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Abstract: Given the threat of climate change caused by greenhouse gas emissions, climate-
safe alternatives are receiving more attention. One of the most widespread solutions is the
implementation of solar-powered technologies. These technologies, once implemented,
do not increase emissions and provide safe, clean energy sources. However, large-scale
solar farms require large amounts of land space in areas that receive increased sunlight to
operate successfully. As such, there have been proposals to establish solar farms adjacent
to or encroaching on wetland habitats. Currently, little is known about the interactions
between wildlife, specifically waterbirds, and solar installations in wild areas, specifically
wetland environments. In this article, we examine the current knowledge base of wildlife
interactions with solar infrastructure in natural environments. We highlight a significant
need for more information on wetland ecosystems and the responses of migratory water-
fowl that are dependent on these ecosystems. Finally, we present methods of mitigation to
reduce the occurrence of these interactions and future considerations for research. While
solar facilities represent an opportunity to decrease the reliance on fossil fuels, care must be
taken so that their installation does not harm local ecosystems.

Keywords: solar; wetlands; waterbirds; wildlife; waterfowl

1. Introduction
Climate change is a major force impacting both the environment and ecosystems

globally. Greenhouse gases are a leading cause of climate change, with energy production
being a major contributor to this, with ~1500 metric tons of CO2 released globally [1].
Because of this, there has been a strong push toward renewable resources, with solar being
a leading source. Solar energy can provide environmental, financial, and human health
benefits through improved air quality and reduced payback time, making it a valuable
alternative to fossil fuels and helping us reach sustainability goals [2,3]. Since its invention,
solar energy generation has quickly spread and seen rapid growth and advancements.

In 1986, the world’s largest solar facility was built in Kramer Junction, California, USA,
to generate electricity using mirrors that focused sunlight into pipes with heat transfer fluid
that produced steam to drive the turbines [4]. As of 2023, the United States Photovoltaic
Database detailed a total of 4185 solar power facilities spread across 47 states and the
District of Columbia, contributing to 4% of the nation’s electricity generation [5,6]. It is
projected that in the United States, solar power generation will grow 75% between 2023
and 2025, making it one of the fastest-growing clean energy options [7,8]. With the effects
of global climate change becoming more evident, the push for alternatives to fossil fuels
and carbon emissions is on the rise. The pursuit of carbon emission neutrality is motivating
many nations to intensify their green renewable energy portfolio [2,9–13].
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Reducing carbon emissions can mitigate climate change and alleviate negative impacts
on wildlife; however, the installation of renewable energy infrastructure may also pose
direct and indirect threats to local abiotic factors and wildlife populations, requiring the
careful planning of infrastructure to ensure robust ecological and wildlife safeguarding [14].
Solar panels mounted to the ground have the greatest chance of creating direct and indirect
habitat alterations, demonstrating the need to understand their impacts at the regional
scale [15,16]. Green infrastructure, though beneficial, may adversely affect adjacent natural
areas due to its proximity to protected ecosystems, the physical footprint of the infrastruc-
ture, and associated environmental impacts, including the loss of ecosystem services and
potential risks to wildlife [1,17–20]. Despite growing support for green energy initiatives,
local communities may oppose green energy projects and developments due to a range of
factors [17,18,20–23]. There is a growing need to address concerns proactively to ensure
green energy projects can be developed with the support of local communities, contributing
to a sustainable and clean energy future.

Climate change is increasingly impacting wildlife through changes in migration pat-
terns, mating behavior, access to food, and extinction events [15,24–29]. Waterbirds are
a vital part of wetland ecosystems, serving as herbivores, vectors for seed, invertebrate,
and nutrient dispersal, pest control, and biodiversity maintenance [30–33]. Due to these
factors, waterfowl and other waterbirds represent a crucial component of wetlands, and
building projects that may impact their biological capacity should be carefully investigated.
Currently, there is a lack of information on the interactions between waterbirds and solar
infrastructure in or around wetlands.

The objectives of this study were to conduct a comprehensive global literature review
to determine the impacts of solar farms on waterbirds with a focus on waterfowl to gain
an understanding of the interactions between anthropogenic effects of solar farms and
other artificial infrastructure on habitat variables and wildlife. To do this, we conducted a
literature review focusing on the impacts of solar infrastructure on natural systems. This
paper aims to give insight into (1) how solar farms impact abiotic factors such as the
potential for environmental contamination, microclimate, and land use; (2) the ways solar
farms affect wildlife interactions through changes in migration, mating behavior, food web
dynamics, species interactions, and resource availability; and (3) ways to minimize the
negative impacts of solar farm installation on abiotic factors and wildlife, with a focus
on migratory waterfowl, and provide insights that can inform the careful planning and
implementation of renewable energy infrastructure to balance ecological protection with
the need to reduce carbon emissions.

