action. To systematically assess this process, the height of the brick was
divided into increments of one centimeter. At each defined height, a photograph was captured using
a smartphone to document the progression of the water front visually. Additionally, the weight of the
brick was recorded under two conditions: first, when the brick was completely dry, and subsequently,
as the water invasion front reached each incremental height.

The apparent fired red brick is a prominent construction material renowned for its
traditional aesthetics and durability. Characterized by its red hue, which is derived from
the clay and high-temperature firing process, this brick features a rough, textured surface
that adds rustic charm. The surface of the apparent brick is rich in minerals, including
quartz. Due to its versatility, the apparent fired red brick is employed in various applica-
tions, including exterior cladding, walls, and fireplaces, offering both aesthetic appeal and
functional benefits in architectural projects.
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Figure 18b shows the presence of variable moisture due to capillary water rising
in the fired red brick type known as spongy. The permeability of this brick can vary in
different areas due to reasons related to its manufacturing and composition, which are
described below.

• Variability in firing: the temperature and firing time may not be uniform. This can
result in certain areas of the brick being more fully fired. Extremely well-fired areas
may become less permeable.

• Variations in composition: the exact composition of the clay or the material used to
make bricks can vary in different parts of the raw material.

• Density and compaction: during the manufacturing of bricks, the material is com-
pacted into molds before firing. The way in which the material is compacted can vary,
affecting the density and porosity of the brick in different areas. Less well-compacted
areas may be more permeable than more well-compacted areas.

Table 1 presents the moisture percentage values for the different types of bricks.
Figures 19 and 20 present images of the spongy, apparent, first-class, and second-class
bricks using different color formats such as RGB, YUV, and HSV.

Table 1. Moisture percentages for the different types of bricks.

FIRST CLASS Kg Time %H

0 cm 2.740 11:13
3 cm 2.840 11:24 3.52
4 cm 2.870 11:32 4.52
5 cm 2.920 11:48 6.16
6 cm 2.955 12:01 7.27
7 cm 2.985 12:19 8.2
8 cm 3.015 12:26 9.12
9 cm 3.045 12:39 10.01

10 cm 3.075 12:54 10.89
APPARENT Kg Time %H

0 cm 2.275 12:57
3 cm 2.345 1:01 2.98
4 cm 2.360 1:03 3.60
5 cm 2.375 1:06 4.21
6 cm 2.385 1:08 4.61
7 cm 2.405 1:12 5.40
8 cm 2.420 1:17 6.00
9 cm 2.440 1:23 6.76

10 cm 2.460 1:29 7.52
SPONGY Kg Time %H

0 cm 2.470 1:31
3 cm 2.510 1:34 1.59
4 cm 2.525 1:36 2.17
5 cm 2.540 1:39 2.75
6 cm 2.550 1:43 3.13
7 cm 2.560 1:46 3.51
8 cm 2.575 1:52 4.07
9 cm 2.585 1:56 4.44

10 cm 2.6 2:07 5
SECOND CLASS Kg Time %H

0 cm 2.445 6:29
3 cm 2.525 6:36 3.16
4 cm 2.560 6:43 4.49
5 cm 2.595 6:51 5.78
6 cm 2.620 6:58 6.67
7 cm 2.660 7:11 8.08
8 cm 2.685 7:20 8.93
9 cm 2.715 7:29 9.94

10 cm 2.750 7:42 11.09



Constr. Mater. 2025, 5, 7 19 of 45

Constr. Mater. 2025, 6, x FOR PEER REVIEW 20 of 47 
 

9 cm 2.715 7:29 9.94 
10 cm 2.750 7:42 11.09 

The images, in RGB, YUV, and HSV formats, obtained from fired red bricks can pro-
vide indirect information regarding moisture, as follows: 

• RGB (red, green, and blue). Changes in color intensity, especially in darker tones, can 
indicate areas of the brick surface affected by moisture. Wet areas tend to show 
darker colors or color variations, which may be an indication of moisture problems. 

• YUV. The luminance (Y) in the YUV color space can be useful for detecting differ-
ences in surface reflectance. Wet areas tend to reflect less light, which could manifest 
as lower luminance in the image. 

• HSV (hue, saturation, and value). Saturation and value in the HSV color space can 
help identify areas with different water contents. Wet areas may show different sat-
uration levels and values compared to dry areas. 

    
(a) 

     
(b) 

Figure 19. RGB, YUV, and HSV image formats of: (a) spongy and (b) apparent bricks.

The images, in RGB, YUV, and HSV formats, obtained from fired red bricks can
provide indirect information regarding moisture, as follows:

• RGB (red, green, and blue). Changes in color intensity, especially in darker tones, can
indicate areas of the brick surface affected by moisture. Wet areas tend to show darker
colors or color variations, which may be an indication of moisture problems.

• YUV. The luminance (Y) in the YUV color space can be useful for detecting differences
in surface reflectance. Wet areas tend to reflect less light, which could manifest as
lower luminance in the image.

• HSV (hue, saturation, and value). Saturation and value in the HSV color space can help
identify areas with different water contents. Wet areas may show different saturation
levels and values compared to dry areas.
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Figure 20. RGB, YUV, and HSV image formats of: (a) first-class and (b) second-class bricks.

This is important when building inspection and quality control applications to detect
moisture problems that can affect the structural integrity and energy efficiency of a build-
ing [6]. In-depth moisture analysis typically requires specific sensors and measurement
techniques. However, images in the aforementioned formats can provide an initial visual
indication of moisture problems.

Analyzing images in various formats enables the assessment of texture and coloration
differences in bricks, which may correlate with their permeability and overall quality. This
approach can assist in material inspection and construction quality control. Additionally,
image analysis facilitates the inference of mineral presence and distribution within fired
bricks, contributing to their mineralogical characterization. However, precise mineral
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identification often requires advanced techniques such as microscopy and X-ray diffrac-
tion. While color images provide an initial overview of mineral composition, they cannot
replace these detailed analytical methods. However, the surface texture characterization of
bricks can be enhanced through image analysis. The HSI (hue, saturation, and intensity)
format, employed in video technology and adapted by previous researchers to study fluid
content [33], is illustrated in Figure 21, demonstrating its application.
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Figure 21. (a) Hue and (b) saturation of the spongy brick corresponding to the HSI format, which is
similar to the Munsell format used in geology. Hue and saturation seem to correlate with moisture
and texture, respectively.

Attributes, derived from photographs, encompass specific measures such as RGB
or YUV amplitudes. Analogous to the RGB color model in image representation, which
decomposes an image into three color components, seismic attributes in geophysics disag-
gregate the seismic data into features like amplitude, frequency, and wave velocity. This
process provides a detailed view of subsurface conditions, similar to the way in which the
RGB model enables a broad range of color representation in images. Seismic attributes
thus facilitate a comprehensive characterization of geological and structural properties,
enhancing geophysical exploration and assessment [18].

