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Abstract: Using Bacillus species as bioagents for environmentally sustainable and eco-
nomically viable plant disease management is a viable strategy. Thus, it is important to
promote their use in agriculture. In this study, two Bacillus species were isolated from
the rhizosphere of tomato plants, while three fungal species were isolated from samples
of tomato plants that were infected with damping-off disease. The Bacillus strains were
tested in vitro for their antagonistic activity against fungal species using a dual culture
technique. In a greenhouse experiment, the effectiveness of applying antagonistic bacte-
ria with soilborne fungal disease on induced damping-off of tomato (cv. Super Strain B)
plants, their physiological attributes, antioxidant enzymes, mineral content, and yield un-
der greenhouse conditions during the 2022 and 2023 seasons were determined. The fungal
isolates were identified as Fusarium oxysporum KT224063, Pythium debaryanum OP823136,
and Rhizoctonia solani OP823124, while the Bacillus isolates were identified as B. subtilis
OP823140 and B. amyloliquefaciens OP823147 on the basis of the rRNA gene sequences. The
dual culture test revealed that B. subtilis outperformed B. amyloliquefaciens in resistance
to R. solani and F. oxysporum, which were recorded as 28.33 and 33.00 mm, respectivley.
In contrast, B. amyloliquefaciens caused the highest antagonistic effect against tested P. de-
baryanum fungus. Additionally, in a greenhouse experiment, tomato plants treated with
each of these antagonistic Bacillus strains significantly suppressed fungal disease, displayed
improved plant growth parameters, had an increased content of photosynthetic pigments,
antioxidants enzymes, and total phenols, and an increased macronutrient content and yield
during the two growing seasons. In conclusion, effective applications of B. subtilis and B.
amyloliquefaciens had the potential to mitigate damping-off disease, which is caused by F.
oxysporum, P. debaryanum, and R. solani in tomato plants, while simultaneously promoting
growth dynamics.

Keywords: damping-off; environmentally sustainable; PGPR; tomato; suppressed fungal
disease; growth dynamics

1. Introduction
Agricultural crops face various risks from biotic stresses, such as fungal pathogens,

which are on the rise due to extreme climate conditions [1]. Along with plant pathogens
that are becoming more virulent and causing significant harm, resulting in crop failures
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and the production of microbial toxins in the end product, these toxins endanger the health
of the ultimate consumer [2]. The Solanaceae family faces numerous pathogens that lead
to a reduction in productivity. Tomato is a brief-lived perennial cultivated as an annual,
belonging to the Solanaceae family, and is typically grown for its edible fruit.

Due to their economic and nutritional importance, tomatoes are one of the most
important crops grown worldwide. They are grown on 5.17 million hectares, producing
189 million tons annually, with an average yield of 36.6 tons per hectare [3]. During the
growing and post-harvest phases, more than two hundred different diseases can impact
tomatoes [4]. Phytopathogenic fungi are the main cause of tomato disease, which impacts
tomato production in terms of both quality and quantity [5,6].

The most important fungi that affect tomatoes include Alternaria solani, Septoria lycoper-
sici, Botrytis cinerea, Fusarium oxysporum, Pythium debaryanum, Verticillium dahliae, Rhizoctonia
solani, and Phytophthora infestans [4]. Among these harmful fungi, F. oxysporum is responsi-
ble for Fusarium wilt, which has been shown to be the most damaging disease affecting
a diverse range of plants, including weeds and commercially grown crops. The disease
leads to various symptoms, including yellow leaves, browning of the vascular system,
slow growth, and potentially plant mortality [7]. Furthermore, Pythium spp. are pathogens
found in soil, and their oospores, which are the main source of infection, can persist in the
soil and result in disease in the following season when a suitable susceptible host plant is
present, leading to damping-off disease in various crops, such as tomato. Pythium consists
of various species, such as P. aphanidermatum, P. debaryanum, P. spinosum, P. myriotylum, and
P. echinogynum [8,9]. Likewise, R. solani has a wide host range that encompasses most annu-
als and various perennials, and it typically persists in the soil between crops as sclerotia or
as fungal mycelia. Infection by root rot diseases diminishes seed germination and seedling
emergence, affecting the yield and its components [10].

There is an urgent need for ecologically friendly and nature-inspired methods and
solutions to preserve sustainable agriculture and food security. To counteract the an-
tagonistic behavior of pathogenic fungus, microbial disease control techniques can be
employed. An environmentally favorable substitute for chemically manufactured fungi-
cides for pathogenic fungal infections is biological control through plant-growth-promoting
rhizobacteria (PGPR) [11]. Rhizobacteria that promote plant growth are also known for their
fascinating function in reducing biotic stress by causing intricate cellular metabolic alter-
ations [12,13]. By reprogramming their linked host’s development, they affect physiology
and phytohormonal signaling during pathogenic attacks [14].

Bacillus species are the most widely used PGPR that are isolated from different plant
species and used commercially in modern agricultural systems because of their ability to
produce spores that are resistant to heat and UV light and can withstand harsh climatic
conditions [15]. Additionally, their secretions possess antifungal characteristics, compris-
ing various plant-beneficial substances like fengycin, surfactin, enzymes, and nutrients
that enhance plant development [16–18]. By increasing the availability of nutrients in
rhizospheres, controlling the growth of dangerous pathogenic bacteria, promoting plant
defense mechanisms, and building biofilms, fertilizers based on Bacillus can improve plant
growth [19,20]. The two Bacillus species most well known for their ability to promote plant
development and provide health benefits to the host are B. subtilis and B. amyloliquefa-
ciens [21,22]. Numerous investigators have confirmed that Bacillus species play a role in
the biological regulation of a number of harmful fungal diseases that affect tomato plants.
Solanki [23] showed that, by root colonization, B. subtilis MB14 and B. amyloliquefaciens
MB101 enhanced tomato plant height, biomass, and chlorophyll levels while reducing the
symptoms of root rot brought on by R. solani. Additionally, [24] looked at the possible
application of B. amyloliquefaciens strain CEIZ-11 in a pot experiment to lessen tomato plants’



Stresses 2025, 5, 9 3 of 22

susceptibility to damping-off brought on by P. aphanidermatum. Diabankana [25] demon-
strated that B. velezensis KS04AU is a promising candidate for the biocontrol of tomato
plant pathogens such as F. oxysporum, F. graminearum, and A. alternata due to its hydrolytic
activity. Rashad [26] demonstrated that B. subtilis SR22 acted as a strong antagonist to
R. solani both in vitro and in greenhouse environments, leading to a reduction of up to
51% in root rot of tomato plants and improving growth metrics in tomato plants by as
much as 35%.

The current study was, therefore, started in order to achieve the following: (a) examine
the biocontrol ability of B. subtilis and B. amyloliquefaciens in vitro against three soilborne
fungal tomato pathogens (F. oxysporum, P. debaryanum, and R. solani); and (b) determine the
effectiveness of applying antagonistic bacteria with soilborne fungal disease on induced
damping-off of tomato (cv. Super Strain B) plants, their physiological attributes, antioxidant
enzymes, mineral content, and yield under greenhouse conditions during the 2022 and
2023 seasons.

2. Results
2.1. Identification of Pathogenic Fungi

Three fungal species were isolated from diseased tomato plant samples with damping-
off, root rot, and wilting, which were identified based on molecular identification. For
sequence analysis, data compared with the 18S rRNA gene showed Fusarium oxysporum,
Pythium debaryanum, and Rhizoctonia solani (Figure 1). The sequences of amplified ITS
regions were submitted to GenBank and given accession numbers of KT224063 for F.
oxysporum (Sample 1), OP823136 for P. debaryanum (Sample 2), and OP823124 for R. solani
(Sample 3).
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Figure 1. The phylogenetic trees of Fusarium oxysporum KT224063, Pythium debaryanum OP823136, 
and Rhizoctonia solani OP823124, identified with molecular identification, compared with sequences 
retrieved from GenBank.

