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Abstract: The determination of the NMR spin–spin relaxation rate of water in (purely) aqueous par-
ticulate dispersions has been shown to be a convenient and facile experimental approach to probing
the composition of near particle surface structures. Here, a systematic study has been undertaken of
both non-aqueous and mixed aqueous–non-aqueous solvent particulate dispersions to explore the
universality of the solvent relaxation technique. As in the aqueous case, a linear relationship between
the surface area present and the solvent relaxation rate is observed, confirming the rapid exchange
of the solvent molecules between the surface and the bulk and thereby illustrating the viability of
the experimental methodology to study such systems. Crucially, the surface enhancement effect was
considerably weaker in non-aqueous systems compared with aqueous dispersions and reflects a
potential limitation of the wider deployment of this experimental methodology.

Keywords: NMR spin–spin relaxation time; specific relaxation rate; average relaxation rate; solvent
composition; solvent polarity

1. Introduction

Many commodities—products such as lubricants, detergents, paints/inks, foodstuffs,
and drug formulations—involve the manipulation of particulate suspensions, often dis-
persed at high volume fractions [1–4]. Thus, the characterisation of the surfaces within such
particulate suspensions is a necessary first step in the optimisation of those formulations.

NMR presents a family of experimental methodologies that can probe concentrated, opaque
systems such as particulate dispersions, yielding a variety of dynamic characterisations—diffusion
rates [5,6] and relaxation times [7,8]—as well as structural information, e.g., solid-state spectra [9,10],
which can be used to investigate the molecular environment of near-surface species. Over the past
few years, the solvent relaxation NMR approach has been particularly insightful in characterising
aqueous dispersions, both theoretically and experimentally [11–18]. The present work focuses on
assessing whether the measurement of solvent relaxation times (rates) in binary aqueous–non-
aqueous solvent blends or, indeed, non-aqueous dispersions offer the same experimental potential
as aqueous dispersions.

2. Materials & Methods
2.1. Materials

A selection of silica substrates has been studied here; three hydrophobic fumed silica
powders and two silica dispersions, as in Table 1. Silica has been selected as the model
substrate due to the range of materials available, but one would assume the conclusions
drawn here to be general given other known comparisons.

The solvents toluene (99 + %), ethanol (EtOH) (99 + %, absolute), methanol (MeOH)
(≥99.5%), decane (99 + %), p-xylene (99 + %), and isopropanol (IPA) (99 + %) were obtained
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from either Fisher Scientific Ltd., Loughborough, UK or Alfa Aesar, Lancashire, UK and
used as received.

Table 1. List of silica substrates used in these experiments. The particle sizes for Ludox SM30 and
IPA-ST are provided by the manufacturers.

Material State Supplier

Aerosil R104
(particle size 10–30 nm,

surface area 140 m2·g−1)
Powder Evonik Degussa,

Essen, Germany

HDK H18 pyrogenic silica
(particle size 15–50 nm,

surface area 124 m2·g−1)
Powder Wacker Chemie AG,

Munich, Germany

Cab-O-Sil TS-720
(particle size 15–45 nm,

surface area 122 m2·g−1)
Powder Inoxia Ltd., Cranleigh, UK

Ludox SM30
(particle size 8 nm) 30 wt% suspension in water Sigma Aldrich, Dorset, UK

IPA-ST
(particle size 10–15 nm)

38 wt% dispersed in
isopropanol (IPA)

Nissan Chemical Corporation,
Tokyo, Japan

2.2. Methods

Measurements of the spin–spin relaxation time (T2) of the solvent(s) were carried
out on a bench-top Xigo Nanotools Acorn AreaTM spectrometer operating at a resonance
frequency of 13 MHz, using a CPMG [19,20] pulse sequence. The magnetisation decay
curve − (Mxy(t)) versus time (t)—was recorded with a spacing of 0.5 ms between 90◦ and
180◦ pulses and a recycle delay of about 5T1 between each cycle to allow for full recovery
of the magnetisation between acquisitions. The sample environment was equilibrated at
25 (±0.5) ◦C. The signal was averaged over three scans. The built-in Acorn AreaQuant
software was used to fit all the relaxation decay curves, which we show were well-described
by a single-exponential expression.