Digital image processing, augmented by artificial intelligence, enables the analysis
of fired red brick images to estimate moisture content effectively. Through unsupervised
learning, AI can detect key characteristics related to moisture—such as texture, color, and
the distribution of moisture spots—directly from photographs. This advanced methodology
streamlines the evaluation process and improves accuracy in moisture percentage estima-
tion, offering significant benefits for research and practical applications in the construction
industry and building conservation. Figure 22 illustrates the application of principal com-
ponent analysis (PCA) to specific attribute combinations, as shown in Figure 20, for the
second-class brick.
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Figure 22. Segmented images corresponding to the second-class brick illustrated in Figure 18a: (a) dry
and (b) wet areas.

With color intensity variations providing initial moisture indicators, further insights
are obtained through clustering techniques that categorize the image data into distinct
moisture-related patterns. As mentioned before, the K-means algorithm is a robust clus-
tering technique that is widely used in data mining and machine learning. It partitions a
dataset into clusters in which the points within each cluster exhibit high similarity. The
algorithm iteratively assigns data points to these clusters and updates the cluster cen-
troids. Its simplicity and efficiency are valuable for pattern recognition in unlabeled data,
though its performance can be influenced by the initial centroid selection and the number
of clusters. K-means clustering identifies the moisture levels in images, distinguishing
between the dry and wet areas of a brick wall. Analyzing these clusters reveals the mois-
ture distribution patterns, offering insights into how moisture varies and its correlation
with material characteristics. Comparison of segmented images (Figure 22a,b) with the
reference photograph (Figure 18a) indicates that the unsupervised learning approach used
in digital image processing is robust and reliable. These clusters not only reveal moisture
distribution but also set the stage for estimating moisture levels by calculating relative
amplitudes from the segmented images. For more detailed moisture analysis, additional
clusters are recommended.

6.1. Estimation of Moisture Percentage and Hydraulic Diffusivity

First, the volume of water added to the brick via capillarity is calculated using the
following formula:

%H =

(
PZ − PS

PZ

)
100 (1)
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considering the different heights (3, 4, 5, 6, 7, 8, 9, and 10 cm) of the invasion front in the
brick. PZ corresponds to the weight of the wet brick (considering that the height of the
invasion front is Z) and PS corresponds to the weight of the dry brick. For each value of Z,
a corresponding table is generated, where multiple specimens are analyzed. Subsequently,
the light intensities for both the wet and dry regions, denoted as IH and IS, respectively, are
calculated for each height.

The light intensity is calculated as I = (R + G + B)/3, where R, G, and B correspond
to the values of the red, green, and blue channels of the RGB format. Figure 23 shows
a typical image of the G-channel and its respective amplitudes, which correspond to the
second-class brick. To achieve more accurate estimates of light intensities and reduce
errors, the average RGB values were obtained from the central areas of both the dry and
wet regions (see Figure 24). Using the values IH and IS for each height, the luminosity
percentages were calculated using the following expression:

%L =

(
IS − IH

IH

)
100 (2)
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Using this approach, luminosity percentages were calculated for varying heights of
the invasion front. The moisture percentage in a brick sample can then be correlated with
the relative difference between the average light intensity values in the dry and wet regions
of the image, as follows:

L = f (H) (3)

where f is an expression that correlates the moisture percentage with the luminosity
percentage, as defined by Equations (1) and (2). Moisture percentages in the brick sample
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and luminosity values in the image were estimated to subsequently adjust the coefficients in
Equation (3). The selection of these coefficients is contingent upon the specific experimental
conditions and on the relationship between luminosity percentage and water content in the
samples. The relative difference in luminosity values, which represent the average of the
color layer values between the dry and wet areas in an image, can mitigate the influence
of lighting variations. This relative difference serves as a form of internal normalization,
accounting for lighting variations that affect both areas equally. However, several additional
considerations must be addressed:

• Uniformity of lighting: significant lighting disparities within the image may limit the
effectiveness of this procedure.

• Additional corrections: in cases where lighting is a critical factor, additional corrections
to the images may be necessary to ensure reliable estimates.

It is worth emphasizing that using the relative difference in luminosity between dry
and wet areas can be an effective strategy to mitigate the impact of lighting on measure-
ments. However, the effectiveness of this technique is contingent upon the uniformity and
variability of lighting conditions. Therefore, careful analysis and additional corrections are
always advisable. The relationship between moisture content and the relative difference in
average luminosity values can provide significant insights and facilitate the detection of
water content in porous materials. Potential interpretations of this relationship include:

• Water content indicator: the relative difference in luminosity values between dry and
wet areas may serve as an indicator of the presence of water in the brick sample.

• Sensitivity to capillarity: this analysis technique may be sensitive to capillarity effects,
as changes in water content can impact luminosity values.

• Non-destructive monitoring: this relationship can be useful for the non-destructive
monitoring of water content in bricks or similar materials.

• Process control: in industrial applications, this relationship could be used as a process
control tool to monitor and ensure appropriate moisture levels during brick production
or other porous material manufacturing.

The construction of the expression that relates moisture and luminosity percentages
is described below. Figures illustrating this information display the results from various
examples. As previously mentioned, Figure 24 shows the areas used to estimate luminosity
intensities in the dry and wet zones. The luminosity intensities represent the averages
of the R, G, and B values in each of the studied regions, which are then used to calculate
luminosity (as shown in Equation (2)).

The luminosity percentage, as defined by Equation (2), was estimated for various
invasion front heights. It is important to note that variations in pixel size can influence these
percentages due to the fractal nature of the experiment, as observed in previous studies on
rock porosity [34]. Fractals, characterized by repeating patterns at different scales, have a
mathematical connection to nature [35].

Figures 25 and 26 illustrate the variations in the moisture percentage of the bricks,
relative to the square root of the invasion time, and the height of the invasion front (Z),
respectively. Figure 27 displays a graph of the luminosity and moisture percentages for
different bricks, with a consistent pixel size being used in all cases. Figure 28 shows the
hue and moisture percentages for different bricks, with a consistent pixel size being used in
all cases.
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Figure 25. The vertical and horizontal axes represent the percentage of moisture and the square root
of time, respectively. (a) The coefficients of the lines and residuals (the sum of the squares of the fit
errors) are: [0.8751 −0.1799], 0.1664; [1.6018 0.1751], 0.2440; [0.8420 0.1843], 0.1491; [1.2959 −0.2143],
0.1771. (b) The coefficients of the lines and residuals (the sum of the squares of the fit errors) are:
[1.0720 −0.0943], 0.2750; [1.3047 0.2398], 0.1520; [0.8420 0.1843], 0.1491; [1.2959 −0.2143], 0.1771.
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Figure 27. Graph illustrating the function defined by Equation (3) for different types of bricks. The 
arrow indicates the direction in which the permeability and the size of the voids increase. The coef-
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Figure 26. The vertical and horizontal axes represent the percentage of moisture (Equation (1)) and
the height of the front of invasion, respectively. The arrow indicates the direction in which the
permeability and the size of the voids increase. The coefficients of the lines and residuals (the sum
of the squares of the fit errors) are: [1.1542 −0.0812], 4.5464; [0.6860 0.9874], 1.7723; [0.4348 0.8469],
2.0793; [1.1747 −0.4008], 0.6729.
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Figure 27. Graph illustrating the function defined by Equation (3) for different types of bricks. The
arrow indicates the direction in which the permeability and the size of the voids increase. The
coefficients of the lines and residuals (the sum of the squares of the fit errors) are: [−4.3433 89.2198],
800.9071; [−3.3782 50.4837], 60.9364; [−2.6172 44.4502], 131.6114.
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Figure 28. Graph illustrating the variations in moisture percentage with respect to hue (HSI format).
Each color represents a specific type of brick. The arrow indicates the direction in which the permeability
and the size of the voids increase. The coefficients of the lines and residuals (the sum of the squares of
the fit errors) are: [2.2362 34.7470], 13.9864; [1.19088 55.3053], 65.6411; [2.6254 49.0763], 13.6402.