2. Materials and Methods
We conducted a comprehensive global literature review to identify reoccurring themes

on the impacts of solar energy farms on habitat alteration, including soil structure, vegeta-
tion changes, hydrology, microclimate, land fragmentation, and food availability. Specif-
ically for waterbirds, we looked at overall ecology, behavioral patterns, species richness,
diversity, and abundance and assessed community concern on impacts on waterfowl popu-
lations regarding behaviors of nesting and breeding of migratory waterfowl populations.
We conducted the literature review using the following methods:

1. Databases: Google Scholar, Web of Science, Scopus;
2. Detailed search terms, including Boolean queries, dates, and databases: Appendix A;
3. Listserv inquiries: ECOLOG-L, TWS Wetland Working Group, and Afton Waterfowl;
4. Individual communications with green energy, wetlands, and waterfowl scientists

from around the world to collect both published and unpublished data;
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5. Deduplication to determine the total number of papers included in the literature
review; and

6. From these papers, we further narrowed the results by focusing on papers that
referenced solar or photovoltaic and wildlife species. Then, we narrowed these results
further by searching for avian or waterfowl-focused papers.

3. Results
Using the databases outlined in the methods and Boolean queries described in

Appendix A, we searched for solar and wildlife interactions and found 472 papers. Dedu-
plication removed 39 copies from the total number of papers we retrieved, bringing the
total number to 433. From there, we narrowed our search to any paper that contained any
reference to solar or photovoltaic and had a term that referenced any wildlife species, ex-
cluding a further 388 records. From the remaining 45 records, we looked specifically at solar
and any reference to avian, waterfowl, or duck, leaving 19 records. Our database query
found no papers that directly investigate the impacts of solar infrastructure on waterfowl
species (Figure 1).
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Figure 1. Scopus and Web of Science search results for the impacts of solar infrastructure on waterbirds.

The final articles used for this paper from the full literature review incorporated a total
of 141 sources, identified through a combination of Boolean database searches from the Web
of Science and Scopus as previously described, listserv requests, personal communications,
and Google Scholar queries. After filtering for studies that specifically addressed interac-
tions between solar energy infrastructure and any wildlife species, 29 relevant records were
retained. Narrowing the focus to interactions between solar energy and avian species re-
duced the dataset to 25 records. Of these, a detailed examination of references to waterfowl
species resulted in the identification of five relevant sources from a global search (Figure 2).
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Figure 2. Papers included in the review by source, number, and relevance.

We broke down the literature review into relevant information in several key areas
detailing the potential impacts of solar infrastructure on natural habitats and wildlife. These
areas are environmental contamination, microclimate, land use, and wildlife interactions
(Figure 3). We found no current studies that have examined the potential for contamination
from the materials in aged or damaged panels. For aspects related to microclimate, we
found ~25 papers focusing on the impacts of local climate impact. However, none of
these papers focused on wetland environments and predominantly focused on arid and
urbanized systems. There were roughly nine papers that addressed the impact of solar
systems and the surrounding land use, and their focus centered on arid landscapes and
grasslands, similar to other reviews of existing literature. Finally, in our review of the
interactions with wildlife, we found six papers that directly mentioned or worked with
waterbirds. Furthermore, despite the focus on waterbirds, the papers predominantly
focused on arid environments and grasslands.

Our literature review revealed that existing research on solar installations is con-
centrated predominantly within a specific ecological niche, primarily focusing on arid,
xeric environments. This geographic and climatic focus limits the generalizability of find-
ings, providing insufficient insights into the potential impacts of solar infrastructure on
diverse taxonomic groups across other ecological systems. Our findings substantiated an
emerging discourse within the scientific community, highlighting a significant research
gap concerning the environmental impacts of solar energy installations within biodiversity
hotspots. Specifically, while these regions are critically important for sustaining species
diversity, there is a notable gap in understanding how solar installations may affect differ-
ent taxonomic groups in temperate, tropical, and coastal habitats, where environmental
variables, species compositions, and ecosystem processes differ substantially from those in
arid regions. Expanding research to include these varied systems is crucial for developing
a comprehensive understanding of the ecological consequences of solar infrastructure
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on biodiversity across broader environmental gradients. The lack of extensive scientific
research on complex ecological systems constrains the development of evidence-based
management strategies essential for effective ecological conservation. Robust, system-level
insights are necessary to inform targeted interventions, assess potential trade-offs, and
optimize conservation outcomes across diverse and interconnected environmental contexts.
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4. Discussion
Through the literature review, we identified several key interactions with solar in-

