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Abstract: While artificial intelligence has successful and innovative applications in common medicine,
could its application facilitate research on rare diseases? This study explores the application of
artificial intelligence (AI) in orphan drug research, focusing on how AI can address three major
barriers: high financial risk, development complexity, and low trialability. This paper begins with an
overview of orphan drug development and AI applications, defining key concepts and providing a
background on the regulatory framework of and AI’s role in medical research. Next, it examines how
AI can lower financial risks by streamlining drug discovery and development processes, analyzing
complex data, and predicting outcomes to improve our understanding of rare diseases. This study
then explores how AI can enhance clinical trials through simulations and virtual trials, compensating
for the limited patient populations available for rare disease research. Finally, it discusses the broader
implications of integrating AI in orphan drug development, emphasizing the potential for AI to
accelerate drug discovery and improve treatment success rates, and highlights the need for ongoing
innovation and regulatory support to maximize the benefits of AI-driven research in healthcare.
Based on those results, we discuss the implications for traditional and AI-powered business in the
drug industry.
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1. Introduction

Rare diseases are estimated to affect around 300 million people [1]. In half of the cases,
they lead to sensorial, motor, or intellectual disability [2]. They represent a significant
burden: 57.5% to 65% of rare diseases are associated with a reduced lifespan [3], and
the cost of living with a rare disease can vary from hundreds of thousands of euros to
millions depending on the disease [3]. Due to the high prevalence and burden of rare
diseases, there is a moral necessity to develop adequate treatments. Yet, the vast majority
of rare diseases have no known cure: in the USA, over 90% of rare diseases do not have an
FDA-approved therapy [4]. As of 2021, 207 orphan drugs had a market authorization in
the EU [5]. However, this does not imply that 207 rare diseases do have a cure. Treatments
for rare diseases are called orphan drugs, and their exact definition varies across countries.

The specificities of rare diseases with regard to common diseases, which will be
explored further in this work, are a source of difficulties in the development of orphan drugs.
In recent years, many authors have focused on studying the barriers (and opportunities)
related to drug development, particularly in the area of orphan drugs [6–11]. The five most
frequent barriers to orphan drug development identified are (i) high financial risk, (ii) high
complexity of orphan drug development, (iii) low level of trialability, (iv) lack of image
improvement, and (v) perception of small non-financial benefits.

Among these barriers, the first three barriers—high financial risk, high complexity
of development, and low level of trialability—will be the focus of this study. The barriers
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related to non-financial incentives (image improvement and small non-financial benefits)
will be left out because these barriers can be overcome mainly by legislative measures,
which will not be the focus of this study.

In our case, complexity is defined as “the degree to which an innovation is perceived
as being difficult to use” [6,11] and includes factors such as a lack of knowledge about
the disease, inadequate biomarkers, and inappropriate diagnostics. Trialability refers
to “the degree to which an innovation may be experimented with before adoption” [6] and is
hindered by small sample sizes in clinical trials. Although financial incentives in the USA
and EU have mitigated some financial risks, uncertainty remains, especially concerning
long-term revenue streams. Despite the high prices of such drugs potentially offsetting
the costs of R&D, barriers like complexity and trialability continue to impede orphan
drug development.

To focus on enabling innovation, we will explore artificial intelligence (AI), a tool
increasingly used in various fields, including medicine. AI has driven advances in research,
development, diagnosis, and prognosis, and we will examine its potential impact on
overcoming these barriers. AI has been a source of advances in research and development,
but also in the diagnosis and prognosis of diseases, as we will see. Some examples of these
applications are the identification of diabetic retinopathy through image recognition [12]
and early detection of anomalies in electrocardiograms [13].

In the second section, an overview of orphan drug development and the application
of artificial intelligence in medical research will be presented. The third section will focus
on the barriers of complexity and financial resources, demonstrating how AI systems can
facilitate the development of new molecules. Finally, the fourth section will address the
barriers of trialability and complexity, exploring how AI can overcome these challenges in
clinical trials.

2. Overview of Orphan Drug Development and of the Applications of AI in
Medical Research
2.1. Definitions

Rare diseases are defined as such according to their low prevalence and the severity of
the disease. In the European Union, the term rare disease qualifies “life-threatening or chron-
ically debilitating diseases” that affect less than 5 out of 10,000 people [14]. Rare diseases
are often orphan diseases, that is, diseases for which no efficient cure is available. However,
the distinction between rare diseases and orphan diseases remains important since not
all orphan diseases are rare. Research on rare diseases is more difficult than research on
common diseases, notably because of the lack of knowledge on disease mechanisms and
the small populations of patients in clinical trials [15,16] (see also https://www.orpha.net/,
accessed on 28 August 2024). A prevalence lower than 1/10,000 makes the research process
particularly difficult [17].

The treatments available for rare diseases are called orphan drugs. The concept of
orphan drugs was first coined in the USA in 1983 for the Orphan Drug Act, which gave in-
centives for pharmaceutical companies to develop drugs for rare diseases. This law enabled
financial and technical support from the state and the FDA for clinical trials and a 7-year
market exclusivity period [18]. The European Union followed with a similar initiative a few
years later [19] with regulation n◦141/2000 from the European Parliament. This text defines
orphan drugs as medicinal products intended for the diagnosis, prevention, or treatment
of a rare disease for which no other satisfactory medicinal product is approved in the
Community or which represent significant improvement over the existing alternatives [14]
(Regulation No. 141/2000 on orphan medicinal products, Article 1). It also states that
patients with a rare disease “should be entitled to the same quality of treatment as other
patients”, justifying the necessity to stimulate research on rare diseases.

For rare diseases and common diseases, finding a new treatment is a tedious process.
The development of a drug consists of many steps: the first one is understanding the
pathogenesis of a particular disease (pathogenesis is defined by the Merriam-Webster
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dictionary as “the origination and development of a disease”). Then, fundamental research
on potential molecules can start. Once a molecule is selected, it is tested on animal subjects
for quality, safety, and efficacy. It is only after these steps that a clinical trial can start
to assess its safety, efficiency, and side effects on human subjects [6]. Clinical trials are
divided into three phases of testing. The first phase aims at assessing the safety of the
molecule: a very small sample of healthy human subjects is administered the molecule
and is monitored closely for major side effects [20]. The second phase aims at finding the
safest and most efficient dosage of the molecule. It is, most of the time, a double-blind
study where the molecule is tested on 100–500 sick patients against either a placebo or an
alternative treatment. The third phase aims at confirming the safety and efficacy of the
molecule on a large sample of patients (up to 3000) from multiple countries. This phase
can last up to several years. After phase three, the molecule can be submitted for approval
to regulatory agencies. The approval request is examined by the Committee for Human
Medicinal Products (CHMP), a body of the European Medicine Agency (EMA). The CHMP
will send its recommendation for or against approval to the European Commission, which
will publish the marketing authorization following the CHMP’s decision [18]. Thanks
to this EU-wide procedure, an approved drug is granted market access to EU member
states, Iceland, Liechtenstein, and Norway [14]. Even after the market authorization, the
drug keeps being monitored to evaluate its long-term effects and less common adverse
effects. Overall, the process of a clinical trial takes 10 to 12 years [19]. Thus, despite
stimulating research on rare diseases, it seems that treatments will not be developed in
just a few months and that finding ways to make research easier and faster would benefit
this research.