The HSI format is used to define the color vector with set components: hue, saturation,
and intensity. It has a certain relationship to the Munsell color system, which is used for soil
classification and allows a precise and standardized description of the colors present in the
terrain. Developed by Albert H. Munsell [36] in the early 20th century, this scale provides a
numerical and alphabetical notation combining hue, value, and chroma to uniquely define
each color. In geology, color formats are used to characterize materials, identify horizons,
and evaluate soil quality [37–39]. The scale’s internationally recognized character ensures
consistent and comprehensible communication, making it a fundamental pillar in soil study
research. Hue refers to the attribute that characterizes pure color. Saturation relates to
the mixture of color with white. Intensity corresponds to the level of gray in a black-and-
white image. The advantage of using the HSI format lies in its approximation to human
color perception and interpretation. Since the eye detects some color differences based on
varying levels of water content, it is expected that the water content in a brick sample is
more closely related to hue than to intensity, saturation, or other attributes of the different
color formats [33]. Figure 28 illustrates how the moisture percentage varies with respect to
hue in the HSI format, considering different types of bricks. As with Figure 27, the same size
of pixel was used in all the cases studied, and the experimental setup remained consistent.

Regarding the estimation of hydraulic diffusivity, this can be determined using the
following equation [40–42]:

Sw = er f c
(

Z
2
√

∝ t

)
(4)

where Sw, Z, α, and t represent the water saturation, the height of the invasion front (in the
examples presented here, the rise of the invasion front is nearly uniform, except in the case
of the so-called spongy brick), hydraulic diffusivity, and time, respectively. It should be
noted that Equation (4) represents an approximation, which may be insufficient in certain
cases [43], in particular, in the presence of coupled processes [43]. The influence of gravity
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is not accounted for in the derivation of Equation (4). The function er f c corresponds to the
complementary error function, which is commonly used in the fields of probability and
statistics. Hydraulic diffusivity (α), sometimes also referred to as the coefficient of hydraulic
diffusion, is a parameter that describes the rate at which water moves through a porous
medium. It is a fundamental property in hydrogeology and geotechnics, as it influences
the soil’s ability to transport and retain water, as well as the recharge and discharge of
aquifers. Hydraulic diffusivity is expressed in units of area per time (typically recorded in
square meters per second, m2/s), and its value depends on the porosity, permeability, and
tortuosity of the medium. Water saturation (Sw) in bricks refers to the amount of water that
a brick can absorb or retain in its structure.

Assuming H ≈ BVW (the percentage of the brick’s volume occupied by water),
moisture can be related to Sw using the following equation [34]:

H = Sw φ (5)

where φ is the porosity of the sample. To illustrate the procedure used to obtain hydraulic
diffusivity, consider the case of the second-class brick, where the height of the invasion
front is Z = 6 cm and H = 0.0611. In ceramic bricks, the porosity (φ) ranges from 10% to
50% [7]. The time that elapsed from the start of the experiment until the invasion front
reached a height of 6 cm was 20 min.

Assuming a porosity of 15% for the brick, and using the previously mentioned pa-
rameters, the water saturation is determined from Equation (5) as Sw = er f c(u) =

H/φ = 0.0611/0.15 = 0.407. From tables corresponding to the er f c, where er f c(u) =

0.407, it follows that u = 0.594. Consequently, it can be deduced that 0.594 =

Z/
(

2
√

αt
)
= 6/

(
2
√

20α
)
= 0.67/

√
α. Solving for hydraulic diffusivity, α = (0.67/0.594)2 =

1.27 cm2/min. Thus, the hydraulic diffusivity obtained from Equation (4) is α = 2.11 ×
10−6m2/s.

Hydraulic diffusivity can vary within the same sample, especially if the brick has
structural heterogeneities or variations in porosity. The effective hydraulic diffusivity values
for first-class, second-class, apparent, and spongy bricks, assuming φ = 30% and Z = 6 cm,
are the following: α = 0.311 × 10−6 m2/s, α = 0.923 × 10−6 m2/s, α = 1.68 × 10−6 m2/s,
and α = 1.6 × 10−6 m2/s.

For the estimation of hydraulic diffusivity in the spongy brick type, those bricks with
the most uniform invasion fronts were selected.

Different digital photography formats, such as HSV, can provide indirect information
about the type of fluid invading a particular brick. The distinction between the HSV values
of images obtained using UV light, showing a brick containing chlorides and one that does
not, will be noticeable in a visual representation (Figures 29 and 30).

The color range exhibited by a brick with chlorides differs from one without this
substance, due to the interaction of chlorides with light, leading to reflection and absorption
effects that alter the material’s appearance. This discrepancy in HSV values can be useful
for visually detecting areas that are potentially influenced by chlorides. The tracking
of chloride ions in a brick can be indirectly visualized through a simple experiment that
involves inducing the capillary rise of water combined with aniline (C6H5NH2) and sodium
chloride in the brick (Figure 31). This results in the appearance of layers marked by different
colors—a type of chromatography that is associated with ion movement, wherein lighter
ions advance further distances [44].

Figure 31 illustrates three distinct stages of efflorescence evolution: (a) early stage,
(b) intermediate stage, and (c) advanced stage. In the early stage, the invasion front is clearly



Constr. Mater. 2025, 5, 7 29 of 45

visible, along with the stratification of ions indicated by the different colors. Figure 31 also
demonstrates that ions travel faster in some regions of the brick.
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stance, due to the interaction of chlorides with light, leading to reflection and absorption 
effects that alter the material’s appearance. This discrepancy in HSV values can be useful 
for visually detecting areas that are potentially influenced by chlorides. The tracking of 
chloride ions in a brick can be indirectly visualized through a simple experiment that in-
volves inducing the capillary rise of water combined with aniline (𝑁𝑁6𝐻𝐻5𝑁𝑁𝐻𝐻2) and sodium 
chloride in the brick (Figure 31). This results in the appearance of layers marked by dif-
ferent colors—a type of chromatography that is associated with ion movement, wherein 
lighter ions advance further distances [44]. 