Theory

In a simple colloidal dispersion, the relaxation behaviour of the solvent molecules
can be modelled as a weighted average of two contributions connected through a rapid
exchange between the bulk state with a long T2 and a highly constrained interfacial state
with a considerably shorter T2. The overall relaxation time for rapid exchange yields

1
T2

=
1 − pbound

T f ree
2

+
pbound

Tbound
2

(1)

where T2 is the observed spin–spin relaxation time, pbound is the fraction of time that solvent
molecules spend in the bound environment with a shorter relaxation time Tbound

2 , whereas

T f ree
2 represents the relaxation time of free solvent molecules [4,21]. In Equation (1), (1/T2)

is the effective relaxation rate, which is designated as R2. An enhancement in the relaxation
rate corresponds to an increase in the residence time or the number of solvent molecules at
the surface. Relaxation data are often presented in a normalised form to minimise the effects
of instrument-dependent variables as the specific relaxation rate (R2SP), i.e., normalised to
the relaxation rate of the bulk dispersion solvent (R

◦
2), Equation (2) [4].

R2SP =
R2

R◦
2
− 1 (2)

where R2 is the relaxation rate of the solvent within the dispersion and R
◦
2 is the relaxation

rate of the pure solvent.
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3. Results and Discussions

The technique has been widely used to characterise aqueous colloidal
dispersions [12,15,16,18], and a range of exemplar data have been summarised in the
double-logarithmic representation in Figure 1. In the standard representation, R2SP is
presented as a function of silica surface area, which is a proxy for pbound, and both are
linearly correlated with the concentration of particles. As can be seen, in all cases, each
particulate dispersion shows a relaxation enhancement determined by the nature through
which the water molecule is constrained at the surface. If the solvent interacts strongly
with the surface, the anisotropic motion leads to efficient relaxation and the relaxation rate
increases. For aqueous systems, there is a linear correlation between R2SP and surface area,
with the absolute effect—the surface enhancement—reflecting the hydrophilicity of the
surface, as in Figure 2.
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Figure 1. Variation of R2SP for various nanoparticulate systems in aqueous media: cationic
polystyrene latex (triangles down) [15], Ludox SM40 (stars) and TM40 (hexagons) [16], Snowtex 50
silica (triangles up) [12], colloidal silica (Bindzil 40/220) (open circles), and alumina-modified silica
(Bindzil 309/220) (squares) [18] in water as a function of particle surface area (m2/mL ). The solid
lines are guides for the eye.
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Figure 2. Solvent-specific relaxation rate enhancement for all the particles dispersed in aqueous and 
non-aqueous solvents. For non-aqueous dispersions, the EtOH mole fraction for EtOH/decane, 
EtOH/toluene, and EtOH/p-xylene was ~0.68, ~0.58, and ~0.62. The IPA-ST was dispersed in pure 
IPA. For aqueous dispersions, the solvent was pure water. The data were extracted from * [22], and 
** [12,15,16,18]. 

3.1. Comparison of Aqueous and Non-Aqueous Single Solvent Particle Dispersions 
Similar exemplar and comparator data for a series of aqueous and non-aqueous silica 

nanoparticles in a range of solvents are presented in Figures 3 and 4. Again, the standard 
representation of 𝑅ଶௌ as a function of particle surface area is used. As in the aqueous 
case, all data follow a linear relationship [13,18] indicative of a fast exchange. There is a 
very sensitive coupling of the solvent/surface pairings. Fairhurst et al. [23] have proposed 
an interpretation of these enhancements in terms of the Hansen Solubility Parameter 
(HSP) [24], in that liquids with strong interactions with the surface have a faster relaxation 
rate, thereby exhibiting the highest surface enhancements. There was a correlation with 
the macroscopic stability of the dispersions in that the solvents that exhibited weak inter-
actions with the surfaces settled relatively quickly compared with the same particles sus-
pended in solvents that showed a high affinity with the surface. Collectively, these stud-
ies, therefore, conclude that the technique is also applicable to non-aqueous dispersions, 
though the magnitude of the effect is somewhat smaller. 

Figure 2. Solvent-specific relaxation rate enhancement for all the particles dispersed in aqueous
and non-aqueous solvents. For non-aqueous dispersions, the EtOH mole fraction for EtOH/decane,
EtOH/toluene, and EtOH/p-xylene was ∼0.68, ∼0.58, and ∼0.62. The IPA-ST was dispersed in pure
IPA. For aqueous dispersions, the solvent was pure water. The data were extracted from * [22], and
** [12,15,16,18].