2.2. Identification of Bacillus Isolates

Figure 1. Cont.
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Figure 1. The phylogenetic trees of Fusarium oxysporum KT224063, Pythium debaryanum OP823136, 
and Rhizoctonia solani OP823124, identified with molecular identification, compared with sequences 
retrieved from GenBank.

2.2. Identification of Bacillus Isolates

Figure 1. The phylogenetic trees of Fusarium oxysporum KT224063, Pythium debaryanum OP823136,
and Rhizoctonia solani OP823124, identified with molecular identification, compared with sequences
retrieved from GenBank.

2.2. Identification of Bacillus Isolates

Enrichment of bacteria from the tomato rhizosphere on a nutrient agar medium under
aerobic circumstances showed the growth of circular, rough, glistening, and creamy white
colonies. In addition, the bacterial cells were spore-forming, motile, and positive for Gram
staining, catalase, indole, and starch hydrolysis. Based on the morphological and chemical
properties, the two most dominant and active strains were subjected to 16s rRNA analysis,
which identified Bacillus subtilis (Accession No. OP823140, Figure 2, Sample 4) and Bacillus
amyloliquefaciens (Accession No. OP823147, Figure 2, Sample 5).

2.3. In Vitro Antagonistic Test

On the PDA medium, the effectiveness of B. subtilis and B. amyloliquefaciens was
determined to inhibit R. solani, P. debaryanum, and F. oxysporum development in dual culture,
for which the inhibitory effect was remarkable after 7 days of incubation (Table 1 and
Figure 3). Generally, B. subtilis outperformed B. amyloliquefaciens in resistance to R. solani and
F. oxysporum, which were recorded as 28.33 and 33.00 mm. In contrast, B. amyloliquefaciens
caused the highest antagonistic effect against the tested P. debaryanum fungus.
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Table 1. In vitro antagonistic impacts of Bacillus subtilis and Bacillus amyloliquefaciens against Fusarium
oxysporum, Pythium debaryanum, and Rhizoctonia solani.

Pathogenic Fungi
Antagonistic Impacts (Zone, mm)

Bacillus subtilis Bacillus amyloliquefaciens

Rhizoctonia solani 28.33 ± 2.08 a 23.00 ± 2.00 b

Pythium debaryanum 33.33 ± 1.15 b 39.00 ± 1.00 a

Fusarium oxysporum 33.00 ± 2.00 b 15.33 ± 1.52 c

Values are means ± S.D (n = 3). Numbers within a row with different superscripts vary statistically (p < 0.05), a–c:
Duncan’s letters.
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Other than pesticide treatments (Topsin-M70), the post-emergence % of damping-off 
plants (45 days) showed notable decreases due to the different studied bacterial strains 
compared to control; therefore, the most effective treatments were recorded for B. subtilis 
treatments followed by B. amyloliquefaciens treatments, which decreased post-emergence. 
On the other hand, the control group generally showed the lowest survival rates for fungi 
infection, and remarkable enhancements were noticed with Bacillus bacteria treatments. 
The highest survival rates were recorded for Topsin-M70 and B. subtilis treatments against 
F. oxysporum during 2022 and 2023 seasons. A similar trend was recorded forTopsin-M70 
and B. amyloliquefaciens under R. solani infection (Figure 4).

Figure 3. In vitro antagonistic impacts of Bacillus subtilis and Bacillus amyloliquefaciens against Fusarium
oxysporum, Pythium debaryanum, and Rhizoctonia solani.

2.4. Pot Trial
2.4.1. Antagonistic Effect

The effects of antagonistic bacterial strains (B. subtilis and B. amyloliquefaciens) on the
post-emergence damping-off and plant survival % with F. oxysporum, P. debaryanum, and
R. solani infections in greenhouse conditions are shown in Figure 4. In comparison to the
control treatments (T1, T2, and T3), the findings generally indicated that all inoculation
treatments enhanced the percentage of healthy plants and lowered the damping-off %.
Other than pesticide treatments (Topsin-M70), the post-emergence % of damping-off plants
(45 days) showed notable decreases due to the different studied bacterial strains compared
to control; therefore, the most effective treatments were recorded for B. subtilis treatments
followed by B. amyloliquefaciens treatments, which decreased post-emergence. On the other
hand, the control group generally showed the lowest survival rates for fungi infection,
and remarkable enhancements were noticed with Bacillus bacteria treatments. The highest
survival rates were recorded for Topsin-M70 and B. subtilis treatments against F. oxyspo-
rum during 2022 and 2023 seasons. A similar trend was recorded forTopsin-M70 and B.
amyloliquefaciens under R. solani infection (Figure 4).

2.4.2. Photosynthetic Pigments

Table 2 shows that using different inoculation procedures under soil infected with F.
oxysporum, P. debaryanum, and R. solani led to a significant (p ≤ 0.05) increase in the levels
of photosynthetic pigments, i.e., total Chl, Caro, and TSS. Positive effects were seen in the
T7 treatment (seedlings dipped with B. subtilis (90 min) + Soil infested with F. oxysporum
(3%)), which was almost 3-fold more effective than the control treatment (T1, T2, and T3),
and was recorded as 8.03 and 8.49 mg g−1 FW for total Chl, 1.57 and 1.77 µg g−1 FW for
Caro, and 5.25 and 5.85 µg g−1 FW for TSS, during 2022 and 2023 seasons, respectively
(Table 2). Therefore, different inoculation treatments were often organized as follows: T7 >
T9 > T8 > T11 > T10 > T12 > T6 > T5 > T4 > T2 > T1 > T3.
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Figure 4. Impact of fungicide (Topsin-M70) and Bacillus strains on the post-emergence and plant 
survival % of tomato plants infected with Fusarium oxysporum, Pythium debaryanum, and Rhizoctonia 
solani. Values are means ± S.D (n = 3). Numbers within a row with different superscripts vary statis-
tically (p ≤ 0.05). a–g: Duncan’s letters. SL: shoot length; RL: root length; SDW: shoot dry weight; 
RDW: root dry weight. T1: Seedlings grown in soil infested with F. oxysporum (3%); T2: Seedlings 
grown in soil infested with P. debaryanum (3%); T3: Seedlings grown in soil infested with R. solani 
(3%); T4: Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min) + Soil infested with F. ox-
ysporum (3%); T5: Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min) + Soil infested with 
P. debaryanum (3%); T6: Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min) + Soil infested 
with R. solani (3%); T7: Seedlings dipped with B. subtilis (90 min) + Soil infested with F. oxysporum 
(3%); T8: Seedlings dipped with B. subtilis (90 min) + Soil infested with P. debaryanum (3%); T9: Seed-
lings dipped with B. subtilis (90 min) + Soil infested with R. solani (3%); T10: Seedlings dipped with 
B. amyloliquefaciens (90 min) + Soil infested with F. oxysporum (3%); T11: Seedlings dipped with B. 
amyloliquefaciens (90 min) + Soil infested with P. debaryanum (3%); T12: Seedlings dipped with B. 
amyloliquefaciens (90 min) + Soil infested with R. solani (3%).