stallations that have the potential to impact waterbirds and waterfowl. There is a lack
of information on how solar influences factors such as environmental contaminants, mi-
croclimate, land use, and interactions between species and how these would play out in
wetland environments. Here, we discuss how these interactions can influence wetland
environments and the avian groups (waterbirds and waterfowl) that are dependent on
wetland environments as part of their life histories.

4.1. Environmental Contaminants

Currently, two generations of photovoltaic panels are widely installed. The first,
monocrystalline and polycrystalline silicon, contain hazardous chemicals such as lead,
ethylene vinyl acetate (EVA), chlorofluorocarbons (CFCs), and poly/brominated flame re-
tardants [34–36]. Second-generation photovoltaic panels are made from cadmium telluride,
copper indium gallium diselenide, and other heavy metal-containing materials. The main
concern about these components comes from their potential to leach into the surrounding
environments when damaged or at the end of life (25–30 years), thus creating a significant
environmental hazard. Studies have found that when using the Toxicity Characteristic
Leaching Procedure, the leachate from broken/damaged polycrystalline panels can reach
between 6.6 mg/L (lead) and 43.9 mg/L (copper), exceeding the 5 mg/L regulatory stan-
dard [37,38]. Studies have shown that the occurrence of acid rain can lead to increased
leeching of the contaminants into surrounding areas [39]. A third generation of nanomate-
rial and dye-based solar panels is seeing increased use and contains fewer of the key toxic
components than first- and second-generation panels; however, they still contain several
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critical toxic components [40,41]. While solar may not have the CO2 emissions of coal and
other technologies, it is still closely associated with toxic chemicals, and as such, these
potential impacts should be considered before their installation in or around wetlands.

4.2. Microclimate

Solar farms can alter microclimates, influencing water distribution, plant growth,
and microorganisms (Table 1) [42–46]. The height and angle of solar panels can alter
microclimatic variables such as temperature, wind speed and direction, relative humidity,
soil moisture, vegetation dynamics, and water usage [47,48]. Studies have produced
conflicting findings regarding the potential for solar farms to induce a heat island effect as
a result of changes in albedo [49–52]. The use of vegetation in solar installations contributes
to reduced wind speeds and narrower diurnal variations in soil temperature than non-
vegetated solar sites [53]. Microclimate changes are correlated to local climate and landscape
characteristics, with larger farms producing stronger effects [52].

Solar farms can influence water infiltration and runoff patterns through altered land
surface characteristics and changes in vegetative cover [47,54–57]. Photovoltaic panels
create uneven precipitation distribution, increased soil water fluctuations, reduced drought,
and higher soil water availability due to lower evaporation rates and concentrated water at
panel edges [47,55–57]. The integration of solar arrays with vegetation homogenizes soil
moisture distribution and buffers against extreme soil temperatures, with vegetated solar
sites maintaining higher soil moisture compared to bare soil solar sites [53,58]. Water runoff
is more significantly influenced by the extent of vegetation cover than by the presence
of solar panels themselves [59]. Simulations at varying slopes measured runoff with
different rainfall intensities, and panel configurations showed that solar panels increase
peak discharge 11 times over a reference slope, but a moderate positive impact was seen
when slope-aligned panel placement was used [54]. The actual effects of solar farms may
not be fully known because they are often assessed without accounting for the absorptive
properties of impervious surfaces, leading to inaccurate estimates of water infiltration
and an overestimation of runoff [60]. There are potential mitigation techniques that can
minimize impacts on hydrological processes and soil erosion, but further investigation
into these techniques is needed to determine whether the measures currently used are
sufficient [61].

Table 1. Potential impacts of solar farms on microclimate in wetlands.