3.1. Comparison of Aqueous and Non-Aqueous Single Solvent Particle Dispersions

Similar exemplar and comparator data for a series of aqueous and non-aqueous silica
nanoparticles in a range of solvents are presented in Figures 3 and 4. Again, the standard
representation of R2SP as a function of particle surface area is used. As in the aqueous
case, all data follow a linear relationship [13,18] indicative of a fast exchange. There is a
very sensitive coupling of the solvent/surface pairings. Fairhurst et al. [23] have proposed
an interpretation of these enhancements in terms of the Hansen Solubility Parameter
(HSP) [24], in that liquids with strong interactions with the surface have a faster relaxation
rate, thereby exhibiting the highest surface enhancements. There was a correlation with the
macroscopic stability of the dispersions in that the solvents that exhibited weak interactions
with the surfaces settled relatively quickly compared with the same particles suspended in
solvents that showed a high affinity with the surface. Collectively, these studies, therefore,
conclude that the technique is also applicable to non-aqueous dispersions, though the
magnitude of the effect is somewhat smaller.
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Figure 3. Solvent-specific relaxation rate of IPA-ST (circles) and Ludox SM30 (squares) as a function 
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three measurements of each sample. The solid lines are linear regressions with r2 = 0.997 (squares) 
and 0.986 (circles). 
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Figure 4. Solvent-specific relaxation rate of Aerosil in p-xylene (triangles) and COS (circles) and 
HDK silica (squares) in toluene as a function of surface area (mଶ ml⁄ ). The 𝑅ଶௌ data for Aerosil, 
COS, and HDK were normalised to the relaxation rates of pure p-xylene and toluene, respectively. 
The error bars are the standard deviations of three measurements of each sample. The solid lines 
are linear regressions with r2 = 0.983 (squares), 0.936 (triangles up), and 0.958 (circles). 

3.2. Characterisation of Aqueous–Alcohol Solvents 
Many formulations involve solvent blends, either during preparation or in their final 

form. Several questions arise when considering whether NMR solvent relaxation is appli-
cable to dispersions formed from solvent blends, principally whether a single effective 

Figure 3. Solvent-specific relaxation rate of IPA-ST (circles) and Ludox SM30 (squares) as a function
of particle surface area (m2/mL). The R2SP data for IPA-ST and Ludox SM30 are normalised to the
relaxation rates of pure IPA and water, respectively. The error bars are the standard deviations of
three measurements of each sample. The solid lines are linear regressions with r2 = 0.997 (squares)
and 0.986 (circles).
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Figure 4. Solvent-specific relaxation rate of Aerosil in p-xylene (triangles) and COS (circles) and HDK
silica (squares) in toluene as a function of surface area (m2/mL). The R2SP data for Aerosil, COS, and
HDK were normalised to the relaxation rates of pure p-xylene and toluene, respectively. The error
bars are the standard deviations of three measurements of each sample. The solid lines are linear
regressions with r2 = 0.983 (squares), 0.936 (triangles up), and 0.958 (circles).

3.2. Characterisation of Aqueous–Alcohol Solvents

Many formulations involve solvent blends, either during preparation or in their
final form. Several questions arise when considering whether NMR solvent relaxation is
applicable to dispersions formed from solvent blends, principally whether a single effective
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relaxation rate is observed and whether any such average rate demonstrates a linear
dependence on the surface area, both pre-requisites for Equations (1) and (2). As a first
juncture, consider the dynamic averaging operative in the solvent blend itself.

The magnetisation decays for representative binary solvent blends are presented
in Figure S1 on a semi-logarithmic plot. This is a low-resolution methodology, i.e., the
NMR signal has not been Fourier Transformed to separate the relaxation rates in terms of
chemical shifts or solvent identity. The data (and fits) have been normalised to the intensity
at t = 0 returned in the fitting route. In all cases, the data follow a single-exponential decay
indicating that the measured T2 (and equivalently, the relaxation rate (R2)) reflects a global
average of all the relaxation processes within the entire solvent. The thus-determined blend
R2 was determined for a series of alcohol–aqueous blends, viz, methanol (MeOH), ethanol
(EtOH), and isopropyl alcohol (IPA) as a function of composition, expressed in terms of the
alcohol mole fraction (χAlcohol). Figure S2 presents the excess relaxation rate Rexcess