Figure 31 illustrates three distinct stages of efflorescence evolution: (a) early stage, (b) 
intermediate stage, and (c) advanced stage. In the early stage, the invasion front is clearly 
visible, along with the stratification of ions indicated by the different colors. Figure 31 also 
demonstrates that ions travel faster in some regions of the brick. 
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Figure 29. Images showing: (a) a brick in which pure water is ascending in the first half of the image,
and water with NaCl is ascending in the other half; (b) a brick in which pure water is ascending in
the first half of the image, and water with fluorescent dye is ascending in the other half; (c,d) images
illustrating the presence of efflorescence and fluorescence, respectively; (e,f) images corresponding to
the UV images of (c,d).
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6.2. Specific Surface and Porosity

In well-sorted granular systems, the specific surface area decreases with increasing
porosity, as demonstrated by both digital experiments and theoretical models [45]. However,
this relationship can be reversed in systems with binary or more complex grain size
distributions [45]. In sandstone and carbonate samples with low to medium porosity, the
specific surface increases as the porosity rises. In contrast, granular samples exhibit the
opposite behavior [45]. This behavior can be modeled using hollow ellipsoids immersed
within the mineral matrix. The grains can also be modeled as solid ellipsoids situated in
the otherwise vacant pore space. Considering that a particular material is composed of
identical grains denoted by ellipsoids, the specific surface area (S), which is defined as
the ratio of the surface area of all grains to the volume of the pack, can be expressed as
follows [45]:

S = 6(1 − φ)

(
a−p + b−p + c−p

3

)1/p

(6)

where a, b, and c correspond to the semi-axes of the ellipsoid that defines each grain. If
these semi-axes are equal, the expression defined above is simplified to:

S = 6
(1 − φ)

a
. (7)

Figure 32 presents a plot with the vertical axis representing the specific surface area
and the horizontal axis representing porosity. In this figure, two scenarios are presented that
correspond to: (a) a material containing spherical grains with the radius a = 150 µm, and
(b) a material that contains grains with an ellipsoidal form and semi-axes of a = 750 µm,
b = 610 µm, and c = 450 µm. Scenario (a) could represent the first- and second-class bricks,
while scenario (b) may correspond to the apparent and spongy bricks, respectively. These
scenarios are shown in the colors blue and black, respectively. When small particles fill
the pores within a large-particle framework, the specific surface area (S) increases as the
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porosity (φ) decreases. Conversely, when large particles are dispersed within a continuum
of smaller particles, fewer large particles result in higher porosity (φ) and a greater specific
surface (S). As previously mentioned, in uniform particle packs, S decreases with increasing
φ [45].
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Figure 32. The vertical and horizontal axes represent the specific surface and porosity. The colors
blue and black correspond to the values of two types of materials, the characteristics of which are
described in the main text. In this example, p = 1. The arrow indicates the direction in which the
grain size increases, and the shape of the grains becomes more ellipsoidal.

6.3. Microscopic Images

The following equipment was used to study the samples: (a) a binocular stereoscopic
microscope with a focal objective ranging from 0.7 to 11.5×; (b) a scanning electron micro-
scope (SEM) with an energy-dispersive spectroscopy (EDS) detector; and (c) a reflected-light
petrographic microscope. The microscope images are shown in Figures 33–35.
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Figure 33. Spongy brick sample. Energy-dispersive X-ray spectroscopy (EDS) analysis of the finest
component reveals a composition predominantly consisting of oxygen (O; 45.9%), silicon (Si; 22.9%),
aluminum (Al; 18.5%), iron (Fe; 6.5%), and potassium (K; 2.9%), with smaller amounts of magnesium
(Mg; 1.7%), calcium (Ca), and sodium (Na; 1.5%). This analysis suggests that the clayey material may
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generally consist of quartz, feldspar, aluminosilicates, and phyllosilicates. The detritus is primarily
composed of quartz, feldspar, hematite, and fragments of quartz-rich rocks, with particle sizes
ranging from 40 to 8000 µm. A significant portion exhibits reddish tones, tinted by the presence of
iron oxide. The matrix consists of an aggregate formed by quartz, feldspar, and a binder that is likely
composed of aluminosilicates and phyllosilicates. The coloration varies, depending on the observed
area. The material exhibits abundant porosity, with pore diameters ranging from 100 to 4000 µm and
depths reaching up to 5000 µm. These cavities are characterized by rounded, irregular, ovoid, and
elongated shapes, often showing orientation. The SEM images reveal the presence of primary pores,
which, in turn, contain subordinate, smaller interconnected pores.
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Figure 34. Apparent brick sample. Energy-dispersive X-ray spectroscopy (EDS) analysis of the finest
component reveals a composition predominantly consisting of oxygen (O; 55.5%), silicon (Si; 16%),
aluminum (Al; 16.3%), iron (Fe; 6.9%), and potassium (K; 2.3%), with smaller amounts of magnesium
(Mg; 1.5%), calcium (Ca), and sodium (Na; 1.5%). The detritus appears subangular, with tabular,
prismatic, or irregular (fragmented) shapes ranging in size from 40 to 6000 µm in diameter. Smaller
particles are primarily quartz, feldspar, and hematite, with disseminated traces of pyrite, while
larger particles generally consist of fragments of heterogeneous, typically quartz-rich rocks. The
matrix has a homogeneous, very fine-grained, submicroscopic structure (<3 µm) with a reddish hue,
acting as a cementing agent to support the sandy component. The voids are regular cavities that are
homogeneously distributed, with rounded shapes that are frequently oval and irregular, ranging in
size from 500 to 3000 µm in diameter.
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represented by quartz (Qz), feldspar, and hematite. A mixture of clays forms the base or matrix
of the brick, exhibiting a pale orange color. This matrix is submicroscopic in size (<3 µm) and
serves as the paste responsible for agglomerating the sandy material and fragments of rock (FgR),
acting collectively as a binding agent and thereby providing cohesion to the material. The sample
is characterized by some porosity, featuring rounded, ovoid, or elongated shapes, with diameters
ranging from 80 to 6000 µm and depths of up to 5000 µm. The larger voids may exhibit subordinate
smaller voids, which could indicate, in several instances, partially interconnected porosity. It should
be noted that the observed porosity in this brick may be partially due to the sample-cutting process.

7. Discussions
The variability in the permeability of masonry units, as discussed above, is a crit-

ical issue in the construction industry that warrants significant attention and may lead
to substantial debate [7]. Permeability can vary across the different areas of a masonry
unit due to several factors, including firing variability, material composition, compaction,
and manufacturing defects. Firing variability can cause the inconsistent curing of bricks,
resulting in differential porosity and permeability [7]. The material composition, particu-
larly the type and proportion of clay, additives, and other raw materials, is fundamental
in determining the permeability characteristics of the units [7]. Compaction during the
manufacturing process also affects the density and uniformity of bricks; inadequate com-
paction can lead to higher permeability [7]. Additionally, manufacturing defects, such as
cracks or incomplete formations, can exacerbate these issues. Variations in these factors can
significantly impact the quality standards of masonry units. Highly permeable units can
allow moisture ingress, leading to a cascade of problems including structural deterioration,
efflorescence, and mold growth [6]. These issues not only compromise structural integrity
but also affect the aesthetic and functional aspects of buildings. Furthermore, the presence
of mold in buildings poses serious health risks, contributing to respiratory problems and
other health issues for the occupants [6]. These concerns underscore the importance of
adopting best construction practices and striving to create healthy and comfortable indoor
environments [6]. They also highlight the need for stringent regulations and standards
governing the manufacture of masonry units to ensure consistency and quality [6]. Ef-
fective quality control measures, such as regular permeability testing and adherence to
standardized manufacturing processes, are essential for mitigating these issues [6].