In the Introduction, artificial intelligence was mentioned as a potential tool to facilitate
research on rare diseases. Before diving into its potential applications for research on
orphan drugs, definitions of key concepts are provided in the next paragraph.

Artificial intelligence is defined by the European Commission as “systems that display
intelligent behavior by analyzing their environment and taking actions—with some degree
of autonomy—to achieve specific goals” [14]. As of today, we refer to artificial intelligence
systems as “narrow” AI, because these systems are typically only able to perform one
specialized task. Examples of these types of AI systems are chatbots, facial recognition
software, and digital assistants such as Siri or Alexa.

Among the vast set of AI systems, some of them are capable of “learning” or adapting
to their environment thanks to machine learning. Machine learning is defined by Microsoft
as “the process of using mathematical models of data to help a computer learn without direct
instruction. (. . .) machine learning uses algorithms to identify patterns within data, and those
patterns are used to create a data model that can make predictions” [21]. Machine learning is
useful for identifying patterns or structures in data, for data mining, and for classifying
data. To develop an algorithm that uses machine learning, the first step is to collect and
compile data, then train the model with those data, and finally validate it by evaluating
its performance and accuracy. A type of machine learning that is often mentioned is deep
learning, which uses a type of algorithm structure called neural networks.

2.2. Regulation EC 141/2000: A Turning Point for Orphan Drug Development within the EU
Regulatory Framework

The Orphan Drug Act, implemented in 1983 in the USA, had positive repercussions
on the development of drugs for rare diseases in the USA. Following this momentum,
the European Union followed with a similar legislation: regulation EC 141/2000 [22].
This regulation was the first European legislative text on rare diseases. It led to the
market authorization of over 80 orphan drugs between 2000 and 2015 [23] and showed the
beginning of a commitment from the European Union to the development of rare disease
policies at a supranational level. In fact, given that the scarcity of knowledge on a particular
disease and the small number of patients are major impediments to research on rare diseases,
organizing it at the European level enables the sharing of these limited resources and using
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them more optimally [23]. This text was followed by national strategies and legislations
on orphan drugs. It was influential as it set the first step towards a European strategy for
research on rare diseases, established criteria for the orphan disease designation and for
the definition of rare diseases, and set several incentives for research and development.
Indeed, when drugs are designated as orphan drugs under regulation EC 141/2000, they
can benefit from reduced EMA fees when they submit their molecule for evaluation. They
can also receive free scientific advice on the protocol of the clinical trial from the EMA,
which is linked with a higher success rate of the clinical study [23]. Additionally, they
receive financial incentives: they can obtain research grants from EU member states and are
guaranteed 6 to 10 years of market exclusivity once the drug is approved (Regulation No.
141/2000 on orphan medicinal products, Articles 6, 8, 9). The market exclusivity incentive
ensures that the costs of research and development are covered despite the small size of the
market [18]. During this period, it is not possible for another manufacturer to request an
orphan drug designation for a drug in the same area of application or for one that is similar
in terms of its chemical structure and molecular mechanism of action [18].

Hence, the orphan drug designation comes with both financial incentives and scientific
advice that can improve the chances of success of the clinical trial. To receive the orphan
drug designation, a manufacturer has to send a formal request, which is examined by the
Committee for Orphan Medicinal Products (COMP), a body of the EMA, in under 90 days.
The committee publishes its opinion on whether the drug meets the criteria for designation
according to regulation n◦141/2000 [14], and the European Commission officially publishes
the granting of orphan drug status within 30 days following the COMP’s advice. Once
the designation is approved by the Commission, the drug is included in the Community
Register of orphan medicinal products for human use. However, since the orphan drug
designation occurs early in the research process, the fact that a drug enters the register
does not imply that it will reach the market: orphan drugs must also submit their market
approval request once the clinical trial has been successful [18]. A unique feature of the
market approval process can be used for orphan drugs: if a study does not reach the
required statistical significance to prove the efficacy and safety of a molecule because the
sample of patients in the trial was too small, but the benefit of the product is generally
recognizable, a manufacturer can obtain a Marketing Authorization under Exceptional
Circumstances [24] (Regulation No. 726/2004 laying down Community procedures for the
authorization and supervision of medicinal products for human and veterinary use and
establishing a European Medicines Agency, Article 14). This way, orphan drugs have a
chance of receiving market authorization is cases where the disease is too rare to conduct
statistically robust clinical trials.

2.3. Artificial Intelligence in Medical Research

Artificial intelligence already has numerous applications in common medicine. It is
widely recognized as a means for innovation in pharmaceutics and major pharmaceutical
companies are currently using AI systems: in 2021, Sanofi invested USD 180 million
in Owkin’s, an artificial intelligence and precision medicine company [25]. In 2019, Eli
Lilly sealed a multi-year partnership with the biotech Atomwise, which invented a deep
learning AI technology for small-molecule drug discovery, to advance preclinical drug
discovery efforts [26]. As many biotech startups are investing the field of AI applications
for medical research, different kinds of applications can be distinguished: some aiming at
understanding a disease better, some to support diagnosis or clinical decisions, and some to
develop new treatments. Let us see some examples of applications of AI in medical research.

AI can be used to better understand some diseases using “multi-omics data”. This
term refers to “the biological process where different “-omics” data, such as genomics,
proteomics, transcriptomics, epigenomics, and microbiomics, are jointly collected and
analyzed” [12]. Machine learning is used to obtain a comprehensive understanding of
biological processes and offer a multi-view setting. The use of multi-omics data enables
to develop models that explore the relationships between different omics data in order to
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predict a quantitative phenotype [12]. For example, a model has been developed to predict
a drug’s cytotoxicity. These data can also be used to build models that predict survival
rates in different illnesses or to predict drug resistance in viruses [12].