2.4.2. Photosynthetic Pigments

Table 2 shows that using different inoculation procedures under soil infected with F. 
oxysporum, P. debaryanum, and R. solani led to a significant (p ≤ 0.05) increase in the levels 
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Figure 4. Impact of fungicide (Topsin-M70) and Bacillus strains on the post-emergence and plant
survival % of tomato plants infected with Fusarium oxysporum, Pythium debaryanum, and Rhizoctonia
solani. Values are means ± S.D (n = 3). Numbers within a row with different superscripts vary
statistically (p ≤ 0.05). a–g: Duncan’s letters. SL: shoot length; RL: root length; SDW: shoot dry weight;
RDW: root dry weight. T1: Seedlings grown in soil infested with F. oxysporum (3%); T2: Seedlings
grown in soil infested with P. debaryanum (3%); T3: Seedlings grown in soil infested with R. solani
(3%); T4: Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min) + Soil infested with F.
oxysporum (3%); T5: Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min) + Soil infested
with P. debaryanum (3%); T6: Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min) + Soil
infested with R. solani (3%); T7: Seedlings dipped with B. subtilis (90 min) + Soil infested with F.
oxysporum (3%); T8: Seedlings dipped with B. subtilis (90 min) + Soil infested with P. debaryanum (3%);
T9: Seedlings dipped with B. subtilis (90 min) + Soil infested with R. solani (3%); T10: Seedlings dipped
with B. amyloliquefaciens (90 min) + Soil infested with F. oxysporum (3%); T11: Seedlings dipped with
B. amyloliquefaciens (90 min) + Soil infested with P. debaryanum (3%); T12: Seedlings dipped with B.
amyloliquefaciens (90 min) + Soil infested with R. solani (3%).
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Table 2. Impact of fungicide (Topsin-M70) and Bacillus strains on photosynthetic pigments of tomato
leaves infected with Fusarium oxysporum, Pythium debaryanum, and Rhizoctonia solani at 60 days from
transplanting during 2022 and 2023 seasons.

Treatments
Total Chlorophyll

(mg g−1 FW)
Carotenoids
(µg g−1 FW)

TSS
(µg g−1 FW)

2022 2023 2022 2023 2022 2023

T1 3.11 ± 0.85 e 2.89 ± 0.49 e 0.55 ± 0.09 g 0.62 ± 0.10 e 1.80 ± 0.32 e 1.90 ± 0.85 e

T2 3.46 ± 0.37 e 3.30 ± 0.39 e 0.65 ± 0.11 fg 0.70 ± 0.17 de 1.98 ± 0.39 e 2.05 ± 0.88 e

T3 1.39 ± 0.29 f 1.22 ± 0.21 f 0.29 ± 0.05 gh 0.31 ± 0.07 f 1.01 ± 0.28 f 1.09 ± 0.27 f

T4 4.31 ± 0.89 d 4.43 ± 0.38 d 0.77 ± 0.15 ef 0.83 ± 0.19 cde 3.13 ± 0.57 d 3.20 ± 0.68 d

T5 4.47 ± 0.97 d 4.60 ± 0.49 d 0.85 ± 0.19 ef 0.93 ± 0.15 cd 3.19 ± 0.65 d 3.27 ± 0.26 d

T6 4.80 ± 0.87 d 5.01 ± 0.51 d 0.91 ± 0.12 e 0.94 ± 0.14 cd 3.32 ± 0.59 d 3.40 ± 0.46 d

T7 8.03 ± 1.09 a 8.49 ± 0.94 a 1.57 ± 0.25 a 1.77 ± 0.28 a 5.25 ± 0.69 a 5.58 ± 0.94 a

T8 6.49 ± 0.94 bc 6.52 ± 0.78 c 1.27 ± 0.31 bc 1.36 ± 0.36 b 4.52 ± 0.77 bc 4.55 ± 0.91 bc

T9 7.07 ± 0.94 b 7.35 ± 0.91 b 1.38 ± 0.29 ab 1.50 ± 0.41 b 4.79 ± 0.81 b 4.83 ± 0.83 b

T10 6.02 ± 0.91 c 6.13 ± 0.76 c 1.12 ± 0.22 cd 1.28 ± 0.32 b 4.27 ± 0.85 c 4.34 ± 0.76 c

T11 6.33 ± 0.83 c 6.46 ± 0.79 c 1.21 ± 0.32 bc 1.32 ± 0.27 b 4.35 ± 0.80 bc 4.41 ± 0.59 bc

T12 5.01 ± 0.59 d 5.13 ± 0.94 d 0.95 ± 0.19 de 0.95 ± 0.21 c 3.39 ± 0.46 d 3.55 ± 0.48 d

LSD 0.05 0.72 0.74 0.19 0.24 0.43 0.41

Values are means ± S.D (n = 3). Numbers within a row with different superscripts vary statistically (p ≤ 0.05). a–h:
Duncan’s letters. SL: shoot length; RL: root length; SDW: shoot dry weight; RDW: root dry weight. T1: Seedlings
grown in soil infested with F. oxysporum (3%); T2: Seedlings grown in soil infested with P. debaryanum (3%); T3:
Seedlings grown in soil infested with R. solani (3%); T4: Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1,
90 min) + Soil infested with F. oxysporum (3%); T5: Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min)
+ Soil infested with P. debaryanum (3%); T6: Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min) + Soil
infested with R. solani (3%); T7: Seedlings dipped with B. subtilis (90 min) + Soil infested with F. oxysporum (3%);
T8: Seedlings dipped with B. subtilis (90 min) + Soil infested with P. debaryanum (3%); T9: Seedlings dipped with B.
subtilis (90 min) + Soil infested with R. solani (3%); T10: Seedlings dipped with B. amyloliquefaciens (90 min) + Soil
infested with F. oxysporum (3%); T11: Seedlings dipped with B. amyloliquefaciens (90 min) + Soil infested with P.
debaryanum (3%); T12: Seedlings dipped with B. amyloliquefaciens (90 min) + Soil infested with R. solani (3%).

2.4.3. Antioxidant Enzymes

The data shown in Figure 5 demonstrate that, at 60 days after transplanting, the tomato
plants treated with inoculation treatments under soil conditions infested with F. oxysporum,
P. debaryanum, and R. solani increased their activity of the antioxidant enzymes PO, PAL,
PPO, and TPC. As shown in Figure 5A, the maximum values of PO activity (µM H2O2 g−1

FW min−1) in the treated seedlings significantly increased from 0.51 and 0.60 (control, T1)
to 4.04 and 4.13 (T7) under soil infested with F. oxysporum, from 0.71 and 0.75 (control, T2)
to 3.05 and 3.24 (T8) under soil infested with P. debaryanum, and from 0.24 and 0.27 (control,
T3) to 3.021 and 3.35 (T9) under soil infested with R. solani during 2022 and 2023 seasons,
respectively (Figure 5A). Meanwhile, the maximum values of PAL enzyme activity (µmoles
min−1 g−1 FW) were recorded as 5.43 and 5.58 for T7, followed by 4.81 and 4.89 for T9,
compared to the control and other treatment in the first growing seasons (2022) and the
second growing seasons (2023), respectively (Figure 5B).

Furthermore, the antioxidant capacity indicated by PPO activity in the untreated
tomato plants was decreased by pathogenic-fungus-infested soil, but the detrimental effects
of infected soil on antioxidant capacity were lessened when the seedlings were treated
with alternative inoculations. The PPO enzyme activity (µM tetra-guaiacol g−1 min−1 FW)
was increased by the T7 treatment compared to the other treatments, with values rising
from 0.13 and 0.16 (T1) to 0.32 and 0.36 (T7) in 2022 and 2023, respectively (Figure 5C).
However, we found that TPC was statistically significant (p ≤ 0.05). The data indicated
that, in comparison to the control in the 2022 season, T7 (seedlings dipped with B. subtilis
(90 min) + Soil infested with F. oxysporum (3%)) produced 25.07 mg GAE g−1 FW, while
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T9 (seedlings dipped with B. subtilis (90 min) + Soil infested with R. solani (3%)) produced
22.78 mg GAE g−1 FW. The 2023 season showed a similar pattern (Figure 5D).

