Sorption and Photocatalytic Characteristics of Composites Based on Cu–Fe Oxides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods of Synthesis
2.2. Characterization
2.3. Photocatalytic Activity
2.4. Dye Adsorption
3. Results and Discussion
3.1. Evidence of Electrode’s Sputtering
3.2. Characterization of Obtained Materials
3.3. Kinetics of Dye’s Absorption
3.4. Photocatalytic Activity
3.5. Kinetic Studies of the Photocatalytic Destruction of Dyes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pintor, A.M.; Vilar, V.J.; Botelho, C.M.; Boaventura, R.A. Oil and grease removal from wastewaters: Sorption treatment as an alternative to state-of-the-art technologies. A critical review. Chem. Eng. J. 2016, 297, 229–255. [Google Scholar] [CrossRef]
- Wang, C.C.; Wang, X.; Liu, W. The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: A state-of-the-art review. Chem. Eng. J. 2020, 391, 123601. [Google Scholar] [CrossRef]
- Velempini, T.; Prabakaran, E.; Pillay, K. Recent developments in the use of metal oxides for photocatalytic degradation of pharmaceutical pollutants in water—A review. Mater. Today Chem. 2021, 19, 100380. [Google Scholar] [CrossRef]
- Teh, C.M.; Mohamed, A.R. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. J. Alloys Compnd. 2011, 509, 1648–1660. [Google Scholar] [CrossRef]
- Yu, X.; Chen, L.; Qin, H.; Wu, M.; Yan, Z. Formation process of in situ oxide coatings with high porosity using one-step plasma electrolytic oxidation. Appl. Surf. Sci. 2016, 366, 432–438. [Google Scholar] [CrossRef]
- Gutierrez, A.M.; Dziubla, T.D.; Hilt, J.Z. Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment. Rev. Environ. Health 2017, 32, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Rajabi, H.R.; Arjmand, H.; Hoseini, S.J.; Nasrabadi, H. Surface modified magnetic nanoparticles as efficient and green sorbents: Synthesis, characterization, and application for the removal of anionic dye. J. Magn. Magn. Mater. 2015, 394, 7–13. [Google Scholar] [CrossRef]
- Khedr, M.H.; Halim, K.A.; Soliman, N.K. Synthesis and photocatalytic activity of nano-sized iron oxides. Mater. Lett. 2009, 63, 598–601. [Google Scholar] [CrossRef]
- Kamaraj, M.; Kidane, T.; Muluken, K.U.; Aravind, J. Biofabrication of iron oxide nanoparticles as a potential photocatalyst for dye degradation with antimicrobial activity. Int. J. Environ. Sci. Technol. 2019, 16, 8305–8314. [Google Scholar] [CrossRef]
- Muraro, P.C.L.; Mortari, S.R.; Vizzotto, B.S.; Chuy, G.; Dos Santos, C.; Brum, L.F.W.; da Silva, W.L. Iron oxide nanocatalyst with titanium and silver nanoparticles: Synthesis, characterization and photocatalytic activity on the degradation of Rhodamine B dye. Sci. Rep. 2020, 10, 3055. [Google Scholar] [CrossRef]
- Shenoy, M.R.; Ayyasamy, S.; Reddy, M.V.V.; Kadarkarai, G.; Suryakanth, J.; Tamilarasan, S.; Jeyaramane, A.C. The effect of morphology-dependent surface charges of iron oxide on the visible light photocatalytic degradation of methylene blue dye. J. Mater. Sci. Mater. Electron. 2020, 31, 17703–17717. [Google Scholar] [CrossRef]
- Katwal, R.; Kaur, H.; Sharma, G.; Naushad, M.; Pathania, D. Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity. J. Ind. Eng. Chem. 2015, 31, 173–184. [Google Scholar] [CrossRef]
- Tran, V.A.; Nguyen, T.L.H.; Doan, V.D. Fabrication of Fe3O4/CuO@C composite from MOF-based materials as an efficient and magnetically separable photocatalyst for degradation of ciprofloxacin antibiotic. Chemosphere 2021, 270, 129417. [Google Scholar]