In addition, artificial intelligence can be used as a support for the diagnosis of patients
and clinical decisions. For example, it can be used to analyze medical images. A deep learn-
ing model was developed in 2016 to categorize patients by identifying diabetic retinopathy
in photographs [27]. The feasibility of applying this to the clinical setting still has to be
researched, but it is an interesting lead for the applications of AI in medicine. In order to
support clinical decisions, other AI systems analyze data from Electronic Medical Records,
which have both structured data like medical images and also unstructured data like doc-
tor’s notes from an examination. Using natural language processing (NLP) algorithms,
it is possible to use these unstructured data [12]. The start-up Regard implements this
technology in order to assist medical practitioners in diagnosing common diseases. The
software that Regard calls a “medical co- pilot” can recognize about 50 common medical
conditions and is made to be complementary with medical records [28].

In addition, one of the significant challenges in rare disease research is the limited
availability of data due to the small patient populations. Traditional research methods
often struggle to draw meaningful conclusions from such small datasets. However, AI
offers innovative solutions to overcome these limitations, making it a valuable tool in the
context of rare diseases. (i) Data augmentation and synthetic data generation: AI can
generate synthetic data based on the limited available data, effectively increasing the size
of the dataset. This process allows for more comprehensive model training and validation,
even when the original dataset is small. By simulating new data points that reflect the
characteristics of the disease, AI enhances the robustness and accuracy of predictive models.
(ii) Transfer learning: Another AI technique that addresses the small dataset challenge is
transfer learning. This method involves pre-training AI models on larger datasets from
related medical domains and then fine-tuning them with the specific rare disease data.
This approach allows the model to leverage knowledge from broader datasets, improving
its predictive performance and reducing the dependency on large datasets specific to the
rare disease. (iii) Federated learning: Federated learning enables AI models to be trained
across multiple decentralized datasets from different institutions without the need to share
sensitive data. This technique allows researchers to collectively utilize small datasets from
various locations, increasing the overall dataset size and diversity, which enhances the AI
model’s ability to generalize and make accurate predictions [29].

Finally, a major application of AI is in drug development. A striking example of the
potential that AI has to offer for drug development is the creation of a COVID-19 vaccine
by Moderna. While pre-clinical research in vitro and on animal subjects typically lasts 1 to
10 years, Moderna was able to develop a novel mRNA vaccine for COVID-19 in just over
two months once the virus’ genetic sequence had been published [30]. Thanks to their prior
research on mRNA technology and their extensive use of AI systems, the company could
design a molecule on the computer and launch the first phase of the clinical study at un
unprecedented speed. Another example is in the development of Spinraza: AI was used to
simulate genetic splicing mechanisms and predict the efficacy of ASOs in modulating the
SMN2 gene’s expression. Traditional methods would have relied heavily on trial-and-error
approaches, which are time-consuming and less targeted. AI provided a way to streamline
this process by focusing on the most promising molecular targets from the outset, thereby
accelerating the pathway from discovery to clinical trials.

Hence, many applications of AI are possible in health, using deep learning, natural
language processing, image recognition, and other types of algorithms (Table 1). There
is not one single AI system that can solve all the problems in medicine, but a multitude
of possible software types and models that can be useful for a particular function, be it
diagnosing a given condition, predicting survival rates, assisting medical practitioners, or
designing molecules. Some of them have already been implemented in clinical settings:
Regard is already in use in multiple healthcare centers in the USA and Moderna’s COVID-19
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vaccine Spikevax was approved by the FDA on 31 January 2022 [31]. Other examples cited
above have been developed by researchers and have yet to be implemented for patients. In
the following section, we will investigate how these kinds of technologies can facilitate the
development of an orphan drug.

Table 1. Summary of the main uses of AI in the medical sector (source: authors).

Type of AI System Used Main Outcome Source

Natural Language Processing
- Exploitation of medical health records for

diagnosis purposes
- Regard start-up

[12]
[28]

Image Identification Identification of diabetic retinopathy [27]

Machine Learning
- Study of multi-omics data: prediction of

phenotypes, drug cytotoxicity, survival rates
- Regard start-up

[12]
[30]

Predictive Maintenance
- Reducing equipment failure rates and

optimizing resources [29]

Process Visualization
and Simulation

- Improving decision-making in pharmaceutical
manufacturing with digital twins [32,33]

Research and
Development (R&D)

- Accelerating drug discovery and development
processes, including molecule identification
and drug repurposing

[34,35]

3. Decreasing the Barriers of Complexity and Financial Risk: How AI Systems Can
Facilitate the Development of a Molecule
3.1. Using AI to Understand the Etiology of Monogenic and Complex Diseases and
Drug Repurposing

A significant barrier to the design of effective treatments against a disease is the lack
of understanding of its etiology and physiopathology. According to Lee and his co-authors,
a key goal of biomedical research is the detailed characterization of the molecular basis
of diseases to enable diagnosis and treatment [36]. Now that the sequencing of the hu-
man genome is possible, it allows for insights into the genetic basis of a disease and for
the identification of disease-associated genes. However, identifying the function of these
genes is not an easy task [37]. Before the widespread use of AI, there were challenges in
systematically determining the cellular effects of drugs [37]. Although high-throughput
screening methods contributed significantly to this area, they often required extensive
time and resources. AI systems, such as the Connectivity Map (CMAP), have further
enhanced this process by providing a more efficient approach. Developed through collabo-
ration between MIT and Harvard researchers, CMAP offers “a comprehensive catalog of
cellular signatures representing systematic perturbation with genetic (reflecting protein
function) and pharmacologic (reflecting small-molecule function) perturbagens”. These
AI-driven signatures enable researchers to identify useful and previously unrecognized
connections more effectively, reducing the potential for side effects and uncovering new
therapeutic applications.