2.4.4. N, P, and K (%) of Leaves

The chemical composition of tomato leaves (N, P, and K %) under F. oxysporum, P.
debaryanum, and R. solani at 60 days from transplanting during 2022 and 2023 seasons
differs significantly (p ≤ 0.05) depending on the different inoculation treatments (Table 3).
Positive effects were seen in the T7 treatment (seedlings dipped with B. subtilis (2 h) + Soil
infested with F. oxysporum (3%)), which increased compared with the control treatment
(T1, T2, and T3) and was recorded as 2.30% for N, 0.187% for P, and 3.24% for K in the
2022 season and 2.48% for N, 0.216% for P, and 3.29% for K in the 2023 season, respectively
(Table 3). Therefore, different inoculation treatments were often arranged as follows: T7 >
T9 > T8 > T11 > T10 > T12 > T6 > T5 > T4 > T2 > T1 > T3.
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Figure 5. Impact of fungicide (Topsin-M70) and Bacillus strains on antioxidant enzymes PO (A), PAL 
(B), and PPO (C) and total phenolic content (D) of tomato plants infected with Fusarium oxysporum, 
Pythium debaryanum, and Rhizoctonia solani at 60 days from transplanting during 2022 and 2023 sea-
sons. Values are means ± S.D (n = 3). Numbers within a row with different superscripts vary statis-
tically (p ≤ 0.05). a–f: Duncan’s letters. SL: shoot length; RL: root length; SDW: shoot dry weight; RDW: 
root dry weight. T1: Seedlings grown in soil infested with F. oxysporum (3%); T2: Seedlings grown 
in soil infested with P. debaryanum (3%); T3: Seedlings grown in soil infested with R. solani (3%); T4: 
Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min) + Soil infested with F. oxysporum (3%); 
T5: Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min) + Soil infested with P. debaryanum 
(3%); T6: Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min) + Soil infested with R. solani 
(3%); T7: Seedlings dipped with B. subtilis (90 min) + Soil infested with F. oxysporum (3%); T8: Seed-
lings dipped with B. subtilis (90 min) + Soil infested with P. debaryanum (3%); T9: Seedlings dipped 
with B. subtilis (90 min) + Soil infested with R. solani (3%); T10: Seedlings dipped with B. amylolique-
faciens (90 min) + Soil infested with F. oxysporum (3%); T11: Seedlings dipped with B. amyloliquefaciens 
(90 min) + Soil infested with P. debaryanum (3%); T12: Seedlings dipped with B. amyloliquefaciens (90 
min) + Soil infested with R. solani (3%).

Figure 5. Impact of fungicide (Topsin-M70) and Bacillus strains on antioxidant enzymes PO (A), PAL
(B), and PPO (C) and total phenolic content (D) of tomato plants infected with Fusarium oxysporum,
Pythium debaryanum, and Rhizoctonia solani at 60 days from transplanting during 2022 and 2023
seasons. Values are means ± S.D (n = 3). Numbers within a row with different superscripts vary
statistically (p ≤ 0.05). a–f: Duncan’s letters. SL: shoot length; RL: root length; SDW: shoot dry weight;
RDW: root dry weight. T1: Seedlings grown in soil infested with F. oxysporum (3%); T2: Seedlings
grown in soil infested with P. debaryanum (3%); T3: Seedlings grown in soil infested with R. solani
(3%); T4: Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min) + Soil infested with F.
oxysporum (3%); T5: Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min) + Soil infested
with P. debaryanum (3%); T6: Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min) + Soil
infested with R. solani (3%); T7: Seedlings dipped with B. subtilis (90 min) + Soil infested with F.
oxysporum (3%); T8: Seedlings dipped with B. subtilis (90 min) + Soil infested with P. debaryanum (3%);
T9: Seedlings dipped with B. subtilis (90 min) + Soil infested with R. solani (3%); T10: Seedlings dipped
with B. amyloliquefaciens (90 min) + Soil infested with F. oxysporum (3%); T11: Seedlings dipped with
B. amyloliquefaciens (90 min) + Soil infested with P. debaryanum (3%); T12: Seedlings dipped with B.
amyloliquefaciens (90 min) + Soil infested with R. solani (3%).
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Table 3. Impact of fungicide (Topsin-M70) and Bacillus strains on N, P, and K % of tomato plants
infected with Fusarium oxysporum, Pythium debaryanum, and Rhizoctonia solani at 60 days from trans-
planting during 2022 and 2023 seasons.

Treatments
N (%) P (%) K (%)

2022 2023 2022 2023 2022 2023

T1 1.21 ± 0.25 e 1.34 ± 0.23 e 0.090 ± 0.01 d 0.106 ± 0.02 f 2.15 ± 0.25 e 2.42 ± 1.15 b

T2 1.30 ± 0.19 de 1.44 ± 0.35 de 0.094 ± 0.03 d 0.126 ± 0.01 ef 2.24 ± 0.19 de 2.66 ± 1.15 ab

T3 1.17 ± 0.09 e 1.25 ± 0.05 e 0.060 ± 0.01 e 0.066 ± 0.02 g 2.11 ± 0.09 e 2.15 ± 0.15 b

T4 1.39 ± 0.22 cde 1.48 ± 0.21 cde 0.124 ± 0.02 c 0.140 ± 0.03 de 2.33 ± 0.22 cde 2.66 ± 0.13 ab

T5 1.61 ± 0.27 bcd 1.69 ± 0.19 bcd 0.127 ± 0.01 c 0.143 ± 0.02 cde 2.55 ± 0.27 bcd 2.66 ± 0.31 ab

T6 1.68 ± 0.22 bc 1.75 ± 0.21 bcd 0.130 ± 0.02 c 0.160 ± 0.02 bcd 2.62 ± 0.22 bc 2.70 ± 0.36 ab

T7 2.30 ± 0.11 a 2.48 ± 0.10 a 0.187 ± 0.01 a 0.216 ± 0.02 a 3.24 ± 0.11 a 3.29 ± 0.06 a

T8 1.82 ± 0.24 b 1.92 ± 0.18 b 0.171 ± 0.02 ab 0.18 ± 0.02 ab 2.76 ± 0.24 b 2.93 ± 0.29 ab

T9 1.91 ± 0.15 b 1.95 ± 0.11 b 0.171 ± 0.01 ab 0.206 ± 0.02 a 2.85 ± 0.15 b 2.95 ± 0.07 ab

T10 1.72 ± 0.13 b 1.82 ± 0.16 b 0.160 ± 0.02 b 0.170 ± 0.01 bcd 2.66 ± 0.13 b 2.73 ± 0.05 ab

T11 1.78 ± 0.18 b 1.90 ± 0.13 b 0.161 ± 0.03 b 0.173 ± 0.02 bc 2.72 ± 0.18 b 2.85 ± 0.15 ab

T12 1.71 ± 0.10 bc 1.79 ± 0.08 bc 0.135 ± 0.01 c 0.160 ± 0.02 bcd 2.65 ± 0.10 bc 2.70 ± 0.12 ab

LSD 0.05 0.31 0.29 0.019 0.031 0.31 0.85
Values are means ± S.D (n = 3). Numbers within a row with different superscripts vary statistically (p ≤ 0.05). a–g:
Duncan’s letters. SL: shoot length; RL: root length; SDW: shoot dry weight; RDW: root dry weight. T1: Seedlings
grown in soil infested with F. oxysporum (3%); T2: Seedlings grown in soil infested with P. debaryanum (3%); T3:
Seedlings grown in soil infested with R. solani (3%); T4: Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1,
90 min) + Soil infested with F. oxysporum (3%); T5: Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min)
+ Soil infested with P. debaryanum (3%); T6: Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min) + Soil
infested with R. solani (3%); T7: Seedlings dipped with B. subtilis (90 min) + Soil infested with F. oxysporum (3%);
T8: Seedlings dipped with B. subtilis (90 min) + Soil infested with P. debaryanum (3%); T9: Seedlings dipped with B.
subtilis (90 min) + Soil infested with R. solani (3%); T10: Seedlings dipped with B. amyloliquefaciens (90 min) + Soil
infested with F. oxysporum (3%); T11: Seedlings dipped with B. amyloliquefaciens (90 min) + Soil infested with P.
debaryanum (3%); T12: Seedlings dipped with B. amyloliquefaciens (90 min) + Soil infested with R. solani (3%).