Table 2 presents the total water absorption values for various masonry units. These val-
ues demonstrate that the units comply with the NMX-C-404-ONNCCE-2012 standard [32],
which sets a maximum allowable water absorption criterion of 23%. This compliance
indicates that the masonry units meet the necessary quality standards for water absorption,
ensuring their suitability for construction purposes. Irregular water saturation typically
refers to conditions in which the water content within a specific medium, such as a masonry
unit or a porous rock, is not uniformly distributed. Instead, the water is concentrated in
localized or discontinuous regions within the material. This phenomenon can arise due
to several factors, including inconsistencies in material composition, varying degrees of
porosity, and differences in compaction during manufacturing. Irregular water saturation
can significantly impact the performance and durability of masonry units, leading to poten-
tial issues such as uneven structural stress, localized deterioration, and the compromised
integrity of the construction [7]. Understanding the patterns and causes of irregular wa-
ter saturation is crucial for improving the manufacturing processes and quality control
measures of masonry units. By addressing these factors, manufacturers can enhance the
uniformity and overall performance of the units, thereby contributing to the longevity and
stability of masonry structures [7]. Moreover, further research and advanced testing meth-
ods are essential to accurately assess and mitigate the effects of irregular water saturation
in masonry materials.
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Table 2. Total absorption of water over a 24-h period.

BRICK TOTAL ABSORPTION OF WATER

FIRST CLASS 18.19%
SECOND CLASS 17.17%

APPARENT 16.18%
SPONGY 13.8%

Changes in color intensity in the image formats can serve as indicators of moisture-
affected areas in the masonry units. This visual information is highly relevant for building
inspection and quality control applications, aiding in the detection and assessment of
moisture problems. In RGB images, color variations may be associated with differences
in surface texture and composition, which can influence the permeability of the material.
These variations can provide preliminary insights into potential areas of concern.

Furthermore, utilizing alternative color spaces such as YUV, HSV, and HSI can en-
hance the analysis. These color spaces offer distinct advantages by providing information
on luminance, hue, saturation, and value, which data can be instrumental in identifying
permeable areas within the masonry units. For instance, the YUV color space separates
luminance (brightness) from chrominance (color information), making it easier to detect
subtle changes in moisture levels. Similarly, the HSV and HSI color spaces, which em-
phasize hue, saturation, and intensity, can help in distinguishing between moist and dry
regions more effectively. However, it is crucial to validate the moisture percentage estimates
derived from photographic analysis with measurements obtained using other established
techniques, namely, electrical resistance and neutron scattering. Cross-validation with these
methods ensures the accuracy and reliability of the moisture detection process, thereby
enhancing the credibility of the visual inspection results.

The use of digital image processing driven by artificial intelligence presents a promis-
ing approach for estimating moisture percentages in fired red bricks, thereby aiding in
moisture management and quality control.

The methodology described in this study is intended to complement, rather than
replace, traditional moisture measurement techniques. By leveraging AI algorithms, this
image processing method has demonstrated its reliability, as evidenced by the close agree-
ment between the segmented images and reference photographs. A key aspect of this
methodology is the identification of moisture clusters through the combined application of
principal component analysis (PCA) and K-means clustering. PCA helps in reducing the
dimensionality of the image data, highlighting the most significant features, while K-means
clustering can effectively group similar data points, thereby identifying those regions with
varying moisture content.

The results of this study indicate that this AI-driven image processing technique can
significantly impact the evaluation of moisture in structures. The ability to accurately and
efficiently detect moisture clusters can lead to better-informed decisions in the construction
and maintenance of buildings.

Using relative brightness differences as a form of “internal normalization” is important
for minimizing the effects of lighting variations across an image. This technique relies on
the assumption that changes in lighting impact all areas of the image uniformly.

By focusing on relative brightness differences rather than absolute values, the influence
of variable lighting conditions can be mitigated. In the context of images with different
pixel sizes, brightness percentages can vary, due to the inherently fractal nature of image
processing using different pixel sizes.

Fractals are characterized by self-similarity across different scales, meaning that an
object displaying fractal properties will exhibit similar patterns at various levels of magnifi-
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cation. This self-similarity is relevant when analyzing digital images, especially when pixel
sizes and image resolutions are adjusted.

For instance, natural elements such as coastlines demonstrate fractal characteristics,
showing complex, irregular shapes that persist at multiple scales. When measuring geo-
metric properties like the length or area of such fractal objects, the results can differ based
on the scale at which measurements are taken.

This scale-dependent variation is a consequence of the fractal dimension, which
quantifies the complexity of an object [34]. The choice of pixel size and image resolution
plays a significant role in how these physical properties are represented and measured.
Internal normalization through relative brightness differences helps account for variations
in lighting, which could facilitate a more consistent analysis of fractal-like structures in
digital images.

In the realm of construction material evaluation and architectural heritage preser-
vation, accurately identifying the substances within masonry units is paramount. The
presence of chlorides, for instance, can greatly influence the integrity and longevity of these
structures [6]. Traditional methods of detection often grapple with uncertainties that can
compromise the accuracy of the results.

Advancements in digital photography and image processing offer promising solutions.
Digital photography formats such as RGB (red, green, and blue), HSV (hue, saturation, and
value), and HSI (hue, saturation, and intensity) can help to reduce any uncertainties in the
identification of moisture percentages within masonry units. Each of these formats offers
unique advantages in capturing and analyzing the interactions between light and materials.

The RGB color model is fundamental in digital imaging, representing images in terms
of the primary colors of light. By analyzing the intensity of red, green, and blue components,
we can infer the presence of chlorides, which typically alter the color balance of the material.

The HSV color model separates the chromatic content (hue) from the intensity and
purity (saturation and value). This separation allows for a more intuitive identification
of color changes caused by chlorides. Similar to HSV, the HSI color model provides a
representation that aligns closely with human perceptions of colors. By focusing on hue,
saturation, and intensity, this model facilitates the detection of subtle changes in appearance
due to chlorides.

Similar to HSV, the HSI color model provides a representation that aligns closely with
human perceptions of colors. By focusing on hue, saturation, and intensity, this model
facilitates the detection of subtle changes in appearance due to chlorides. Chlorides can
cause noticeable changes in the appearance of masonry materials, such as discoloration
or efflorescence. By utilizing different digital photography formats, these changes can
be quantified and analyzed, providing a more accurate assessment of the presence of
chloride. Beyond chloride detection, these digital photography formats are instrumental in
estimating the moisture percentage within masonry units. Moisture can affect the material’s
appearance, and by leveraging RGB, HSV, and HSI values, we can derive the correlations
between visual changes and moisture levels. This capability is essential for evaluating the
condition of construction materials and preserving architectural heritage.