2sp for these
three alcohol–aqueous blends defined as:

Rexcess
2sp = R2 − R2(linear) (3)

where R2(linear) is the weighted average expected from two independently relaxing popu-
lations of species:

R2SP(linear) = χalcohol Ralcohol
2 + (1 − χalcohol)Rsolvent

2 (4)

This manipulation now highlights the broad maximum in the enhancement of the
relaxation behaviour in the water-rich end of the composition range, centred around
χalcohol = 0.15 (±0.05), with the maximum being more evident for the lower-molecular-
weight alcohol blends. It is evident that the number of H-bonded networks between water
and alcohol molecules has a significant effect on both the average relaxation rate and
changes in the relaxation rates. The strength of alcohols varies markedly, and the order of
variation of the average relaxation rate of alcohols is established as IPA > EtOH > MeOH,
consistent with a recent study by Yoshida et al. [25].

3.3. Characterisation of Non-Aqueous/Alcohol-Mixed Solvents

Extending the previous study, a series of binary solvent blends were then explored in
which ethanol was mixed with solvents with quite different characters—decane, toluene,
and p-xylene. Again, all the magnetisation decay curves follow a single-exponential form,
Figure S3. R2 for the series of ethanol blends with decane, toluene, and p-xylene were
determined as a function of ethanol mole fraction and are presented in Figure S4. Ostensibly,
the data differ markedly from the aqueous–alcohol solvent systems, now demonstrating a
seemingly featureless dependence of the average relaxation rate on the alcohol mole fraction.
Once correcting the data in terms of the excess relaxation rate, weak retardation is observed
in the toluene and p-xylene cases, whereas the decane case shows a negligible change in
the composition of the constituents. Ultimately, these binary blend studies indicate an
empirical correlation between the average relaxation rate and solvent polarity; the more
polar the solvent, the shorter the relaxation rate (Rtoluene

2 < Rp−xylene
2 < REtOH

2 < Rdecane
2 ).

3.4. Characterisation of Aqueous Binary Mixtures—Particle Dispersions in the Aqueous System

Consider now what happens when the silica is added to these solvent blends. The R2SP
for two different colloidal particles, Ludox-SM30 and IPA-ST, are evaluated as a function of
the weight percentage of the particles dispersed in IPA/water in Figures 5 and 6. A series
of IPA mole fractions in the IPA/water binary mixture were studied. In both silica particles,
over the particle concentration range studied, a linear relationship can be seen for R2SP as
a function of the particle surface area, which indicates the existence of a rapid exchange
between restricted and non-restricted environments, as well as the global averaging for the
relaxation between the various functional groups within the solvent molecules themselves.
Interestingly, the relaxation enhancements—the slope of the plots of relaxation rate versus
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particle concentration—decrease with an increase in the IPA mole fraction. This indicates
the sensitivity of the technique to the polarity of the solvent. The observations are consistent
with the data obtained from aqueous systems.
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Figure 5. Solvent-specific relaxation rate of Ludox-SM30 dispersed in IPA/water as a function of
Ludox-SM30 surface area (m2/mL). The mole fractions of IPA were equal to ∼0.0 (diamonds), ∼0.09
(circles), ∼0.11 (squares), ∼0.13 (triangles up), and ∼0.23 (triangles down). The R2SP data were
normalised to the relaxation rate of the equivalent IPA/water binary mixture.
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3.5. Characterisation of Non-Aqueous Binary Mixtures—Particle Dispersions in
Non-Aqueous System

Representative relaxation decay curves for the solvents in a series of silica disper-
sions are presented in Figure S5. As in the no-silica case, all the decays were single-
exponential, confirming the same global averaging of the relaxation process. The R2 values
for each nanoparticulate system are presented as a function of the particle surface area,
Figures S6–S8, from which it is clear that the R2 is linearly dependent on the particle surface
area in each system—R2 increases linearly with increasing surface area, indicating a rapid
exchange between the surface and the bulk.