2.4.5. Growth Characteristics and Yield

Tomato was used as a model crop in a greenhouse pot experiment to find the best
method for applying various inoculations under F. oxysporum, P. debaryanum, and R. solani
infection. The results from 12 treatments after 120 days of transplanting showed that
tomato plants only had pathogenic fungal infection when compared to other inoculated
plants. All growth parameters, such as shoot length, root length, shoot dry weight, and
yield were lower than those of those treatments (Table 4). However, this negative impact of
pathogenic fungal stress was lessened when tomatoes were inoculated with several Bacillus
strains. When compared to other treatments, the T12 treatment (seedlings dipped in B.
amyloliquefaciens for 90 min and soil infested with R. solani at 3%) improved the growth
dynamics of the tomato plants, as shown in Table 4. For example, the tomato plants’ shoot
and root lengths were 94.13 and 31.08 cm plant−1 in the 2022 season, respectively, and
100.62 and 36.20 cm plant−1 in the 2023 season, respectively. Additionally, the same trend
was observed for the dry weight of the shoots and roots (Table 4). As a consequence, the T12
treatment regularly increased the rate for yield (g plant−1), which reached 53%, compared
to the T2 treatment (Table 4).
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Table 4. Impact of fungicide (Topsin-M70) and Bacillus strains on growth characteristics and yield
of tomato plants infected with Fusarium oxysporum, Pythium debaryanum, and Rhizoctonia solani at
120 days from transplanting during 2022 and 2023 seasons.

Treatments SL (cm Plant−1) RL (cm Plant−1) SDW (g Plant−1) RDW (g Plant−1) Yield (g Plant−1)

2022 Season

T1 65.06 ± 7.12 de 22.44 ± 2.54 de 188.67 ± 20.64 de 88.98 ± 9.96 de 780.70 ± 85.40 de

T2 61.28 ± 5.55 e 21.08 ± 1.98 e 177.70 ± 16.08 e 83.69 ± 7.76 e 735.33 ± 66.54 e

T3 62.43 ± 2.65 e 21.50 ± 0.95 e 181.05 ± 7.68 e 85.30 ± 3.71 e 749.17 ± 31.77 e

T4 78.88 ± 6.31 b 27.37 ± 2.25 b 228.75 ± 18.31 b 108.33 ± 8.84 b 946.56 ± 75.76 b

T5 74.09 ± 7.69 bcd 23.78 ± 2.75 cde 214.85 ± 22.29 bcd 101.62 ± 10.76 bcd 889.05 ± 92.24 bcd

T6 75.97 ± 6.27 bc 27.20 ± 2.24 bc 220.32 ± 18.19 bc 104.26 ± 8.78 bc 911.67 ± 75.27 bc

T7 76.89 ± 3.09 bc 26.40 ± 1.10 bc 222.99 ± 8.97 bc 105.55 ± 4.33 bc 922.72 ± 37.11 bc

T8 67.74 ± 7.02 cde 23.85 ± 2.51 cde 196.44 ± 20.35 cde 92.60 ± 9.82 cde 812.84 ± 84.19 cde

T9 77.23 ± 4.39 b 25.74 ± 1.57 bcd 223.98 ± 12.73 b 105.63 ± 6.15 bc 926.80 ± 52.67 b

T10 82.57 ± 3.84 b 27.59 ± 1.37 ab 239.46 ± 11.15 b 113.10 ± 5.38 b 990.88 ± 46.12 b

T11 80.14 ± 5.25 b 28.03 ± 1.87 ab 232.40 ± 15.22 b 109.69 ± 7.35 b 961.64 ± 62.98 b

T12 94.13 ± 2.76 a 31.08 ± 0.99 a 272.97 ± 8.00 a 129.28 ± 3.86 a 1129.52 ± 33.12 a

LSD 0.05 9.33 3.52 27.07 13.06 112.01

2023 Season

T1 69.55 ± 7.61 de 25.02 ± 2.74 de 201.68 ± 22.06 de 97.59 ± 10.67 de 793.71 ± 86.82 de

T2 65.50 ± 5.93 e 23.57 ± 2.13 e 189.96 ± 17.19 e 91.92 ± 8.32 e 747.58 ± 67.65 e

T3 66.74 ± 2.83 e 24.01 ± 1.02 e 193.54 ± 8.21 e 93.65 ± 3.97 e 761.66 ± 32.30 e

T4 84.32 ± 6.75 b 30.34 ± 2.43 b 244.53 ± 19.57 b 118.32 ± 9.47 b 962.33 ± 77.03 b

T5 79.20 ± 8.22 bcd 28.50 ± 2.96 bcd 229.67 ± 23.83 bcd 111.13 ± 11.53 bcd 903.87 ± 93.78 bcd

T6 81.21 ± 6.70 bc 29.22 ± 2.41 bc 235.52 ± 19.44 bc 113.96 ± 9.41 bc 926.87 ± 76.52 bc

T7 82.20 ± 3.31 bc 29.57 ± 1.19 bc 238.37 ± 9.59 bc 115.34 ± 4.64 bc 938.10 ± 37.73 bc

T8 72.41 ± 7.50 cde 26.05 ± 2.70 cde 209.98 ± 21.75 cde 101.61 ± 10.52 cde 826.39 ± 85.59 cde

T9 82.56 ± 4.69 b 29.71 ± 1.69 b 239.42 ± 13.61 b 115.85 ± 6.58 b 942.24 ± 53.55 b

T10 88.27 ± 4.11 b 31.76 ± 1.48 b 255.98 ± 11.91 b 123.86 ± 5.77 b 1007.40 ± 46.89 b

T11 85.66 ± 5.61 b 30.82 ± 2.02 b 248.42 ± 16.27 b 120.20 ± 7.87 b 977.67 ± 64.03 b

T12 100.62 ± 2.95 a 36.20 ± 1.06 a 291.79 ± 8.56 a 141.19 ± 4.14 a 1148.34 ± 33.67 a

LSD 0.05 9.97 3.59 28.93 14.00 113.87
Values are means ± S.D (n = 3). Numbers within a row with different superscripts vary statistically (p ≤ 0.05). a–e:
Duncan’s letters. SL: shoot length; RL: root length; SDW: shoot dry weight; RDW: root dry weight. T1: Seedlings
grown in soil infested with F. oxysporum (3%); T2: Seedlings grown in soil infested with P. debaryanum (3%); T3:
Seedlings grown in soil infested with R. solani (3%); T4: Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1,
90 min) + Soil infested with F. oxysporum (3%); T5: Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min)
+ Soil infested with P. debaryanum (3%); T6: Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min) + Soil
infested with R. solani (3%); T7: Seedlings dipped with B. subtilis (90 min) + Soil infested with F. oxysporum (3%);
T8: Seedlings dipped with B. subtilis (90 min) + Soil infested with P. debaryanum (3%); T9: Seedlings dipped with B.
subtilis (90 min) + Soil infested with R. solani (3%); T10: Seedlings dipped with B. amyloliquefaciens (90 min) + Soil
infested with F. oxysporum (3%); T11: Seedlings dipped with B. amyloliquefaciens (90 min) + Soil infested with P.
debaryanum (3%); T12: Seedlings dipped with B. amyloliquefaciens (90 min) + Soil infested with R. solani (3%).