In the case of monogenic diseases, that is, diseases caused by a problem in the expres-
sion of a single gene, Mears and his co-authors tested three different ways to identify an
existing drug–gene link that could be investigated as a potential treatment. They argue
that this method could be used on hundreds of rare diseases: potential targets would
be any disorders caused by a recessive allele with mis-sense mutations that preserve the
protein localization on the chromosome and some function [38]. Identifying a drug–gene
link would serve both as a source of knowledge on the molecular process of a disease
from a gene to its expression and as a way to repurpose existing drugs, thus reducing
the time needed to discover a treatment. The foundation for this approach is that genes
code for the synthesis of proteins by cells, and monogenic diseases can be thought of as
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dosage problems caused by levels of the protein that is coded by the gene. By modulating
mRNA, an intermediary product between DNA and the synthetized protein, a drug can
modulate gene expression [38]. To implement this method of treatment of monogenic
diseases, relevant drug–gene interactions need to be identified. These interactions between
existing drugs and genes can be found by literature mining or by using AI systems such as
the Connectivity Map. In their study, Mears and his co-authors compared results obtained
from the Connectivity Map approach, literature mining, and their own AI system. Out
of a database of 70 genes and 149 existing drugs, the AI approach Connectivity Map had
the highest yield of correct identification of drug–gene links: 9.3% of the links found were
validated by further in vivo research. These drug–gene links can then be further tested
for potential use as repurposed rare disease drugs [38]. Finally, the authors argue that the
three approaches that they tested should be used in complementary ways to find as many
drug–gene links as possible to advance treatments for genetic diseases.

The drug–gene link approach is promising for this specific type of rare diseases, but it
may not be sufficient to develop treatments for most rare diseases, which are the result of
more than one gene’s malfunction. In fact, some complex genetic diseases can present with
similar symptoms or gene mutations but be caused by very different molecular mechanisms.

A complex disease is a disorder that “results from the contributions of multiple ge-
nomic variants and genes in conjunction with significant influences of the physical and
social environment” [39]. Diabetes and some cancers are considered complex diseases;
this is also the case for some rare diseases. For example, Sjorgen syndrome and systemic
lupus erythematosus both appear to be caused by a similar upregulation of some specific
genes, but patients have very different symptoms, suggesting that different biological
pathways are at play in these two diseases. Complex diseases have only slight variations
that make them different from one another; they share some functional and genetic changes
but can require different treatments. For this reason, Lee and his co-authors argue that
it is necessary to use multiple factors, not just a single gene expression, to differentiate
between diseases and learn more about them [36]. In fact, the existing method to study
the molecular basis of complex diseases is often a comparison between the genome of
healthy and sick patients. The authors argue that studying the expression of the entire
genome in individuals is a promising direction for study and for distinguishing between
complex diseases. Yet, studies in these areas have been limited in disease coverage or in
scale. A major difficulty is that, for a single disease, there may be thousands of differ-
ent mutations to investigate and thousands of possible drugs, but only few that would
work [40]. Thus, in their study, Lee et al. propose a systematic framework, URSA, that
uses a large dataset of clinical samples to identify the distinctive molecular characteristics
of 335 human diseases [36]. This framework is an AI system that uses machine learn-
ing to build disease-specific probabilistic models to estimate disease signals. It can not
only distinguish between healthy and sick subjects, but, most importantly, between these
335 diseases. It is promising because it outperforms other, narrower approaches, such
as the study of individual genes or the healthy/sick differentiation, to quantify disease
signals. The output of the probabilistic model is interpretable, which means that we do
not only obtain a result showing the probability of a given disease, but we can learn about
the biological processes underlying each prediction. This is highly informative for the
purposes of building hypotheses for treatments [36]. Particularly, it can be used as a tool
to guide drug repurposing for rare diseases. Because it only requires expression data to
make its predictions, no prior knowledge on a disease is needed. It can associate a rare
disease to a well-studied disease with available drugs by identifying similarities in their
biological pathways.

In a study, Lee et al. [36] (Figure 1) illustrate this with two rare diseases that have very
similar symptoms caused by different biological pathways. The URSA model is able to
distinguish the mechanistic difference between these two disorders and to associate each
disease with a different common disease whose treatment may be appropriate.



Businesses 2024, 4 460

Businesses 2024, 4, FOR PEER REVIEW 8 
 

 

predictions, no prior knowledge on a disease is needed. It can associate a rare disease to a 
well-studied disease with available drugs by identifying similarities in their biological 
pathways. 

In a study, Lee et al. [36] (Figure 1) illustrate this with two rare diseases that have 
very similar symptoms caused by different biological pathways. The URSA model is able 
to distinguish the mechanistic difference between these two disorders and to associate 
each disease with a different common disease whose treatment may be appropriate. 

 
Figure 1. Target drug repurposing from data-driven disease–disease association (adapted from 
[36]). 

The use of AI for drug repurposing is not limited to research and projects for the 
future but is already being implemented to advance medical research. While AI shows 
promise in drug repurposing and advancing medical research, its application to orphan 
diseases with complex or unknown genetic etiology remains controversial. Given that 
false-positive rates in clinical trials can range from 7% to 15%, the final decision on the 
therapeutic effectiveness and production of AI-driven orphan drugs should not rely solely 
on AI and virtual trials. Instead, it is essential to involve multidisciplinary international 
teams, including experts from the drug industry, IT, medical statistics, legislators, law-
yers, and leading figures in clinical trials, to critically assess AI-generated results before 
moving forward with production. The French company Owkin (Paris, Prance) developed 

P 

StaƟsƟcal As-
sociaƟon 

A 
Known Tar-

get 

Common 
Disease 

Rare Disease 

Drug Repur-

posing 

Cisplatin 

B 

Wilm’s Tumor 

Refractory Anemia with 
Excess of Blasts 

X 

Figure 1. Target drug repurposing from data-driven disease–disease association (adapted from [36]).

The use of AI for drug repurposing is not limited to research and projects for the future
but is already being implemented to advance medical research. While AI shows promise in
drug repurposing and advancing medical research, its application to orphan diseases with
complex or unknown genetic etiology remains controversial. Given that false-positive rates
in clinical trials can range from 7% to 15%, the final decision on the therapeutic effectiveness
and production of AI-driven orphan drugs should not rely solely on AI and virtual trials.
Instead, it is essential to involve multidisciplinary international teams, including experts
from the drug industry, IT, medical statistics, legislators, lawyers, and leading figures
in clinical trials, to critically assess AI-generated results before moving forward with
production. The French company Owkin (Paris, Prance) developed an AI system used for
drug repurposing and is already implementing it for its research. Specialized in precision
medicine, the company uses AI algorithms to analyze disease mechanisms and identify
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possible diseases that can also be targeted by an existing drug [41]. Another company,
BioXcel (Paris, France), uses its own AI algorithms to advance research on neuroscience
disorders and immune-oncology. Using big data, they aim, among other goals, at “drug
Re-Innovation”: the repurposing of approved drugs or of clinically evaluated drugs candidate to
“reduce the expense and time associated with drug development in diseases with substantial unmet
medical needs.” [42]. Since half of rare diseases are neurological [43], using AI to advance
medical research on neurological disorders is a meaningful channel to advance research on
rare diseases, even though not all neurological diseases are rare.