Factor Effect References

Water and hydrology Altered soil moisture, humidity,
water usage, and runoff patterns [47,55–57]

Vegetation Potential to mitigate issues such as
altered temperatures and water flow [53,58]

Temperature Potential to create heat islands and
alter local area albedo [49–52]

In agricultural regions, the implementation of well-designed solar farms can po-
tentially enhance biodiversity by substituting monocultural practices with more diverse
ecosystems [62,63]. Still, little science exists on how solar installations may impact biodiver-
sity hotspots such as wetlands. Most research on impacts on microclimates and wildlife has
been performed in arid regions, which are a stark contrast to the high biodiversity found
in wetland environments [64]. Solar farms have more recently been included in the push
towards green energy, and few have been studied outside of the Southwest, providing
limited data on solar impacts on avian species in forested or wetland systems [65–67].
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4.3. Land Use

The initial construction of solar farms can last anywhere between 2 and 3 years.
During this time, the machinery needed for the construction of solar farms can impact
numerous aspects of wetlands, including, but not limited to, excessive loud noise and loss
of habitat [68,69]. This disturbance’s impacts can lead to the exclusion of native species
and create unsuitable environments or stopover points for migratory species. Additionally,
the effects of construction equipment and processes can lead to alterations in water quality
through soil disturbances and the runoff of pollutants such as lubricants and hydraulic
fluids [68]. While modifications in microclimate, hydrology, soils, and vegetation have a
cascading effect on wildlife, land conversion leading to habitat fragmentation is a major
threat to biodiversity, as it limits resources, increases species isolation, and undermines
population size and genetic diversity essential for wildlife conservation [70–73]. Solar farms
are often sited in undeveloped rural areas that frequently serve as critical wildlife movement
corridors, potentially altering the biogeography of rare, at-risk, or endangered species [74].
Wetlands are no exception, providing high biodiversity and many vital ecosystem services
that benefit both the environment and anthropogenic concerns. The amount of land used to
create solar farms can create significant barriers for wildlife species, disrupting movement
patterns critical to life cycles and ecological needs [75].

When built with anthropogenic land cover types, as opposed to semi-natural environ-
ments, solar farm construction can result in a decline in both soil physical and chemical
quality [58]. However, ecologically focused strategic placement of photovoltaic panels can
positively influence several soil properties, including enhanced soil aggregate stability,
increased microbial communities, and elevated organic matter content [76]. Soil prop-
erties and vegetative diversity are interconnected, with their interactions influenced by
geographic and climatic variables [52,77]. In grasslands, photovoltaic panels contribute
to the enhancement of beneficial microbial communities and increase plant diversity [78].
Solar installations impact plant communities by altering soil conditions but also through
changes in light availability, often benefiting shade-tolerant species while limiting helio-
philic species [52]. Early successional plant communities do not show lasting impacts on
solar farm installation, but this may be a result of their rapid growth, resource allocation,
and greater tolerance to harsh conditions [58]. The potential impacts of solar installations
in and around natural environments have exhibited varied impacts of habitat alteration,
with some studies showing degradation and others showing increased refuge for biodi-
versity [79]. However, more studies must be conducted in this area, as the lack of research
leads to uncertainty.

4.4. Wildlife Interactions

The direct impacts of solar farm installations on wildlife are varied, encompassing both
beneficial and detrimental effects (Table 2). Solar farms can modify the natural behavioral
patterns of wildlife species [75,80]. Species may experience altered home ranges when
their range overlaps with solar arrays [75]. Projects that incorporate evaporative cooling
ponds or artificial wetlands may attract insects, foraging birds, amphibians, and waterfowl
populations [69,81]. Pollinator species seem to have the most to gain from solar installations,
with research demonstrating that the inclusion of pollinator plants can increase pollinator
abundance threefold over 5 years [82]. Solar farms potentially impact multiple levels of
local food webs in the environments where they are installed [83]. Habitat fragmentation
has a top–down impact on food webs due to the inability of smaller isolated patches of
land to support larger predator species, creating a non-proportional loss of large carnivore
communities [72]. The installation of solar farms near open water and agricultural fields
can create benefits for certain wildlife species based on the method of site development but
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can increase avian mortality, demonstrating the need for project planners to evaluate the
presence of protected, threatened, and endangered species [29,84].