The relaxation rates were normalised to the equivalent solvent blend in the absence of
the silica. The relationship between the R2SP and particle surface area is presented as a func-
tion of EtOH mole fractions for COS and HDK silicas in EtOH/toluene, Figure 7, for COS
and HDK silica in EtOH/decane, and for Aerosil in EtOH/p-xylene in Figures S9 and S10,
respectively. As expected, it is evident that an increase in particle surface area leads to an
increase in the average relaxation rate, but the magnitude of the effect is weaker. There is a
weak signature of nonlinearity in those systems that gel (e.g., EtOH), reflecting the loss of
surface area associated with the formation of inter-particle linkage between the particles
(that concomitantly leads to an enhancement in viscosity).
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Figure 7. Solvent-specific relaxation rates of COS and HDK silica dispersions as a function of particle 
surface area (mଶ ml⁄ ). The mole fractions of EtOH in EtOH/toluene mixtures were equal to ~0.26 
(COS (open squares) and HDK (open triangles down)), ~0.32 (COS (squares) and HDK (triangles 
down)), ~0.41 (COS (open circles) and HDK (open triangles up)), and ~0.58 (COS (circles) and 
HDK (triangles up)). The 𝑅ଶௌ data for both COS and HDK silica are normalised to the relaxation 
rate of the equivalent EtOH/toluene mixture. The error bars are the standard deviations of three 
measurements for each sample. 
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Figure 7. Solvent-specific relaxation rates of COS and HDK silica dispersions as a function of particle
surface area

(
m2/mL

)
. The mole fractions of EtOH in EtOH/toluene mixtures were equal to ∼0.26

(COS (open squares) and HDK (open triangles down)), ∼0.32 (COS (squares) and HDK (triangles
down)), ∼0.41 (COS (open circles) and HDK (open triangles up)), and ∼0.58 (COS (circles) and HDK
(triangles up)). The R2SP data for both COS and HDK silica are normalised to the relaxation rate of the
equivalent EtOH/toluene mixture. The error bars are the standard deviations of three measurements
for each sample.

These observations are entirely commensurate with the conclusions drawn from the
aqueous system. Bringing all these studies together, Figure 8 illustrates (on a double-
logarithmic representation) the linear relationship between the R2SP and particle surface
area for a wide range of nanoparticulate systems in aqueous and non-aqueous dispersions.
The variation in R2SP in the non-aqueous solvents yields much smaller enhancements
in the average relaxation rates than in the aqueous systems. Thus, it is concluded that
solvent relaxation NMR is a viable experimental methodology with which to study particu-
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late dispersions in non-aqueous media; however, the minor changes observed inherently
limit the wider applicability of the methodology, which is an important contrast with the
aqueous system.
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nanoparticulate systems; cationic polystyrene latex [15], Ludox SM40 and TM40 [16], Snowtex 50
silica [12], colloidal silica (Bindzil 40/220) and alumina-modified silica (Bindzil 309/220) [18] in
water (cross symbols), COS and HDK silica in toluene, Aerosil in p-xylene, HDK silica and COS in
EtOH/decane, EtOH/toluene, and Aerosil EtOH/p-xylene at different mole % of EtOH.