The Connectivity Map, the URSA model, and proprietary AI algorithms developed by
Owkin and BioXcel are possibilities that can be used to learn about a rare disease’s etiology
and to find potential drugs for drug repurposing. Understanding the etiology better is a
necessary step in medical research on rare diseases and in decreasing the complexity barrier
identified by Moors and Faber. Drug repurposing is a way to develop treatments faster
and at a lower cost than when trying to develop a new molecule from scratch. Hence, these
AI systems would be able to decrease the complexity barrier of developing new treatments
and the financial risk barrier.

However, they are no magic solutions and using these tools will also come with
challenges. The URSA model can be extended with sufficient training data samples,
but it needs large datasets. This highlights the need for publicly available healthy and
disease-specific tissue expression data [36]. Moreover, the Connectivity Map is a great
tool to identify potential drug–gene links, but its findings still need to be tested further
in vivo: in some cases, patients with a disease in which it seems that a gene would need
to be activated more and for which a drug has been identified can see their symptoms
exacerbated, instead of diminished, by the activation of that gene [38]. Finally, the very
project of drug repurposing is not so easy: because of looser patent rules compared to
patents for newly developed molecules, drug repurposing does not appear as profitable
to pharmaceutical companies as developing a drug from scratch. Thus, they may lack
incentives to repurpose drugs [44]. This negative effect may be mitigated by the incentives
specific to orphan drugs and further research on the profitability of drug repurposing
applied to rare diseases for pharmaceutical companies would be useful in this context.

3.2. Using AI to Design Molecules from Scratch

Drug repurposing appears to be a promising way of using AI to develop new treat-
ments for rare diseases with a reduced complexity barrier and at a lower cost. Additionally,
AI systems can enable pharmaceutical companies to develop new drugs from scratch. An
example in the context of rare diseases is the development of the drug Spinraza (nusinersen)
for Spinal Muscular Atrophy (SMA), a rare genetic disorder. AI was instrumental in acceler-
ating the identification of antisense oligonucleotides (ASOs) that could effectively modulate
the splicing of the SMN2 gene, which is critical for SMA treatment. The traditional drug
discovery process would have taken much longer to identify such precise targets. The
use of AI allowed researchers to rapidly analyze genetic data, model potential therapeu-
tic interventions, and prioritize candidate molecules, significantly reducing the time to
clinical trials and eventual approval. We have heard more of such success stories since
the COVID-19 pandemic. Moderna’s COVID-19 vaccine is a great example. Moderna’s
approach to the vaccine used mRNA instead of a weakened virus. The company had been
working on mRNA as a channel for different drugs for a decade before the COVID-19
outbreak. Its processes were largely digitized: the Harvard Business Review describes
Moderna (Massachusetts, United States) as an “AI-driven company” [45]. The firm oper-
ates on the cloud to store big amounts of data. These data are integrated: lab instruments
are connected to each other. All these data generated in the lab are then processed by
AI algorithms. Each experiment that is carried out feeds it, which means that the nine
vaccine trials that Moderna carried out before starting to work on the COVID-19 vaccine
contributed to its success [45]. Thanks to this, Moderna could design the vaccine on the
computer after identifying which protein on the coat of the SARS-CoV-2 virus (the “spike”)
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to use to induce an immune response. The extensive use of AI in their entire research
and development processes enabled Moderna to design a vaccine candidate against the
COVID-19 only two days after its gene sequencing was made available. The phase 1 clinical
study started merely five weeks after the reception of the gene sequencing data, while this
period of identification of a molecule and pre-clinical research typically lasts 4 to 9 years
for vaccines [46]. Moderna’s story is not about a rare disease, but rather a virus that caused
a pandemic. However, some of its extremely rapid processes for the development of a drug
could be applied to research on rare diseases. Some rare diseases are infectious and, if
vaccines were to be a relevant way to prevent them, then Moderna’s mRNA technology
and the methods they used to design their target molecule in two days might be used for
some infectious disease vaccines.

Other companies are using AI to design new molecules from scratch, specifically
targeting rare diseases. Deep Genomics uses artificial intelligence “to discover and develop
better treatments for genetic diseases, both rare and with a large prevalence” [40]. Deep
Genomics uses RNA therapies, like Moderna, but to target genetic conditions. AI is
used to discover therapies in two ways: first, it is used to find the “target”: it enables
the identification of the disease-causing mutation(s) and potential ways of fixing them.
Secondly, it is used to design therapies by assessing hundreds of thousands of potential
molecules that are most likely to be efficient. After these two steps, the selected candidate
molecules are further tested in the lab. Like Moderna, Deep Genomics improves its AI
systems with experience: the data on every molecule identified, as well as data from their
clinical trials (such as biomarker data), are collected. These data are fed back into the
AI system to improve its future predictions. Since the development of its proprietary
AI system, Deep Genomics has updated it to refine its predictions and is working on an
updated version that could target more complex genetic diseases [40].

In medicinal chemistry, the design of a new chemical entity with desired properties
is called de novo design [47]. Among different ways to produce a de novo molecule,
generative AI can be used to learn from known bioactive chemicals and to design novel
ones autonomously, without the need to explicitly include rules for chemical transformation
in the algorithm. Merk and his co-authors conclude that generative AI has a promising
potential for this task. Thus, once a rare disease is better understood, possibly thanks to
the help of AI systems to learn about its etiology, it could also be possible to use AI in the
design of a treatment.

3.3. Can the Barriers of Complexity and Financial Risk Really Be Decreased by AI?

AI systems have the potential to reduce costs at various stages of orphan drug de-
velopment, from drug discovery to clinical trials and manufacturing. By streamlining
processes and improving efficiency, AI can help lower the overall financial burden. This
reduction in costs can, in turn, increase the expected revenue from orphan drugs, making
them more financially viable. While financial risk remains a consideration, AI’s ability to
reduce these risks across multiple stages of development provides a promising avenue for
alleviating such barriers. The accompanying figure illustrates where AI interventions occur
throughout the drug development process. However, using AI systems in an organization
may add other types of complexity to the process. In fact, complexity in an organization
can be understood as when a large number of elements (such as people, technologies, or
products) have many connections to one another. This type of organizational complexity
can reduce efficiency within the structure. It can lead to a decrease in how understandable
the system is; thus, it may impair the manageability of the organization [48]. Because of
heightened interconnectedness, it becomes harder to identify the source of a problem or to
remove it once identified: by removing it, one may affect other parts of the structure. By
implementing AI algorithms on each part of the value chain, companies like Moderna and
Deep Genomics become complex organizations: every source of data is connected to the
others, and every step in the research and development process affects and depends on the
other steps. Complexity is even higher: previous and ongoing research and development
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projects directly affect future projects through their feedback in the AI algorithms. Thus,
these companies have quite complex organizations which might make them fragile to some
shocks. To gain insight into rare diseases, there may be a trade-off between keeping a
moderate level of complexity within the organization and using AI systems that add to
organizational complexity but are helpful to the research process.