The location and size of solar energy projects, along with the type of technology used,
can greatly influence their impact on bird habitats, with larger projects and those located in
sensitive areas creating larger disturbances [67,85]. Wildlife mortalities from solar farms are
reported from a range of causes, including solar flux, impact, electrocution, and entrapment,
with avian species disproportionately affected compared to other taxa [86–90]. One source
of mortality affecting birds at a higher rate is heliostat or concentrated solar projects. Solar
facilities of this design feature unique mortalities apart from the typical collision that is seen
elsewhere. Concentrated solar facilities see birds suffer from extreme heat flux, where they
fly into the concentrated solar beam, leading to severe burns and singed feathers. These
facilities use an array of mirrors to focus solar energy into a central tower, which generates
electrical power. Feather properties have been used to assess the angle of focusing mirrors
to reduce solar flux impacts on avian species [91,92]. Bird fatalities at solar energy sites may
increase due to birds being attracted to the area by artificial habitats, insects, and glare from
the projects, leading to a higher risk of collisions with structures [83]. Extrapolated avian
mortality counts have shown that solar farms are responsible for 37,000–138,000 avian
mortality cases annually across the United States [85]. These mortalities fall into either
collision-related mortalities or the aforementioned solar flux singeing. A study examining
avian mortalities in the Southwestern U.S. noted the relative percentages of different
species and groups and found that Mourning doves (Zenaida macroura) were the most
commonly found (12.92%), followed by Horned lark (Eremophilia alpestris) (11.93%), and
House finch (Haemorhous mexicanus) (8.41%) [66]. The most commonly identified waterbirds
were American coots (Fulica americana) (2.87%) [66]. While these data do provide some
representation of the breakdown of different species occurrence and densities, these results
are difficult to extrapolate to other systems. Solar installations can disrupt nesting sites for
certain avian species, potentially leading to adverse effects on population size [93]. The
installation of solar infrastructure around wetlands has the potential to lead to altered
foraging, nesting, and habitat fragmentation for many different wetland species.

Despite the negative impacts produced on avian species, some studies have found that
solar farms support higher bird species richness, diversity, and abundance, particularly for
invertebrate eaters and ground foragers, likely due to their increased structural diversity;
however, these increases may be more related to the surrounding landscape [89,94,95].
The distinct bird community composition within solar parks suggests that these areas
could enhance overall diversity in specific landscapes, with the potential for even greater
positive impacts if managed with a stronger focus on wildlife [14,94]. Birds prefer different
successional stages of ecosystem development based on their breeding and foraging charac-
teristics, which can make solar farms a preferred habitat for birds that like open space with
some natural elements but are not good for species that require other systems for successful
life functions [96,97]. Resource-limited agricultural areas often experience enhanced avian
biodiversity, as do arid environments when ground-covering vegetation is used, but there
is limited research on the impacts on forest and wetland-associated species [94]. However,
while there may be an increase in diversity, studies have yet to examine the effects of
wetlands on the functional diversity of avian species in these environments. As mentioned
previously, there has been an initial increase in invertebrate specialists and ground foragers,
but there is also the potential loss of other niche specialists. While the initial construction
of solar farms in undisturbed areas may cause habitat disturbance with adverse ecological
effects, these installations can also offer beneficial habitats for rare or endangered bird
species under appropriate management conditions [98].
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Table 2. Potential effects of solar farms on wildlife interactions in wetlands.

Interaction Effect Reference

Altered movement patterns Potential for habitat fracturing and
altered home ranges [75,80]

Mortality Mortality events due to “lake
effect” collisions or solar flux [67,85–90]

Altered species
composition

Changes in both species diversity
and functional diversity for regions [94,96–98]

While the data for avian and solar farm interactions are limited, studies have examined
other forms of human disturbance and bird interactions. Bird–window collisions are an
increasingly common occurrence in the United States, with an estimated 100 million to
upwards of 1 billion deaths/year [99]. Birds are not able to recognize the reflective and
transparent glass surfaces as barriers to their movement, leading to collisions [100]. While
these window collisions occur ubiquitously across species, different groups are more suscep-
tible than others due to differences in migration patterns or behaviors. Species that migrate
during the night have been shown to be especially at risk for window collisions [100–102].
Due to limited knowledge of effects, particularly on bird species, solar site selection should
be carefully considered, followed by continuous monitoring, and consideration should be
given to future impacts from plant deconstruction [103]. Birds serve as sensitive indicators
of landscape alterations, and solar parks influence habitat utilization, breeding behavior,
foraging patterns, and interspecies competition among avian populations, demonstrating
the need for careful planning and management of solar installations to mitigate these
ecological impacts [104].