3. Discussion
Biological control is globally favored for managing soilborne diseases in vegetable

crops, such as Fusarium, Pythium, and Rhizoctonia, due to its eco-friendly, cost-effective,
and user-friendly characteristics. Numerous commercial biopesticide products utilizing
highly effective strains of antagonistic microorganisms are accessible globally for extensive
field application [27]. Nonetheless, the effective biocontrol of plant diseases relies on the
fitness of the microbial biocontrol agents present in the soil. Therefore, the focus of our
study is on finding native antagonistic bacterial strains that are appropriate for the local
environmental conditions.
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In our study, we isolated the following three pathogenic fungi from infected tomato
plants: F. oxysporum, P. debaryanum, and R. solani. Furthermore, two bacterial strains were
isolated from the tomato rhizosphere soil: B. subtilis and B. amyloliquefaciens. Among them,
B. subtilis OP823140 exhibited the strongest inhibition of mycelial growth in F. oxysporum
KT224063 and R. solani OP823124. Conversely, B. amyloliquefaciens OP823147 exhibited the
strongest antagonistic effect against the examined P. debaryanum OP823136 fungus (Table 1
and Figure 3). These bacterial strains’ generation of antifungal metabolites may be the cause
of the inhibitory zone’s creation. Several Bacillus species have yielded bacteriocins and
bacteriocin-like compounds, such as amylolysin, amisin, subtilin, subtilosin A, subtilosin
B, thuricin, entianin, and ericin. Because they produce antibiotics, Bacillus species have
been shown in numerous studies to have biocontrol effects on tomato diseases. According
to [28], B. pumilus PTB180 and B. subtilis PTB185 produce surfactin (both strains) and iturin
and fengycin (B. subtilis PTB185), which have a strong antagonistic effect on a number of
plant pathogens, including F. oxysporum, R. solani, S. sclerotiorum, Pythium ultimum, and
Phytophthora capsici.

B. subtilis treatments were shown to have the most effective antagonistic impact,
followed by B. amyloliquefaciens treatments, which reduced post-emergence and increased
plant survival (Figure 4). These findings are consistent with those of [29,30], who found that
seedlings were protected from Fusarium sp. and R. solani infection in plants treated with
bioagents and bio-fungicides. Because Bacillus species activate soil microbes and decrease
the population of F. oxysporum, R. solani, and P. debaryanum, they significantly decreased the
incidence of damping-off disease. Additionally, Bacillus species increased the biomass of
the root system, which may have a positive effect on disease control, defense mechanism
activation, and the accumulation of antimicrobial secondary metabolites [31–33].

One essential measure of a plant’s physiological state is its photosynthetic pigment [34].
Under various inoculation treatments, the total soluble sugar, carotenoids, and chlorophyll
content of tomato plants were determined (Table 2). In fact, compared to plants treated with
Bacillus species, tomato plants infected with F. oxysporum, P. debaryanum, and R. solani had
a negative impact on the amount of photosynthetic pigment. Our findings are consistent
with those of [35], who demonstrated that the overall chlorophyll content of A. alternate
diseased plants was much lower in the diseased tissue—roughly 16 times lower than that
found in healthy tissues. Likewise, decreases of 9.96% and 40.34% in total chlorophyll
content were reported by [36]. According to [37], the disarray of the plastid membrane
during infection may be the cause of this decrease in total chlorophylls and pigments.
Kazerooni [36] observed a similar trend of better chlorophylls and pigments, where B.
amyloliquefaciens increased total chlorophyll in pepper plants under Botrytis and Alternaria
stress conditions by 31.07% and 57.88%, respectively, in comparison to those of infected
plants. Furthermore, [38] showed that Raphanus sativus’s chlorophyll content increased as
a result of Pseudomonas and Bacillus. The bacteria’s ability to operate as a biofertilizer or
the increase in 1-Aminocyclopropane-1-Carboxylate (ACC) deaminase enzymes in PGPR-
treated plants, which delay the breakdown of chlorophyll, could be the cause of this
increase in chlorophyll concentration. Additionally, the chlorophyll content rose as a result
of PGPR’s improved nutrient absorption. Similarly, B. amyloliquefaciens SN13 enhanced
carbon assimilation in rice plants with or without R. solani, which is strongly associated
with higher dry mass and chlorophyll content, according to [39].

Preserving the integrity of the host plant’s defense mechanisms is one possible method
for the biological management of fungal infections (Figure 5). Antioxidant enzymes have
a critical role in scavenging ROS and avoiding oxidative stress, which harms numerous
sensitive molecules [40,41]. According to [42], peroxidase (PO) is essential at the start of
the plant’s defense response against infections because it can either create highly toxic
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conditions by releasing more ROS and synthesizing phenolic chemicals or by constructing
structural barriers (lignin accumulation). Additionally, PO actively participates in growth-
related self-regulation processes like photosynthesis and respiration [43]. Numerous studies
have documented the various manifestations of PAL. For example, the activity of PAL in
wheat was impacted by the Fusarium mycotoxin deoxynivalenol (DON), which resulted
in the downregulation of PAL in susceptible cultivars [44]. Although it is challenging to
understand how Bacillus inhibits PAL activity in the plant–pathogen–bacillus relationship,
PAL biosynthesis from L-phenylalanine may occur in the plant via other pathways, and
the PAL reaction is not the only pathway for the body’s defense response [45]. However,
PPO is important for disease resistance because of its ability to accelerate the oxidation
of phenolic chemicals into quinones and the synthesis of lignin [46]. PPO activity did not
directly contribute to the development of mung beans’ resistance to pathogenic fungus,
according to [47], who also discovered a negative association between PPO activity and
the proportion of plants that survived and no correlation between PPO activity and total
phenol. As one of the biggest and most diverse classes of plant active chemicals, phenols
play a key role in initiating defense responses to abiotic stress and pathogen infection.
Phenolics are involved in controlling the growth of plants. Phenolics are created when
plants detect possible pathogens [48]. However, phenol buildup is also influenced by
environmental factors such as light and temperature [49], nutritional status, and plant
genetics or species [50]. These factors imply that there is a very complicated link between
elicitor activity and specificity in a plant–microbe interaction.

The chemical contents of tomato leaves (N, P, and K%) cultivated in soil infected
with F. oxysporum, P. debaryanum, and R. solani varied considerably (p ≤ 0.05) based on the
various Bacillus inoculation treatments (Table 3). Bacillus uses hydrolysis, chelation, redox,
and acidity to solubilize minerals as a plant growth regulator [51]. According to [52], B.
methylotrophicus increased the synthesis of chlorophyll and the uptake of NPK nutrients.
Additionally, compared to control plants, chickpea plants that were inoculated with M.
ciceri IC53 and NUU4 had higher N contents [53]. PGPR strains may directly enhance plant
metabolism by enhancing their host plants’ absorption of water, nutrients, and enzyme
activity [54]. Furthermore, because of their higher mineral content, plants inoculated with
B. amyloliquefaciens RaSh1 may produce more metabolites, proteins, and defense genes [34].