While AI systems may help reduce development costs, thereby alleviating some finan-
cial concerns, it is important to recognize that financial incentives have already addressed
many of these risks. The greater challenge often lies in overcoming the complexity of
research and the limited trialability of treatments for rare diseases, where AI can also play a
crucial role. Yet, the existence of a financial barrier could be nuanced: few empirical studies
systematically estimate the cost of orphan drugs development and show such a barrier.

Jayasundara et al. [49] estimate that the clinical cost of developing orphan drugs
is significantly lower than that of non-orphan drugs: USD 291 million per approved
orphan drug compared to USD 412 million for non-orphan drugs. While this suggests
that orphan drug development costs may not be as prohibitive, it is important to note that
factors like disease rarity, trial complexity, and limited market size also impact costs and
feasibility. Financial barriers are linked to expected revenue, which varies due to differing
cost estimates. Although non-orphan drugs may have higher revenue potential due to
larger markets, AI could reduce orphan drug development costs, potentially increasing the
expected revenue and mitigating financial risks, if they exist.

4. Decreasing the Barriers of Low Trialability and Complexity: How AI Can Facilitate
Clinical Trials
4.1. Using AI to Recruit Patients

The limited number of patients who participate in a clinical trial is an important
difficulty in clinical trials for orphan drugs. Recruiting patients for trials on common
diseases is already a difficult task [50], but the low prevalence of rare diseases and low
rates of diagnostics make clinical trials for orphan drugs even more tedious. In fact, patient
recruitment represents one-third of the overall duration of a clinical trial [50].

Usually, clinical trials recruit patients using patient registries or disease-specific reg-
istries. A patient registry is defined by the EMA as an “Organised system that collects
uniform data (clinical and other) to identify specified outcomes for a population defined
by a particular disease, condition or exposure. The term ‘patient’ highlights the focus of
the registry on health information. It is broadly defined and may include patients with
a certain disease, pregnant or lactating women or individuals presenting with another
condition such as a birth defect or a molecular or genomic feature”. A disease registry
is defined as a “Patient registry whose members are defined by a particular disease or
disease-related patient characteristic regardless of exposure to any medicinal product, other
treatment or particular health service”. When patients are recruited from registries, the
recruitment process is heavily labor-intensive [51]. Medical health records need to be
screened in order to check which patients fit the inclusion and exclusion criteria of the
study; then, the remaining candidates have an interview with healthcare practitioners to
discuss the trial and give, or refuse, their consent to participate in the study. The whole
process is time-consuming and expensive. Another problem of patient registries is that the
only people in a given registry are the patients who have been registered by healthcare
practitioners, and some patients can be missing due to misdiagnosis or lack of awareness
about the existence of a registry. Thus, there may be a selection bias of certain characteristics
or symptoms that may cause other patients with different characteristics to be left out of
the registry and hence also left out of clinical trials.

To speed up the recruitment process, Geva and his co-authors [52] developed a com-
putable phenotype algorithm to conduct data mining on electronic health records in a
hospital in order to recruit patients for a trial on pulmonary hypertension, a rare disease. A
computational phenotype refers to a set of statistically computable electronic health record
data that enables patients of interest to be identified. Within a pediatric hospital in Boston,
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they compared the patients recruited for the clinical trial through a traditional registry
to the patients that their algorithm retrospectively identified through the data mining of
electronic health records of the hospital. Their model sought to “identify patients with a high
probability of having the phenotype of interest (. . .) and thus who can be used as subjects for future
studies without further clinician or researcher review”. While the traditional registry identified
179 patients in the hospital in Boston, the computable phenotype model retrospectively
identified 413 patients who may have been eligible for the study. Patients identified by
the algorithm and who were not in the registry were younger, more medically complex,
and the subject pool had a higher proportion of deceased patients. The two populations
were phenotypically different, which shows that some patient populations are not captured
in registries. Those patients are important for the understanding of the disease and their
identification can enable the clinical trial to be more robust since the pool of patients would
be more diverse. Finally, the authors concluded that registry-based methods of recruitment
and data mining of electronic health records are complementary methods to identify poten-
tial participants for a clinical trial. Another study [51] investigated using an AI screening
system for patients’ trial eligibility in real time, which is closer to a real-life setting than the
retrospective screening of patients performed by Geva [52]. The implementation of a real-
time automated patient screening system successfully recommended potential candidates
and reduced the screening time by one-third [51].

Some AI systems for patient recruitment have been developed by the industrial sector:
IBM developed a clinical trials matching system that uses natural language processing
to process patient and trial data from unstructured sources and match patients to clinical
trials. It promoted awareness of clinical trial opportunities and increased enrolment rates
in a lung cancer trial [53]. Moreover, the clinical research organization IQVIA (Illkirch-
Graffenstaden, France) offers the service IQVIA Core®, a direct-to-patient recruitment
process that leverages AI to target the right patients to recruit for clinical trials [54].

Using AI systems to recruit patients more efficiently and quickly and to produce more
diverse patient cohorts sounds promising. Yet there are some barriers to the advancement
of these technologies. The studies on patient screening mentioned above were carried out in
a single hospital. In real clinical trial contexts, the trials are carried out in multiple hospitals,
which means that patient data can be dispersed in different sources. Electronic health
records from different hospitals have different formats, which could cause interoperability
issues. The problem would be especially salient in the absence of clear instruction on how
data should be processed prior to being analyzed by the AI system: each hospital might
have different practices and would enter very different data into the system. Additionally,
all AI algorithms developed in studies might not translate well into the real clinical setting:
if an algorithm was built using retrospective data, this creates barriers to its translation into
a real clinical trial setting where the staff may want to use it during the recruitment process,
not after.

4.2. Using AI to Ensure a Smooth Run of the Clinical Trial

Another way to apply AI systems to clinical trials for orphan drugs is to use its
applications throughout the process of each phase. Namely, AI systems can contribute to
monitoring patients’ adherence to the study protocol.