4.5. Relevance to Wetlands

The poorly understood impact of solar farms in heavily forested and wetlands areas
necessitates evaluating their potential adverse effects on migratory birds and waterfowl
in coastal regions, as large-scale solar installation may increase avian mortality [105].
Migratory waterfowl may confuse a large farm of photovoltaic panels for waterbodies
through the “lake effect hypothesis,” increasing their risk of injury or death [83,105,106]. A
recent study found that while the lake effect may not lead to significant increases in bird
mortality events, diversity at sites with adjacent photovoltaic panels was lower compared to
nearby natural wetlands [66]. Furthermore, many of the studies involved in our review did
not find strong evidence to support the “lake effect hypothesis.” These results suggest that
while direct mortality events could be lower than expected, the installation of photovoltaic
panels could alter migratory routes. Waterfowl and other wetland-dependent species that
are nocturnal migrants accounted for almost half of the avian deaths at solar facilities [106].
The surrounding landscapes utilized by avian species may play a role in species mortality
composition and numbers [106].

There is limited literature on the interactions between waterbirds and solar installa-
tions, and what information exists focuses on mortality. Our literature review found
five articles that examined the interactions between waterbirds and solar infrastruc-
ture [64,66,83,84,107]. Of these, all five focused on the mortality rates of waterbirds and
other species. Waterbird species have been noted among avian mortalities in studies exam-
ining solar infrastructure in the Southwest. Kosciuch et al. (2020) [66] examined the rates of
mortality of avian species in and around solar facilities in the Southwest and described the
occurrence of several waterbird species.

Waterbird mortality varies seasonally, with the majority of events happening during
peak migration periods [64]. However, these studies predominantly focused on arid envi-
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ronments; given the limited research on solar farms located near wetland systems and their
effects on waterfowl, mortality is unlikely to be the only ecological impact. Initial develop-
ment and construction of facilities could lead to an increase in noise, which could ward off
migratory species. Waterfowl utilize wetlands as habitat, but the conversion of these areas
to solar infrastructure can lead to a reduction in species richness and biodiversity [108].
Potential development near wetlands could lead to the loss of crucial habitat for migratory
species. Several waterfowl species are shown to exhibit high breeding and nesting site
fidelity; the loss of specific ponds or wetlands could lead to alterations in migratory routes
or breeding patterns [109,110]. In addition, many areas are economically dependent on
revenue from waterfowl hunting, and the loss of certain species from wetlands could lead
to impacts on the local economy [111]. More research is necessary to understand the full
extent of the construction of this infrastructure in and around wetlands. While there have
been documented accounts of fatal solar waterfowl interactions, the majority of studies
have been conducted in arid landscapes, which do not represent a 1:1 comparison with
these environments.

5. Conclusions
Data and impacts of solar farms and photovoltaic installations show varied effects on

local ecosystems. In terms of benefits, solar farms have been shown to enhance biodiversity
in arid and monocultural agricultural regions, as well as reduce carbon output. While
there may be an apparent increase in biodiversity, the overall functional biodiversity of
this kind of development can decrease. Studies have shown that upon review, while there
may be an increase in the number of generalist species, there tends to be a decrease in
specialists [95,112]. Furthermore, when looking at the overall biodiversity of a region,
focusing on patches is not reflective of the greater trends on a landscape scale [113]. How-
ever, negative impacts have been noted as well. Arid regions have an increased risk of
bird collisions with solar farms, changes in habitat usage, and the risk of environmental
contamination through both the construction processes and the components of solar panels.
Furthermore, as noted in our literature review, this type of installation has yet to be evalu-
ated near a coastal wetland ecosystem, so there is the possibility of adverse effects that may
not be known.

The potential negative impacts of solar farms on waterbird behavior, including al-
tered flight patterns and feeding, should be carefully considered in planning, with further
research required to elucidate mechanisms for mitigating these effects [80]. Strategic plan-
ning during the initial construction phase can enhance land productivity, optimize land
connectivity, and promote the harmonious coexistence of renewable energy production
and wildlife conservation [114]. With careful consideration, solar farms can be designed
to minimally impact or potentially support endangered, threatened, or rare species by
providing habitat, refuge, and foraging opportunities while also enhancing varying eco-
logical functions, introducing beneficial microclimate variations, and mitigating adverse
ecosystem impacts [82,115,116].

6. Future Directions
Ecologists need to understand better how solar farms will impact forested systems and

wetlands with high biodiversity. The growing need for and spread of green infrastructure
will necessitate future construction, but care must be taken to maintain natural habitats for
their creation. Therefore, we make the following recommendations for mitigations to be
considered prior to installation, as well as future research areas that must be addressed
before construction in sensitive areas.
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Wetland systems have received little attention for the implications of solar installations
due to the predominance of these facilities in arid environments [64]. Impacts on local
flora and fauna can be mitigated using a strategic environmental assessment to ensure
the protection of wildlife, landscape, and fundamental ecological factors [14]. However, a
strategic environmental assessment will not give real-time site-specific information that
genuinely informs scientific knowledge and planning strategies to mitigate impacts on
local flora and fauna. Spatial developments have been widely studied, and many interna-
tional institutions use these methods to ensure ecological compliance, with site-dependent
analysis yielding better outcomes for decision support [117–120]. A strong focus should be
placed on impacts on waterbird species near solar farm installations, including estimates of
waterbird site fidelity and usage, as well as potential alterations to migration patterns.