Beyond their theoretical implications, these findings have practical value, particularly
for quality control in traditional and eco-friendly brick construction. The percentage of
luminosity was observed to be highly sensitive to slight inclinations in first-grade bricks.
In contrast, hue values demonstrated a better fit to a single regression line and were
less affected by environmental variations, with the exception of some strong outliers. In
experiments considering soil-oil-water systems, the hue (HSI system) of the transmitted
light has been found to correlate directly with the water content in porous media [33].
This parameter offers a high-resolution measurement of both the water and oil contents
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in transient flow fields [33]. The HSI format is similar to the Munsell color chart used for
soil classification. As mentioned before, this specifies a color using hue, saturation, and
intensity [33]. Hue describes the pure color, saturation indicates the degree of dilution with
white, and intensity corresponds to the gray level [33]. The HSI format aligns with human
color perception, making it useful for interpreting color differences. Since these differences
are noticeable to the human eye in varying water and oil contents, water content is expected
to correlate more directly with hue than with other color formats [33]. However, certain
strong outliers were noted, likely associated with drastic light absorption and fluorescence.
These hue anomalies could be attributed to several factors, including: (a) the presence of
heterogeneities like rock fragments that can contain grains of quartz; and (b) the presence
of genuine clays that, in combination with water, could be capable of absorbing light.
Chemical reactions may occur during the capillary rise of water in the brick. The clays
in question could exhibit honeycomb-like molecular structures, further influencing their
absorption characteristics.

Materials and minerals interact with electromagnetic radiation by reflecting and ab-
sorbing it in a manner that varies with the radiation’s wavelength. These interactions are
depicted in the reflectance spectra, which highlight the differences in reflection and absorp-
tion across various wavelengths [46]. The mechanisms responsible for the absorption of
electromagnetic radiation operate at the molecular and atomic levels and can be categorized
into two primary types: electronic and vibrational processes [46]. Electronic processes
involve the absorption of photons by individual atoms or ions within minerals at specific
wavelengths, leading to distinctive absorption features in the reflectance spectra [46]. For
example, the absorption of certain wavelengths by iron atoms in oxides and hydroxides
results in these minerals exhibiting a red color [46]. Vibrational processes, on the other
hand, involve the absorption of photons by molecular bonds, which induces vibrations
within the molecules. This type of absorption is characteristic of the bonds in materials such
as clay minerals, where the molecular structure absorbs specific wavelengths, contributing
to the material’s overall spectral properties [46]. Both electronic and vibrational processes
are critical for understanding the optical behavior and colors of minerals and materials
(including gas and liquids, which could be situated around the grains of the materials).

Efflorescence, a common issue in masonry units, results from the deposition of soluble
salts on the surface of bricks [6]. Detecting and analyzing efflorescence is crucial for
maintaining the structural integrity and aesthetic value of masonry constructions [6]. This
study presents a methodology leveraging UV light, digital imaging, and AI to address the
identification of areas affected by efflorescence. Efflorescence can be efficiently detected
in fired red bricks through the application of UV light, capitalizing on the fluorescence
properties of many soluble salts. According to Pirson [47], salts such as calcium carbonate
and sodium chloride exhibit fluorescence under UV light, emitting a visible light that
facilitates their detection.

The proposed process comprises the following steps: (a) a UV light source is employed
to illuminate the surface of the masonry unit. UV light’s ability to excite the soluble salts
present in the material’s pores makes it an effective tool for highlighting efflorescence.
Ensuring an optimal environment with minimal ambient light enhances the visibility of
the fluorescence. (b) Under UV illumination, incipient efflorescence becomes visible, due
to the fluorescence of the soluble salts. This fluorescence aids in the early detection of
efflorescence, which might not be easily discernible under normal lighting conditions.
(c) Photographic documentation of the illuminated surface is crucial for detailed analysis.
High-resolution images captured under UV light can be digitally processed to enhance the
visibility and contrast of the efflorescence. (d) Once photographic images of efflorescence
are obtained, unsupervised learning can be applied to analyze the data. AI algorithms can
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identify the presence, size, and distribution of efflorescence within the masonry unit. This
automated analysis provides a comprehensive understanding of the extent and severity
of the efflorescence, enabling more informed decisions for remediation and preservation.
The integration of UV light detection, digital photography, and AI analysis can represent a
significant advancement in the study of efflorescence in fired red bricks. This methodology
enhances the accuracy of the analysis, which is critical for effective maintenance and preser-
vation strategies. Future research should focus on refining the AI algorithms employed
and exploring the fluorescence properties of different salts to broaden the applicability of
this technique.

Ion stratification within masonry units results from the differential movement of ions
as water ascends through the material, carrying dissolved substances with it. This process
bears a resemblance to chromatography, where substances are separated based on their
movement through a medium. Understanding ion stratification is crucial for comprehend-
ing the diffusion processes and material behavior in masonry. Kovats [44] draws a parallel
between ion stratification in sand saturated with brine and chromatographic separation.
In chromatography, substances are separated based on their interaction with a stationary
phase and their relative mobility. Similarly, in masonry units, ions stratify according to
their size and charge, with the lighter ions traveling further and faster than heavier ones.

This analogy provides a framework for analyzing ion movement and diffusion within
the material. The experimental setup, depicted in Figure 31, involved the use of a 15% NaCl
solution to study ion stratification. The steps followed in this experiment are as follows:
(a) a masonry unit was saturated with a 15% NaCl solution, mixed with aniline, to indirectly
observe the movement of ions; (b) the solution was allowed to ascend through the masonry
unit, simulating natural water movement and ion transport; (c) as the solution ascended,
the stratification of ions occurred, with lighter ions traveling longer distances than heavier
ones. This stratification was visualized using aniline, which highlighted the different layers
formed due to varying ion migration rates. (d) The resulting stratified layers were analyzed
using AI and image processing. This experiment demonstrated how ion stratification can
reveal insights into the diffusion processes and the behavior of ions within the masonry
unit. The experiment illustrated that the lighter ions in the 15% NaCl solution traveled
longer distances within the masonry unit compared to heavier ions. This stratification
mirrors chromatographic separation, confirming the analogy and providing a valuable tool
for studying diffusion processes in masonry [44].

The observed layers offer insights into how ions interact with the masonry material,
and how they influence the overall diffusion behavior and the adsorption process. Adsorp-
tion is the process by which ions, atoms, or molecules adhere to the surface of a solid. In
the case of clay, chloride ion adsorption can occur due to the specific surface properties
of the clay [47]. Chloride ions, which are negatively charged anions, can be attracted to
positively charged sites on the clay surface due to electrostatic interaction.

This adsorption process is significant in the chemistry of material that contains
clays [47]. The ions that adsorb onto the clay surface can be important in ion exchange pro-
cesses [47]. The negatively charged ions, corresponding to chlorine, adhere to the surface
of the clay [47], grouping together and forming specific structures [47]. These structures
can capture atomic particles and lead to chemical reactions, which, in turn, can induce
crystallization [47].

The adsorption of chloride ions on clay surfaces is somehow linked to the concept of the
exclusion zone (EZ) layer [48], a key phenomenon in water science. The EZ layer refers to a
structured, quasi-crystalline phase of water that forms near hydrophilic surfaces, distinct
from bulk water, and excludes particles and solutes. This process underscores the critical
role of surface chemistry in governing the behavior of water and ions at material interfaces,
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such as those found in clay. The interplay between a specific surface, porosity, permeability,
the EZ layer, ion adsorption, and light absorption reveals a complex interaction between
material properties and water behavior near surfaces. The specific surface (S) is pivotal
in EZ layer formation, as a larger specific surface facilitates greater interaction with water
molecules, leading to a more extensive EZ layer. This is particularly relevant with porous
materials, where the specific surface significantly contributes to EZ development.