For a clinical trial to work, patients must adhere to the study protocol, that is, they
must take the right dose at the right time, go to the check-in visits with the healthcare
staff, and report everything that is required, like their symptoms. In fact, one of the main
causes of the high failure rate of clinical trials it the lack of technical infrastructure to ensure
reliable adherence control, patient monitoring, and clinical endpoint detection systems [50].
Data need to be collected reliably and efficiently. Patient adherence needs to last for the
entire duration of their protocol, yet the average drop-out rate of patients across clinical
trials is about 30% [50]. This poses a problem, because more patients have to be recruited
while the study is being rolled out to replace the patients that have withdrawn. This is
a time-consuming and costly process that takes resources away from the monitoring of
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patients in the study, which decreases the quality of the statistical results of the study and
sometimes delays the whole clinical trial [50]. The issue is especially relevant to orphan
drugs: since rare diseases have a low prevalence, it is overall harder to recruit patients.
Hence, recruiting more patients to replace the patients that have withdrawn during the
study can take even more time and resources and delay the clinical trial even more than for
more common diseases. Finding solutions to decrease the drop-out rate would decrease the
trialability barrier and the complexity barrier, and AI systems provide new opportunities
in this context.

The first way to ensure a reliable collection of patient data is to use opportunities
offered by the Internet of Things combined with AI: wearable sensors and video monitoring
can automate the collection of patient data, and AI systems can analyze such data in real
time to detect relevant events [50]. If needed, healthcare practitioners could be contacted
in case, for example, of major adverse effect collected by the wearable sensors. All the
data collected can serve as evidence, or lack thereof, of the patient’s adherence to the study
protocol. This could be a more reliable system than the one which is currently used, which
consists in patients self-monitoring their symptoms and entering the data themselves,
which can be subject to error and forgetfulness.

AI systems can also be used to dynamically predict the risk of drop-out for a specific
patient: by automatically collecting data, as stated above, if a patient seems to not be taking
their doses regularly, or to show any early warning signs of non-adherence to the study
protocol, probabilistic models can form a prediction of the likelihood of drop-out and warn
healthcare practitioners if this probability exceeds a given threshold. Then, the staff of the
clinical trial can contact the patient and address the root cause of the patient’s signs of low
adherence, instead of missing the clue and having the patient drop out a few weeks or
months later [50]. This preventive approach to study withdrawal could be a good way to
decrease the drop-out rate of studies and enable a smoother run of clinical trials.

As AI systems increasingly contribute to the design of new molecules and virtual trial
simulations, it is essential to establish robust control and validation methods to ensure
their reliability. In the near future, a combination of advanced computational verification,
real-world data integration, and phased validation approaches could be assumed to assess
AI-generated outcomes. Given that orphan drugs often target diseases leading to sensorial,
motor, and intellectual disabilities, which complicate traditional clinical trials, these AI-
driven approaches must be supplemented with rigorous real-world evidence and adaptive
trial designs. Such methods would help to mitigate the inherent unreliability of clinical
trials in this context and ensure that AI-designed treatments are both safe and effective.

As the field of AI in drug design and virtual trials progresses, establishing control
mechanisms will be critical to the safe and effective application of these technologies. One
possible method involves the use of “in silico” validation, where AI-generated results
are cross-checked with existing biological and pharmacological data before moving into
physical trials. Additionally, integrating AI-generated data with real-world evidence
(RWE) from patient registries and health records could provide an additional layer of
validation. For orphan drugs, which often involve patients with severe disabilities, adaptive
trial designs that allow for ongoing modifications based on intermediate results could be
particularly beneficial. These methods, combined with traditional regulatory oversight, will
be essential to ensure that AI-designed molecules meet the necessary safety and efficacy
standards before they are introduced to the market.

Such a solution has been developed and commercialized by AiCure (Patient Connect—
Remote Patient Monitoring Solution) [55]. Their phone application, AiCure Patient Connect,
visually and automatically confirms patient identity, medication, and medication inges-
tion. Patients receive automated reminders and precise dosing instructions and are then
identified. When the study protocol is not abided by, healthcare providers are informed
and can engage with participants via a chat function in the application. This system also
provides the possibility to register symptoms and development. These data, along with the
AI-driven data collection of adherences to the protocol, can give important information to
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the healthcare staff working on the clinical trial. This solution has been tested in a study on
treatment adherence to direct oral anticoagulants [56], which is a therapy that requires a
high level of adherence to be effective. Introducing the use of the application AiCure Patient
Connect to the therapeutic protocol was found to lead to an absolute improvement of 67%
in patients taking their therapy. The result, obtained in a clinical setting with sick patients,
shows the potential of AiCure to increase adherence to treatment protocols, including in
the context of clinical trials.

A major difficulty in the wide-scale implementation of such a solution is the question
of personal data protection. Personal data would need to be collected and anonymized in a
way conform to the European General Data Protection Regulation (GDPR) [57], especially
because medical data are sensitive, confidential data. The access to and the use and control
of patient data by a private company like AiCure poses the first challenge, and proper
regulations must apply to ensure data protection. Sensitive patient health data owned by
a private company have previously been transferred to another jurisdiction where other
data regulations apply: an example is the controversy that happened when Google took
over DeepMind while DeepMind was being used in the United Kingdom by the NHS
Foundation Trust to implement AI in the management of acute kidney injury. Since Google
is an American company, health data from British patients were transferred to the USA and
hence fell under the American regulation [58]. If AI systems were to be used to monitor
patients in clinical trials, careful attention should be given to what company’s app will
monitor them, which jurisdiction it is from, and what data protection rules would apply.
Patients who consent to participate in a clinical trial do not necessary consent to the transfer
of their data to private entities in another country where their sensitive data are potentially
less protected, and they should be made fully aware of how their data will be owned and
used in order to consent not only to the participation in the development of a drug, but also
to the management of their private data. Murdoch and his co-authors claim that patient
data should be regulated to remain in the jurisdiction from which it is obtained [58].