In comparison to the treatments inoculated with Bacillus bacteria, all growth metrics,
including shoot length, root length, dry weight of shoots, dry weight of roots, and yield,
were lower in circumstances infected solely with pathogenic fungi (Table 4). The findings of
earlier studies [55–57] are consistent with these findings. Furthermore, the beneficial effects
of beneficial PGPR were derived from the observable influence of bacteria on growth,
development, and yield. Additionally, by secreting phytohormones like indole acetic
acid, bacteria help plants to obtain nitrogen from the atmosphere or other nutrients in
the soil [58,59]. Adinarayana [60] showed that tomato plants inoculated with Bacillus
subtilis and Bacillus amyloliquefaciens under diseases incidence of A. solani. had an improved
growth and yield and were recorded to have 110.07 fruits per plant, 6.42 Kg yield per plant,
179.42 Kg yield per plot and 112.13 tons yield ha−1.

4. Materials and Methods
4.1. Sources of Samples

Diseased tomato plants with their rhizosphere were collected from different regions
of the Governorate of Elkharbyia (Gymmiza and Kotor), Egypt, and were subjected to
isolation trials following the method described by [61].
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4.2. Isolation and Identification of Pathogenic Fungi

The lower parts of the stem and roots of the diseased tomato plants with damping-
off, root rot, and wilting were cleaned from soil particles attached, cut into 2 cm pieces,
sterilized with 3% sodium hypochlorite (3 min), washed 5 times with sterilized distilled
water, and dried using filter sheets. The sterilized plant pieces were incubated in a potato
dextrose agar (PDA) medium for 7 days at 27 ◦C. The growing hyphal tips were moved
from the agar plates and purified several times on a new PDA medium using the hyphal
tip technique [62].

As stated by [63], the three pure fungi were identified using their morphological
and microscopical characteristics and were identified by polymerase chain reaction (PCR)
at Sigma Scientific Services Co., Giza, Egypt. The growth mycelia of each fungus were
acquired by centrifugation for 10 min at 6000 rpm, homogenized in liquid nitrogen, and their
RNA was extracted using total extraction kits (Solarbio, Beijing, China) according to the
manufacturer’s guidelines. The PCR was completed in a total amount of 50 µL, comprising
1× reaction buffer, 1.5 mM MgCl2, 1U Taq DNA polymerase (Promega, Madison, WI, USA),
2.5 mM dNTPs, 30 Pmol of each primer (ITS-1 F: 5′-TCCGTAGGTGAACCTGCGG-3′ and
ITS-1 R: 5′-TCCTCCGCTTATTGATATGC-3′), and 30 ng genomic DNA. With a Big Dye
TM Terminator Cycle Sequencing Kits, the resultant PCR was sequenced automatically
in an ABI PRISM 3730XL Analyzer while adhering to the manufacturer’s instructions.
Each template underwent single-pass sequencing with the Rbcl Forward primer. The
fluorescently tagged fragments were isolated from the unincorporated terminators using
an ethanol precipitation process. The samples were resuspended in distilled water and then
electrophoresed on an ABI 3730xl sequencer (Microgen Company, Moscow, Russia). The
sequences were aligned using Nucleotide BLAST http://www.ncbi.nlm.nih.gov/BLAST
(accessed on 14 September 2023).

4.3. Isolation and Identification of Bacillus spp.

Approximately 10 g of tomato rhizosphere soil was added to sterile water (90 mL)
and agitated on a rotary shaker at 150 rpm for 45 min. The soil suspension was serially
diluted (105–106) and pasteurized in a water bath for 15 min at 65 ◦C to kill non-spore-
forming microbes [64]. After cooling, the soil suspension was cultured on a nutrient agar
medium (NA), and colonies appearing after 3 days at 27 ◦C were isolated and purified
using the streaking plate method. The two pure bacteria were identified by 16s rRNA
according to [65]. Bacterial colonies were grown for 8 h at 30 ◦C in a nutrient broth prior to
DNA extraction. Centrifuging 1 mL of culture media at 8000× g for 2 min extracted the
bacterial cells. The cells were then rinsed twice with 400 µL of STE Buffer (100 mM NaCl,
10 mM Tris/HCl, 1 mM EDTA, pH 8.0) and centrifuged again at 8000× g for 2 min. To
lyse the bacterial cells, the generated pellets were again suspended in 200 µL TE buffer
(10 mM Tris/HCl, 1 mM EDTA, pH 8.0) together with 100 µL Tris-saturated phenol (pH 8.0)
and vortexed for 60 s. The samples were separated into liquid and solid by centrifuging
them for five minutes at 4 ◦C at 13,000× g. A portion of the top liquid, 160 µL, was
moved to a 1.5 mL tube with 100 µL chloroform and 40 µL TE buffer. The tube was
then centrifuged at 13,000× g for 5 min at 4 ◦C. The PCR mixture (50 µL) comprised
5 µL of 5× Taq buffer, 200 mmol/L of each dNTP, 10 Pmol of primers 27F (Forward: 5\-
AGAGTTTGATCMTGGCTCAG-3\) and 1492R (Reverse: 5\-GGYTACCTTGTTACGACTT-
3\), 1.5 U of Taq DNA polymerase (Promega, Madison, WI, USA), 3 mmol/L of MgCl2,
and 5 µL of genomic DNA. The PCR condition, thermal cycle structure, and sequence of
PCR products are described in Section 2.2.

http://www.ncbi.nlm.nih.gov/BLAST
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4.4. In Vitro Antagonistic Assay

Three fungal isolates, including F. oxysporum, P. debaryanum, and R. solani, along with
two bacterial strains, B. subtilis and B. amyloliquefaciens, were selected based on the identifi-
cation process detailed in Sections 4.2 and 4.3 to perform a dual culture assay to assess the
antagonistic effect [66]. A loopful of bacterial broth culture (108 CFU/mL) was streaked
diagonally on a Petri dish filled with PDA (without antibiotics), while fungal strains from
a 7-day-old PDA culture were spotted at the two edges of the dish, perpendicular to the
bacterial line, using sterile toothpicks with 6 mm diameter agar discs. The setup was then
incubated for 7 days at 27 ◦C. The inhibition level in the dual cultures was determined
by subtracting the distance (mm) of fungal growth towards the antagonist colony (γ)
from the fungal growth radius (γ0) of the control culture, resulting in ∆γ = γ0 − γ, as
outlined by [67]. The controls comprised fungal mycelial plugs placed in the center of
non-inoculated PDA plates.

4.5. Inoculum Preparation

The investigated fungi were inoculated into sterilized 250 mL potato dextrose broth
medium in 0.5 L Erlenmeyer flasks, and they were then cultured for 14 days at 27 ◦C. After
thoroughly shaking the flasks, 20 mL of the suspension was moved to a 1 L Erlenmeyer
flask that contained 2/3 wet autoclaved grain sorghum. The flask was then kept at 27 ◦C
for four weeks. Soil was infested with pathogenic fungi one week prior to transplanting
by incorporating 3% inoculum into the soil of each pot, then irrigating [68]. Conversely,
the bacillus strains were cultivated in nutrient broth medium on a rotary shaker for 72
h at 27 ◦C, and each culture (1 × 108 CFU mL−1) served as inoculum by immersing the
seedlings for 90 min [69].

4.6. Greenhouse Trial

A pot experiment was carried out in the greenhouse at the Gymmiza Agricultural
Research Station, located in Elkharbyia Governorate, Egypt. Clay soil was gathered, air-
dried, sifted through a 10-mesh sieve, assessed for its physical and chemical properties
as indicated in Table 5, and subsequently placed into polyethylene bags containing 8 kg
of soil following sterilization. During the 2022–2023 seasons, a total of 96 tomato plants
(cv. Super Strain B, at 25 days old, acquired from a commercial nursery as sensitive
variety) were separated into 12 treatments, each consisting of 8 duplicates with 1 plant.
The pots were organized in a randomized block design with the treatments displayed in
Table 6. The proposed dosage by the Egyptian Ministry of Agriculture of 10 mL of 4 g L−1

N:P:K (20:20:20) was administered to the plants every three days, in conjunction with
weekly irrigation.