Porosity and permeability further modulate this relationship: higher porosity allows
more water to occupy the material, while permeability influences the water movement
within it. The EZ layer can, in turn, alter both porosity and permeability by restructuring
water near the surfaces, potentially reducing flow in highly permeable materials. UV
light absorption plays a crucial role in enhancing EZ layer formation by providing the
energy needed for structuring water molecules [48]. Consequently, materials with a high
specific surface and optimized porosity and permeability can exhibit significant changes in
their interaction with water and light, with the EZ layer serving as a mediator influencing
these properties.

It should be mentioned that the color of a red brick has a notable impact on the
absorption of visible light by those pores saturated with water. Red bricks typically contain
pigments or iron oxides that reflect red wavelengths while absorbing other colors within
the visible spectrum, such as blue and green. When the brick’s pores are saturated with
water, the interaction between light and the brick’s color becomes more complex. Water
absorbs light across the visible spectrum, with a higher absorption in the blue region due to
its intrinsic properties. The red coloration of the brick, however, affects the light penetrating
into these pores by reflecting the blue and green wavelengths away. As a result, the overall
light absorption characteristics of the water in the pores are influenced by both the water’s
absorption properties and the brick’s color (which depends on the ingredients), thereby
altering the light spectrum. Percentages derived from images of bricks containing water
are presented in Figure 36. In this figure, the subscripts 1, 2, P, and A denote the following:
first brick, apparent brick, hue (HSI format) of the first brick, and hue (HSI format) of the
apparent brick, respectively.
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During the capillary rise of water in a red brick, chemical reactions between the water
and the brick can generate various gases. Key gases that may be produced include carbon
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dioxide from carbonate reactions and, potentially, hydrogen from redox reactions involving
metal components in the brick. If the brick contains metals such as iron or aluminum,
hydrogen gas could be generated through these redox reactions. Notably, hydrogen absorbs
light, primarily in the ultraviolet (UV) and far-infrared (IR) regions of the spectrum, rather
than in the visible light range. Conversely, chloride-containing compounds in the brick
could facilitate the generation of chlorine gas, which has the ability to absorb visible light.

Salts cause damage to construction materials and can lead to efflorescence on walls and
slabs. This has increased research interest in understanding chloride transfer phenomena in
porous materials, such as bricks. It is worth noting that there is still a scarcity of information
on this topic in the specialized literature, particularly regarding the diffusion coefficients of
salts in different types of brick. The diffusivity coefficient for sodium chloride in fired red
bricks can be estimated using Fick’s law through regression techniques [49].

The diffusion equation describes how energy (in the form of heat) or mass (in the
form of moisture) is transferred from regions of high concentration to regions of low
concentration [50]. The direction of transfer is driven by the temperature gradient (for
heat) or the moisture concentration gradient. The diffusion coefficients (α for moisture
and D for heat) are critical parameters. These determine the rate at which the studied
quantity (heat or moisture) diffuses through the medium. High values of these coefficients
indicate a greater rate of diffusion [40]. For an estimation of the hydraulic diffusivities
of bricks, the sharp front model concept was utilized [7]. The capillary diffusivity of
most porous materials exhibits substantial variation with liquid content, leading to very
steep capillary absorption profiles. Consequently, it is often practical and beneficial to
depict the wetted region as a rectangular or sharp-fronted profile, which is referred to
as the sharp front approximation [7]. Utilizing this model allows for relatively simple
mathematical descriptions of the numerous wetting processes [7]. We also assume that
the water content in the bricks is proportional to the products of porosity and water
saturation [34]. The estimated effective hydraulic diffusivity values, calculated with an
invasion front height of 6 cm, align with those documented in the specialized literature. The
observed variability in hydraulic diffusivity can be attributed to several factors, including
porosity, the presence of microfractures, material imperfections, and contaminants. These
elements influence the movement and distribution of fluids within the material, thereby
affecting its hydraulic properties.

Moisture is often associated with the presence of fractures, making it a critical factor in
the characterization of walls and slabs that may be compromised by differential settlement.
Advanced methods for inspecting these fractures, such as digital photography, have been
well-documented [51–53]; in these methods, transfer and unsupervised learning are uti-
lized, which have demonstrated the potential of unsupervised learning for differentiating
cracks from noise in images of concrete [52]. However, the use of drone-acquired digital
photographs to study moisture in slabs and walls represents a novel approach that can
significantly enhance the monitoring and management of architectural challenges [54,55].
The methodology presented in our study can combine the multi-spectral imaging capa-
bilities of drones with unsupervised learning. This approach can be further improved by
the incorporation of InSAR (interferometric synthetic aperture radar) imaging [46]. InSAR
works by using the radar signals emitted from satellites or aircraft to capture images of
the Earth’s surface. By comparing two or more radar images taken from slightly different
positions or at different times, InSAR can detect small changes in the Earth’s surface, such
as those caused by infrastructure deformation [46]. InSAR imaging provides valuable data
on surface deformation over time, which can reveal subtle ground movements that are
indicative of deeper structural issues [56]. Cracks observed in buildings due to subsidence
may facilitate the propagation of moisture, which, in turn, could compromise the struc-
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tural and bioclimatic integrity of walls and roofs. Thermal imaging is particularly useful
in detecting temperature variations that correlate with moisture levels and underlying
structural anomalies. UV imaging offers the ability to identify surface irregularities and
microfractures that may be invisible in standard or thermal images. By combining these
imaging techniques, we propose a comprehensive and detailed method for assessing struc-
tural integrity. This approach can not only improve the accuracy and reliability of moisture
and fracture detection but also offer a tool for the ongoing management of architectural
structures. However, the methodology’s applicability is influenced by certain limitations,
particularly in environments with highly variable lighting, which can impact image-based
moisture estimates.

8. Conclusions
1. The RGB, YUV, HSV, and HSI formats provide detailed information about luminance,

hue, saturation, and value, playing an important role in the reduction of uncertainties
in the detection of areas with moisture and permeability issues. RGB and HSI formats
are particularly useful in the mitigation of uncertainties during the detection of
chlorides, which tend to darken the brick over time more markedly than water after
their introduction into the sample. At later stages, efflorescence begins to develop.

2. The invasion of water lasted longer in first-grade bricks. Both first-grade and second-
grade bricks exhibited the highest levels of moisture. However, in bricks treated with
waterproofing agents based on soap and alum fragments, the partial moisture content
remained extremely low. Bricks fired at lower temperatures exhibit greater expansion,
higher water absorption, and a greater susceptibility to deterioration compared to
those fired at higher temperatures [57].