4. Conclusions

Solvent relaxation NMR has been utilised to characterise nanoparticle dispersions
in a range of binary mixtures of aqueous and non-aqueous solutions. For a range of
binary aqueous–alcohol solvent blends, there are inflection points in the relaxation rates
at characteristic alcohol mole fractions due to the arrangement of hydrogen bonds in the
system. In non-aqueous binary solvent blends, the average relaxation rates of toluene and
p-xylene increase with the EtOH mole fraction. Surprisingly, decane shows a decrease
in the relaxation rate with a composition that reflects the solvent polarity. In the case of
nanoparticulate dispersions, there is a linear relationship between the specific relaxation
rate and the available particle surface area, except where there are macroscopic changes
in formulation characteristics, i.e., gelation. Importantly, for the first time, these results
demonstrate that solvent relaxation NMR is a viable technique to characterise non-aqueous
dispersions; however, the technique is approaching the limit of experimental resolution.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/physchem2030016/s1, Figure S1: Relaxation decay curves
of the solvent blends: EtOH/water, IPA/water, and MeOH/water. The mole fractions of EtOH in
EtOH/water mixture were ∼0.08 (red circles) and ∼0.46 (open circles). The mole fractions of IPA in
IPA/water mixture were ∼0.09 (green triangles up) and ∼0.47 (open triangles up). The mole fractions
of MeOH in MeOH/water mixture were ∼0.15 (blue squares) and ∼0.63 (open squares), respectively.
The solid lines through the experimental data are the single-exponential fits.; Figure S2: Excess solvent
relaxation rate in blends of MeOH/water (squares), EtOH/water (circles) and IPA/water (triangles)
as a function of alcohol mole fraction. The error bars are the standard deviation of three measure-
ments for each sample.; Figure S3: Relaxation decay curves of the solvent blends: EtOH/decane
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(circles), EtOH/toluene (squares), and EtOH/p-xylene (triangles up). The mole fractions of EtOH
were equal to ∼0.5, ∼0.4, and ∼0.43 for EtOH/decane, EtOH/toluene, and EtOH/p-xylene mix-
tures, respectively. The solid lines through the experimental data are the single-exponential fits.;
Figure S4: Relaxation rates of the solvent blends: EtOH/decane (circles), EtOH/toluene (squares),
and EtOH/p-xylene (triangles) as a function of EtOH mole fraction. The error bars are the standard
deviation of three measurements for each sample. The solid lines are guides to the eye; Figure S5: Re-
laxation decay curves of the solvent blends: EtOH/decane, EtOH/toluene, and EtOH/p-xylene.
The mole fractions of EtOH in the EtOH/decane mixtures were ∼0.68, ∼0.52, ∼0.42, and ∼0.35,
for EtOH/toluene mixtures were ∼0.58, ∼0.41, ∼0.32, and ∼0.26, and for EtOH/p-xylene mixtures
were ∼0.62, ∼0.45, ∼0.35, and ∼0.29, respectively. The solid lines through the experimental data are
the single-exponential fit.; Figure S6: Relaxation rates of COS and HDK silica in EtOH/decane as a
function of particle surface area

(
m2/mL

)
. The mole fractions of EtOH in EtOH/decane mixtures

were equal to ∼0.35 (COS (open squares) and HDK (open triangles down)), ∼0.42 (COS (squares)
and HDK (triangles down)), ∼0.52 (COS (open circles) and HDK (open triangles up)), and ∼0.68 (COS
(circles) and HDK (triangles up)). The error bars are the standard deviation of three measurements
for each sample. The solid lines are guides for the eye.; Figure S7: Relaxation rates of COS and HDK
silica in EtOH/toluene as a function of particle surface area

(
m2/mL

)
. The mole fractions of EtOH in

EtOH/toluene mixtures were equal to ∼0.26 (COS (open squares) and HDK (open triangles down)),
∼0.32 (COS (squares) and HDK (triangles down)), ∼0.41 (COS (open circles) and HDK (open triangles
up)), and ∼0.58 (COS (circles) and HDK (triangles up)). The error bars are the standard deviation of
three measurements for each sample. The solid lines are guides for the eye.; Figure S8: Relaxation
rates of Aerosil in EtOH/p-xylene as a function of its surface area

(
m2/mL

)
. The mole fractions of

EtOH in EtOH/p-xylene mixtures were equal to ∼0.29 (open hexes), ∼0.35 (hexagons), ∼0.45 (open
diamonds), and ∼0.62 (diamonds). The error bars are the standard deviation of three measurements
for each sample. The solid lines are guides for the eye.; Figure S9: Solvent specific relaxation rates of
COS and HDK silica dispersions as a function of particle surface area

(
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)
. The mole fractions of

EtOH in EtOH/decane mixtures were equal to ∼0.35 (COS (open squares) and HDK (open triangles
down)), ∼0.42 (COS (squares) and HDK (triangles down)), ∼0.52 (COS (open circles) and HDK (open
triangles up)), and ∼0.68 (COS (circles) and HDK (triangles up)). The R2SP data for both COS and
HDK silica are normalised to the relaxation rate of the equivalent EtOH/decane mixture. The error
bars are the standard deviation of three measurements for each sample. The solid lines are guides for
the eye.; Figure S10: Solvent specific relaxation rate of Aerosil dispersions as a function of particle
surface area

(
m2/mL

)
. The mole fractions of EtOH in EtOH/p-xylene mixtures were equal to ∼0.29

(open hexagons), ∼0.35 (hexagons), ∼0.45 (open diamonds), and ∼0.62 (diamonds). The R2SP
data for Aerosil are normalised to the relaxation rate of the equivalent EtOH/p-xylene mixture.
The error bars are the standard deviation of three measurements for each sample. The solid lines are
guides for the eye.
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