There is also the question of privacy breaches that may lead some patients using
such AI systems for a clinical trial to be identified and face consequences. In fact, several
studies show that it is possible to re-identify people quite effectively, even from a database
where all the information has been anonymized and scrubbed of all identifiers [58]. Further
research and policy should focus on ways to mitigate this risk, for example through the use
of generative models that can generate realistic but synthetic patient data to train machine
learning algorithms. On the legal side, contracts should be made carefully between private
entities, public healthcare services, and patients. A patient’s right to not only withdraw
from the clinical trial, which is already implemented, but also to withdraw their data,
should be clearly communicated and exercisable. States should work on implementing
an adequate regulatory framework to protect citizens and their data. Table 2 proposes a
summary of the potential uses of AI systems for clinical trials (+ signs indicate the relative
importance of each point).
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Table 2. Summary of potential uses of AI systems for clinical trials (sources: [50] and authors).

Design Themes Cohort Composition/Patient Recruitment Patient Monitoring

Features Suitability Eligibility Empowerment Motivation Adherence Endpoint Detection Retention

Methodology Clinical trial enrichment
Biomarker verification Clinical trial matching Automatic event logging Drop-out risk forecast

and intervention

Functionality Reduced population
heterogeneity

Prognostic
enrichment

Predictive
enrichment

Automatic eligibility
assessment

Simplification of
trial description

Automatic trial
recommendation

Disease diary
Disease episodes,

Medification
administration,

Health monitoring

Study protocol diary
Medication

administration,
Record-keeping

Patient coaching
Proactive intervention to

prevent Drop-out

Al techniques Machine learning/Deep leaning
Reasoning

Machine learning/Deep leaning
Reasoning

Human-machine interfaces

Machine learning/Deep leaning
Human-machine interfaces

Machine learning/Deep leaning
Reasoning

Human-machine interfaces

Data

EMR
Omics

Medical literature
Clinical domain knowledge

Clinical trial databases
Trial announcements

Medical literature
Eligibility databases

Social media
EMR

Internet of Things and wearables
Speech
Video

Outcomes

Optimized cohort composition ++
More effective trial planning and faster launch +
Maximized chances for successful outcome ++

Faster and less expensive trials +

Optimized cohort composition ++
More effective trial planning and faster launch ++

Maximized chances for successful
outcome +

Faster and less expensive trials ++

Maximized chances for successful outcome +
Faster and less expensive trials ++

Maximized chances for successful
outcome +

Faster and less expensive trials ++

++ Increase very significantly, + increase significantly.
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5. Conclusions

This article explored how AI systems can significantly contribute to the development
of orphan drugs by reducing financial costs, simplifying the research process through
advancing learning about rare diseases, and facilitating clinical trials. In the European
Union, the development of orphan drugs is supported by regulation n◦141/2000, which
defines orphan drugs and establishes a regulatory framework for market approval and
incentives. While these incentives, such as financial aid and scientific advice, play a crucial
role, AI offers a complementary approach by addressing barriers that these incentives alone
cannot fully overcome.

The widespread use of AI in medical research presents a promising opportunity for
patients with rare diseases, increasing the likelihood of finding treatments tailored to their
specific conditions. However, alongside clinical effectiveness, it is essential to prioritize
patient and family satisfaction and safety. The success of AI-assisted orphan drugs depends
not only on improving clinical outcomes but also on enhancing the quality of life and
ensuring safety. AI can also improve patient recruitment for clinical trials, ensuring that
more patients gain access to appropriate studies.

Legislators have a pivotal role in promoting the adoption of AI in rare disease research.
Establishing open databanks with genomic and tissue data from both healthy individuals
and those affected by rare diseases would be a valuable resource for AI development.
Protecting patient data, regulating data ownership, and empowering patients to control
their data are equally important. The General Data Protection Regulation (GDPR) in the
EU provides a foundation, but regulations must evolve to keep pace with advancements
in AI technology. Policymakers should leverage existing academic research on data pro-
tection to address potential gaps and ensure that AI systems advance public health while
safeguarding individual privacy.

The impact on the economics of this industry and the firm is potentially tremendous.
Of course, it has always been difficult to evaluate the economic impact of new technologies
in the domains of pharmaceutical and drug development [59,60]. However, as mentioned
in this work, the increase in speed and reducing the costs of orphan drugs can easily be
transplanted to more general drug development [61]. Therefore, firms involved in orphan
drug development can significantly benefit from the implementation of AI systems within
their organizations. To leverage these benefits, it is recommended that they implement
AI systems into their processes, which can be achieved without necessarily increasing the
complexity of the system but can even eventually decrease the complexity [62]. This can
involve systematic data collection and the use of cloud computing or of any other relevant
infrastructure. By embracing AI within the limits of adequate organizational complexity,
firms can potentially gain better clinical trial processes with shorter timelines and reduced
costs. However, such technological development should not be achieved regardless of
ethics and the more general purpose of the innovation developed [63]. It has been shown
that the decrease in cost will make the financing of some drugs much easier [64], decreasing
barriers to entry and changing the rules of the business game [65].

Considering the complexities of orphan diseases, particularly those with genetic or
multifactorial etiologies, the integration of AI into drug development must be approached
with caution. AI’s potential for generating false positives necessitates a robust, multidis-
ciplinary evaluation framework. We propose that the final decision on the therapeutic
effectiveness of AI-driven orphan drugs, post virtual and clinical trials, should be made
by multidisciplinary international teams. These teams should consist of experienced spe-
cialists from the drug industry, IT professionals, medical statisticians, legislators, legal
experts, and renowned leaders in clinical trials. Their collective expertise would provide
a comprehensive assessment, ensuring that AI-generated therapies are both scientifically
sound and ethically viable before they reach the market [66].

While AI-assisted orphan drugs offer new avenues for treatment, their success must
be evaluated not only through clinical outcomes but also through the lens of patient and
family satisfaction. The unique challenges faced by patients with rare diseases and their
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relatives make it essential to consider their perspectives when assessing treatment efficacy.
Satisfaction encompasses both the quality-of-life improvements provided by the treatment
and the assurance of safety, particularly given the innovative nature of AI-assisted therapies.
As such, patient-reported outcomes and satisfaction surveys should be integrated into the
evaluation process for AI-driven orphan drugs, ensuring that these treatments meet the
holistic needs of patients and their families [67].

In terms of potential further research, the technical, ethical, and regulatory challenges
associated with the use of AI in healthcare need more exploration. The implementation of
AI algorithms that extract data from electronic health records on a large scale is hindered
by persistent concern surrounding interoperability among different hospitals and countries.
Research efforts should be directed towards developing solutions that enable seamless
data exchange and utilization. Additionally, further research should be directed towards
algorithms’ performance when algorithms trained on retrospective data are applied to new
data for prospective purposes. Developing strategies to improve algorithm performance is
important for the successful implementation of AI systems in orphan drug development.
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