Many wetlands are used as overwintering habitats for migratory birds due to their
co-occurrence with the major flyways used by migratory species. Solar engineering should
implement measures that reduce the potential risks of collisions due to the “lake effect.”
UV-treated glass, along with different patterning techniques, has shown promise in pro-
viding the visual cues needed for birds to distinguish between clear glass and open flight
space [121]. The application of white borders around the edges of solar panels also helps
to break up the uniformity of solar farms, decreasing the potential impacts of the “lake
effect” [122]. However, it should be noted that studies have also found that the “lake
effect” may not be a universal signal or sighting for all waterfowl species [107]. Studies
should examine the site distribution and fidelity for critical species of concern and should
installations be placed near wetlands, selecting those that will have the most negligible
impact on their migration and habitat usage.

Should areas associated with wetlands be selected as potential sites following previous
mitigations, the infrastructure and design should incorporate design to increase habitat
stability and reduce accidental mortality. Collisions with reflective surfaces represent a
substantial risk to avian populations; however, the application of mitigation strategies,
including acoustic, visual, tactile, and chemosensory interventions, may help reduce col-
lision risks [87]. Nonetheless, these mitigation measures must be carefully evaluated, as
they have the potential to disrupt migration patterns and other vital behavioral processes.
Transmission lines and other tall structures should incorporate visibility enhancement mea-
sures to reduce the risk of collisions for waterfowl and other avian species. Additionally,
all exposed connections on these lines should be insulated to prevent contact and minimize
harm to wildlife, especially waterbirds. The installation of a conservoltaic system with a
multi-purpose design that incorporates patches of natural habitat can lower the heat island
effect, help maintain habitat connectivity for wildlife populations, and potentially offset
avian mortality [49,81,123,124]. Incorporating beneficial native vegetation can enhance
wildlife forage, shelter, and habitat while reducing ambient heat and enhancing solar farm
cooling [125]. In addition, the inclusion of artificial habitat structures can assist in providing
necessary habitat for wildlife species [126–129]. The use of single-axis tracking systems in
site design can reduce impacts to moisture and vegetation, allowing more species to grow
underneath. In contrast, fixed-tilt systems can lead to dryer soil conditions and limited
vegetation diversity. Single-axis tracking systems reduce greenhouse gas emissions, land
use, and water consumption compared to fixed-tilt systems and increase solar production
by 10–24%, depending on latitude and climate [130–133]. The solar installation design
should model system impacts with a community structure approach, as habitat fragmenta-
tion does not create a single-species impact [72]. Fencing should be used as minimally as
possible and in a way that allows for corridors of passage for wildlife species [134].

Author Contributions: Data Curation, C.M.A.; Formal Analysis, C.M.A. and A.P.H.; Funding
Acquisition, J.T.A.; Investigation, C.M.A., A.P.H. and J.T.A.; Methodology, C.M.A. and J.T.A.; Project



Conservation 2025, 5, 4 12 of 18

Administration, J.T.A.; Supervision, J.T.A.; Validation, C.M.A. and A.P.H.; Visualization, C.M.A. and
A.P.H.; Writing—original draft, C.M.A., A.P.H. and J.T.A.; Writing-review & editing, A.P.H. and J.T.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded through the James C. Kennedy Waterfowl and Wetlands Conser-
vation Center at Clemson University with support from Copenhagen Infrastructure Partners and the
United States Department of Agriculture’s National Institute of Food and Agriculture (SC-1700590).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: We appreciate Karen Burton’s assistance in conducting the literature review. This
paper represents Technical Contribution No. 7370 of the Clemson University Experiment Station.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of this study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A. Search Query Terms and Date of Access

Database Date Query Search String Results

Web of Science 19 August 2024

Abstract
OR

Title
OR

Topic

(“solar farm *” OR “photovoltaic power station *” OR
“solar power plant *” OR “solar energy farm *” OR

“solar array *” OR “solar field *”) AND (habitat *) AND
(impact * OR “change *”)