3. The percentage of luminosity was found to be sensitive to slight inclinations of the
first-grade brick, while the hue values fitted a single regression line better, being less
sensitive to various environmental variations. This was except for certain outliers
that could be associated with drastic light absorptions and fluorescence, likely due to
the combined influence of various factors, such as: (a) the presence of rock fragments
that could contain grains of quartz; and (b) the presence of genuine clays that can
absorb various components generated in chemical reactions (which may occur during
the capillary rise of water in the brick); these clays could exhibit honeycomb-like
molecular structures.

4. The percentage of luminosity and hue were inversely and directly correlated, respec-
tively, with the percentage of moisture.

5. The incorporation of a sodium chloride solution combined with aniline in the brick
allows for indirect visualization of the movement of chloride ions, offering a chro-
matographic perspective.

6. In the spongy brick, there was a noticeable increase in the rate at which water rose by
capillarity. This anomalous increase in permeability is due to the following factors:
(a) strong permeability: the mixture of clay with other materials like sawdust or or-
ganic matter, which burn out during firing, leaving behind a network of voids or pores
within the brick, resulting in a spongy structure that is highly permeable; (b) effective
sintering: the sintering process fuses the particles together [58], creating a strong,
cohesive matrix that can withstand significant forces. The internal cellular structure of
spongy bricks, characterized by a network of cells or pores that function as a system of
small compartments, contributes to their permeability. These chambers could help in
dissipating the force throughout the brick, preventing it from failing at a single point.
In fact, spongy bricks are used for road surfacing and can withstand the passage of
heavy vehicles. It should be mentioned that while higher firing temperatures can
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reduce permeability, the specific composition and manufacturing techniques used for
spongy bricks can give rise to a highly permeable structure.

7. The scanning electron microscope (SEM) images presented in Figures 33–35 provide
key insights into the pore structures of different brick types. Specifically: (a) the
spongy brick exhibits a highly interconnected pore network, which significantly en-
hances its permeability. This interconnected structure facilitates the movement of
fluids through the brick, making it highly permeable. (b) The apparent brick exhibits
a partially interconnected pore system. Manufactured at a lower temperature than
the spongy brick, it retains a substantial amount of “intact” clay. The presence of this
clay enhances water absorption in the apparent brick relative to the spongy brick.
(c) The first-class brick was produced at a lower temperature than the apparent brick,
resulting in an even higher proportion of “intact” clay. This clay content significantly
contributes to the brick’s water absorption capacity. Furthermore, the clay content
influences the brick’s structural integrity, reducing its permeability while increasing its
water retention performance. These characteristics may impact the brick’s long-term
durability and resistance to environmental conditions. (d) The spongy brick, with
its porous and interconnected structure, can be likened to a 3D gyroid-like assembly,
similar to recent advancements in three-dimensional (3D) graphene composites [59].
In much the same way that 3D graphene materials exhibit a unique balance between
strength and lightness, due to their intricate geometric arrangements, the spongy
brick achieves significant mechanical resilience under both static and dynamic loads
through its own complex pore structure. Much like 3D graphene, the spongy brick’s
pores are not just random voids but, rather, form a highly organized network that
resembles the gyroid patterns observed in advanced materials. This geometric ar-
rangement allows for an efficient distribution of forces across the brick, enhancing its
ability to bear heavy loads without structural failure. The solid material surrounding
the pores in the spongy brick functions similarly to the robust carbon framework in
porous graphene composites, reinforcing the brick’s ability to maintain its shape and
integrity under high pressure.

8. Insulating materials made from partitions with a gyroidal structure possess favorable
characteristics for thermal insulation [60], effectively minimizing heat transfer and
providing energy efficiency benefits [60]. This could be particularly useful in various
applications, including the construction of bioclimatic structures, where maintaining
temperature control is essential. However, it should be taken into account that the
thermal conductivity of commonly used insulation materials increases with rising
temperature and humidity, underscoring moisture as a critical issue in bioclimatic
structures [9].

9. In some instances, the rate of change in moisture content relative to the square root
of time for the spongy brick was similar to that of first-grade brick. Given that the
rate of change in moisture content relative to the square root of time followed a linear
trend across all four brick types, it can be concluded that the brick fabrication process
is consistent and effective.

10. The effective characterization of efflorescence in brick can be achieved by complement-
ing traditional techniques with the interpretation of images processed with artificial
intelligence (AI) and obtained under ultraviolet light.

11. The use of AI in image processing is fundamental for identifying areas affected by
moisture. The principal component analysis (PCA) technique simplifies the detection
of regions with moisture. The K-means algorithm has proven to be a useful tool for
color-based data clustering; the association of light and dark colors with dry and wet
regions, respectively, becomes a valuable means of interpretation.
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12. Designing a kiln for the production of customized bricks is recommended, utilizing
image processing and artificial intelligence to guide the production of bricks. The
kiln should be engineered to create a consistent firing environment that enhances the
bricks’ moisture-regulating properties. This involves maintaining optimal conditions
to ensure that the bricks can effectively absorb and release excess moisture, thereby
regulating indoor humidity. Additionally, the bricks must be engineered to endure
variable environmental conditions, thereby minimizing the degradation or adverse
effects due to prolonged moisture exposure.

13. The estimated effective hydraulic diffusivity values, assuming an invasion front height
of 6 cm, are consistent with the values reported in the specialized literature.

14. The methodology presented here can be applied to the study of bioclimatic hous-
ing [61,62] requiring the use of infrared and ultraviolet images. It should also be
supplemented with other techniques, such as using fiber-optic sensing (DAS) to esti-
mate moisture percentage, as demonstrated in a study of the propagation of moisture
using DAS in soils by Shen et al. [63].

15. Automated image processing, driven by AI and smartphone technology, enabled the
estimation of the percentage of moisture in bricks. This methodology holds significant
potential for application in quality control (QC) processes within brick fabrication,
ensuring that production standards are consistently met and improving the overall
reliability of the final product.

16. According to the results obtained, the bricks from the community of San Agustín
Yatareni, Oaxaca, comply with the NMX-C-404-ONNCCE-2012 [32] Mexican standard,
with a total water absorption percentage ranging from 13.8% to 18.2%, values within
the limits defined in Table 2 of this standard; this finding is verified according to
the test method specified in the Mexican standard NMX-C-037-ONNCCE-2013 [31].
Regarding the moisture content, the bricks studied herein meet the requirements for
use in construction projects. With this information, technical portfolios of bricks could
be developed to enhance marketing and promotional efforts. These portfolios would
be valuable for both local and international clients who are interested in constructing
houses in Oaxaca.

17. Our study introduces an image-based approach for evaluating the moisture levels in
fired red bricks. Leveraging color theory alongside AI-driven clustering, this method-
ology provides a promising non-destructive alternative for moisture detection. It
is important to note that the proposed approach is designed to identify dampness
primarily in the near-surface zone of the masonry. Future research could build upon
this framework, expanding its applicability to other porous construction materials
and further advancing sustainability and resilience within the industry. The inte-
gration of this approach with advanced structural integrity assessment technologies,
such as LiDAR-equipped drones, LiDAR-enabled smartphones, InSAR imagery, and
distributed acoustic sensing (DAS) systems, offers significant potential to improve
construction practices. By harnessing these cutting-edge tools, it becomes possible to
achieve a higher degree of automation in construction processes, reducing manual
intervention and increasing efficiency.
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