4.7. Measurements
4.7.1. Disease Assessment

The percentages of post-emergency damping-off and surviving plants were computed
after 45 days of transplant, as follows [70]:

Post-emergency damping-off % = [No. of dead plants/No. of transplanted seedlings] × 100 (1)

Surviving plants % = [No. of surviving plants/No. of transplanted seedlings] × 100 (2)

4.7.2. Physiological Features

Sixty days post-transplantation and following each treatment, a leaf sample was frozen
to evaluate the photosynthetic pigments, total soluble sugars (TSS), antioxidant enzymes,
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and phenolic content using a UV spectrophotometer (Bibby Scientific, Staffordshire, UK)
(Model 6705).

Photosynthetic Pigments

As stated by [71], to assess the total chlorophyll and carotenoids, 0.1 g of leaf samples
was ground and subsequently extracted in 5 mL of 80% acetone. The supernatant was
analyzed at wavelengths of 663, 645, and 470 nm following centrifugation at 13,000× g for
10 min. The measured and documented values for carotenoids and chlorophylls are µg g−1

FW and mg g−1 FW, respectively.

Table 5. Physical and chemical analysis of soil used in the greenhouse experiment.

Season
Mechanical Analysis (%)

Texture
pH

(1:2.5)
EC

(dSm−1)
OM

(g Kg−1)

Available Elements
(mg Kg−1)

Sand Silt Clay N P K

2022 21.14 25.69 53.17 Clayey 7.71 2.61 16.95 8.96 8.22 391.31
2023 21.33 25.02 53.65 Clayey 7.62 2.89 17.82 9.32 8.76 372.27

Table 6. Treatment used for the greenhouse experiment.

Symbol Description

T1 Seedlings grown in soil infested with F. oxysporum (3%)
T2 Seedlings grown in soil infested with P. debaryanum (3%)
T3 Seedlings grown in soil infested with R. solani (3%)
T4 Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min) + Soil infested with F. oxysporum (3%)
T5 Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min) + Soil infested with P. debaryanum (3%)
T6 Seedlings dipped with Topsin-M70 (fungicide, 2 g L−1, 90 min) + Soil infested with R. solani (3%)
T7 Seedlings dipped with B. subtilis (90 min) + Soil infested with F. oxysporum (3%)
T8 Seedlings dipped with B. subtilis (90 min) + Soil infested with P. debaryanum (3%)
T9 Seedlings dipped with B. subtilis (90 min) + Soil infested with R. solani (3%)

T10 Seedlings dipped with B. amyloliquefaciens (90 min) + Soil infested with F. oxysporum (3%)
T11 Seedlings dipped with B. amyloliquefaciens (90 min) + Soil infested with P. debaryanum (3%)
T12 Seedlings dipped with B. amyloliquefaciens (90 min) + Soil infested with R. solani (3%)

TSS

We implemented the measures proposed by [72]. Following homogenization in ethanol
(5 mL, 80%), a 0.5 g leaf sample was placed in a water bath and heated at 80 ◦C for 30 min.
To assess the TSS concentration at 620 nm, the supernatants were gathered and centrifuged
(10,000× g for 10 min). The data were shown as µg g−1 FW, with glucose serving as the
standard curve.

4.7.3. Antioxidant Enzymes
Peroxidase Activity (PO)

Utilizing the techniques outlined by [73], the conversion of pyrogallol to purpurgallin
with H2O2 was evaluated to measure the peroxidase enzyme’s activity. In the sample
cuvette, there was 3.0 mL of dH2O, 0.5 mL of 0.1M sodium phosphate buffer (pH 7), 0.3 mL
of the extract (enzyme), 0.05 mL of pyrogallol, and 0.1 mL of H2O2 (10%). The peroxidase
enzyme activity was assessed at 425 nm µM H2O2 g−1 FW min−1.

Polyphenol Oxidase Assay (PPO)

As stated by [74], a measurement of the enzyme polyphenol oxidase was conducted.
In summary, this included 1.0 mL of sodium phosphate buffer (0.2 M, pH 7), 10.0 mL
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of catechol (0.001 M), 1.0 mL of extract (enzyme), and 3.0 mL of dH2O. The activity of
polyphenol oxidase was assessed at 495 nm µM tetra-guaiacol g−1 min−1 FW.

Phenylalanine Ammonia Lyase Assay (PAL)

The enzyme phenylalanine ammonia lyase was measured following the method
outlined by [75]. In summary, the reaction included 1.5 mL of borate buffer (0.2 M) + 1 mL
of phenylalanine (1%) + 2.5 mL of dH2O, with a pH of 8.8. A total of 1 mL of deionized
water was mixed with phenylalanine to serve as a blank. The blend was incubated at 40 ◦C
for one hour. Subsequently, the reaction was halted by introducing 0.5 mL of HCL (5N),
and the enzyme’s activity was assessed at 290 nm µmoles min−1 g−1 FW.

Total Phenolic Content (TPC)

The TPC was estimated based on the approach described by [76]. A total of 10 mL
of 80% methanol was utilized to homogenize 1 g of leaf tissue, subsequently stirring the
mixture for 15 min at 70 ◦C. The solution was maintained at 25 ◦C, consisting of 1 mL of
the methanol extract, 5 mL of dH2O, and 250 µL of 1 N Folin Ciocalteau reagent. After
adding 1 mL of saturated Na2CO3 and 1 mL of dH2O, the reaction mixture was allowed to
incubate for another hour at 25 ◦C. The absorption of the resulting blue color was recorded
at 725 nm. Using the gallic acid calibration curve, TPC was assessed and expressed as mg
GAE g−1 FW.

Chemical Contents of Leaves

Dried samples were maintained at 65 ◦C for 3 days and then ground into a uniform
powder (IKa-Werke, M 20 Darmstadt, Germany). N% was measured using the Micro-
Kjeldahl method [77], while P and K % were determined using spectrophotometry and
atomic absorption spectrometry methods, respectively, as per [78,79]. The chemical compo-
sition of the leaves was analyzed 60 days following transplantation.

4.8. Plant Growth and Yield

A total of 120 days after transplantation, the shoot and root length (cm plant−1), dry
weight of the shoots and roots (g plant−1), and yield (g plant−1) were determined.

4.9. Statistical Analyses

The SPSS program (version 20; IBM Corp., Armonk, NY, USA) was used to carry
out a variance analysis on the data. Duncan’s multiple range testing method was used to
examine the mean separations, and p ≤ 0.05 was considered significant [80].

5. Conclusions
According to our study, the pathogens F. oxysporum, P. debaryanum, and R. solani

are inhibited by two strains of B. subtilis and B. amyloliquefaciens. B. subtilis was more
resistant to R. solani and F. oxysporum than B. amyloliquefaciens. By contrast, the fungus P.
debaryanum under investigation was most antagonistically affected by B. amyloliquefaciens.
In the greenhouse study, we found that applying each of these antagonistic Bacillus strains
individually to tomato plants successfully reduced the incidence of the pathogens’ disease.
Moreover, two Bacillus strains used individually considerably enhanced plant growth
metrics, boosted macronutrient absorption, and elevated the levels of photosynthetic
pigments, total phenolic compounds, and yield. Consequently, employing B. subtilis and
B. amyloliquefaciens as potent bio-fungicides can reduce our reliance on harmful synthetic
fungicides and chemical fertilizers while also promoting environmentally friendly and
sustainable agricultural methods. In addition, we recommend further studies in the field,
with the possibility of using it as a commercial product.
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