50

Scopus 20 August 2024 Title, Abstract,
Keywords

(“solar farm *” OR “photovoltaic power station *” OR
“solar power plant *” OR “solar energy farm *” OR

“solar array *” OR “solar field *”) AND (habitat *) AND
(impact * OR “change *”)

42

Web of Science 20 August 2024

Abstract
OR

Title
OR

Topic

(“solar farm” OR “solar energy” OR “solar power”)
AND (construction OR development) AND (“soil
health” OR “soil quality” OR “soil fertility”) AND

(“soil erosion” OR “land degradation” OR “soil
conservation”)

5

Scopus 21 August 2024 Abstract, title,
keywords

(“climate change” OR “global warming”) AND
(“wildlife” OR “animals” OR “species”) AND

(“migration” OR “migratory patterns” OR “seasonal
movement”) AND (“mating” OR “reproduction” OR

“breeding”) AND (“access to food” OR “food
availability” OR “foraging”) AND (“extinction” OR
“species decline” OR “population decline”) AND

(impact OR effects OR consequences)

17

Scopus 21 August 2024 Abstract, title,
keywords

(“climate change” OR “global warming”) AND
(“wildlife” OR “animals”) AND (“extinction” OR

“species extinction” OR “biodiversity loss” OR “species
decline”) AND (impact OR effects OR consequences)

AND (“terrestrial”)

200

Scopus 23 August 2024 Abstract, title,
keywords

(“solar farms” OR “solar power”) AND (“migrating
waterfowl” OR “migratory birds” OR “ducks”) AND

(“impact” OR “effects” OR “influence” OR
“displacement” OR “habitat disruption”)

36

Scopus 26 August 2024 Abstract, title,
keywords

(“solar farm” OR “solar energy installation” OR
“photovoltaic farm”) AND (“hydrology” OR “water

cycle” OR “water systems” OR “water resources”)
AND (“impact” OR “effect” OR “alteration” OR

“change” OR “influence”)

14

Web of Science 26 August 2024 Topic

(“solar farm” OR “solar energy installation” OR
“photovoltaic farm”) AND (“hydrology” OR “water
cycle” OR “water resources” OR “watershed”) AND
(“impact” OR “effect” OR “alteration” OR “change”)

13
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Database Date Query Search String Results

Scopus 26 August 2024 Abstract, title,
keywords

(“solar farm *” OR “solar park *” OR “photovoltaic
power station *” OR “solar power plant *” OR “solar

energy farm *” OR “solar array *” OR “solar garden *”
OR “solar field *”) AND (waterfowl * OR bird *)

58

Scopus 3 September 2024 Abstract, title,
keywords

(“soil quality” AND (“native plants” OR “indigenous
plants”) AND (growth OR health OR development)) 38

Web of Science 9 September 2024 Topic (“waterfowl”) AND (“ecosystem service *”) 169

Google Scholar was used when Boolean queries failed to produce literature. The
first 20 journal papers were reviewed for keywords within the title, and the abstract was
examined if the title identified it as a possible resource for this literature review.

Date Search Term

14 August 2024 (“benefit *”) AND (“solar farm *” OR “solar energy farm *” OR “solar array *” OR “solar garden *”
OR “solar field *”) AND (“waterfowl” OR “duck”) AND (“habitat”)

14 August 2024
(“benefit *”) AND (“solar farm *” OR “photovoltaic power station *” OR “solar power plant *” OR

“solar array *” OR “solar garden *” OR “solar field *”) AND (birds OR waterfowl) AND (breeding OR
nesting OR hatch survival)

14 August 2024 “green energy South Carolina” & “single axis solar versus fixed tilt solar energy production” & “solar
farm wildlife disturbance” & “habitat alterations solar farm”

15 August 2024 “wildlife habitat structure loss from human activities” & “artificial habitat structures wildlife
conservation solar farms” & “solar farm food webs”

16 August 2024 “habitat alterations solar farm” & “solar farm vegetative loss”

17 August 2024 “wildlife disturbance solar farm”

19 August 2024 fixed tilt versus tracking solar panels vegetation impacts

21 August 2024
(“solar farms” OR “solar energy” OR “solar power”) AND (“gene flow” OR “genetic diversity” OR

“genetic connectivity”) AND (“wildlife” OR “animals” OR “species”) AND (impact OR effects
OR influence)

22 August 2024 “wildlife habitat structure loss from solar farms” & “wildlife habitat improvement from solar farms”

4 September 2024 “solar panel component toxicity” & “waterfowl and solar farms” & “bird window collisions”
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