- Vinosel, V.M.; Anand, S.; Janifer, M.A.; Pauline, S. Photocatalytic and Antibacterial Applications of Magnetic Fe3O4–CuO Nanocomposite. Mater. Today Proc. 2019, 8, 301–309. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Qiu, L.G.; Yuan, Y.P.; Zhu, Y.J.; Jiang, X.; Xiao, J.D. Magnetic Fe3O4@C/Cu and Fe3O4@CuO core–shell composites constructed from MOF-based materials and their photocatalytic properties under visible light. Appl. Catal. B Environ. 2014, 144, 863–869. [Google Scholar] [CrossRef]
- Ding, J.; Liu, L.; Xue, J.; Zhou, Z.; He, G.; Chen, H. Low-temperature preparation of magnetically separable Fe3O4@CuO-RGO core-shell heterojunctions for high-performance removal of organic dye under visible light. J. Alloys Compnd. 2016, 688, 649–656. [Google Scholar] [CrossRef]
- Akram, N.; Ma, W.; Guo, J.; Guo, Y.; Yansong, Z.; Hassan, A.; Wang, J. Synergistic catalysis of Fe3O4/CuO bimetallic catalyst derived from Prussian blue analogues for the efficient decomposition of various organic pollutants. Chem. Phys. 2021, 540, 110974. [Google Scholar] [CrossRef]
- Golshan, M.; Kakavandi, B.; Ahmadi, M.; Azizi, M. Photocatalytic activation of peroxymonosulfate by TiO2 anchored on cupper ferrite (TiO2@CuFe2O4) into 2, 4-D degradation: Process feasibility, mechanism and pathway. J. Haz. Mater. 2018, 359, 325–337. [Google Scholar] [CrossRef]
- Nakhate, A.V.; Yadav, G.D. Hydrothermal synthesis of CuFe2O4 magnetic nanoparticles as active and robust catalyst for N-arylation of indole and imidazole with aryl halide. ChemistrySelect 2017, 2, 2395–2405. [Google Scholar] [CrossRef]
- Hou, H.; Xu, G.; Tan, S.; Zhu, Y. A facile sol-gel strategy for the scalable synthesis of CuFe2O4 nanoparticles with enhanced infrared radiation property: Influence of the synthesis conditions. Infrared Phys. Technol. 2017, 85, 261–265. [Google Scholar] [CrossRef]
- Köferstein, R.; Walther, T.; Hesse, D.; Ebbinghaus, S.G. Crystallite-growth, phase transition, magnetic properties, and sintering behaviour of nano-CuFe2O4 powders prepared by a combustion-like process. J. Solid State Chem. 2014, 213, 57–64. [Google Scholar] [CrossRef]
- Surendra, B.S.; Veerabhdraswamy, M.; Anantharaju, K.S.; Nagaswarupa, H.P.; Prashantha, S.C. Green and chemical-engineered CuFe2O4: Characterization, cyclic voltammetry, photocatalytic and photoluminescent investigation for multifunctional applications. J. Nanostruct. Chem. 2018, 8, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Selima, S.S.; Khairy, M.; Mousa, M.A. Comparative studies on the impact of synthesis methods on structural, optical, magnetic and catalytic properties of CuFe2O4. Ceram. Int. 2019, 45, 6535–6540. [Google Scholar] [CrossRef]
- Ianoş, R.; Păcurariu, C.; Muntean, S.G.; Muntean, E.; Nistor, M.A.; Nižňanský, D. Combustion synthesis of iron oxide/carbon nanocomposites, efficient adsorbents for anionic and cationic dyes removal from wastewaters. J. Alloys Compnd. 2018, 741, 1235–1246. [Google Scholar] [CrossRef]
- Carlos, E.; Martins, R.; Fortunato, E.; Branquinho, R. Solution combustion synthesis: Towards a sustainable approach for metal oxides. Chem. Eur. J. 2020, 26, 9099–9125. [Google Scholar] [CrossRef]
- Khlyustova, A.; Sirotkin, N.; Kraev, A.; Titov, V.; Agafonov, A. Parameters of underwater plasma as a factor determining the structure of oxides (Al, Cu, and Fe). Materialia 2021, 16, 101081. [Google Scholar] [CrossRef]
- Khlyustova, A.; Sirotkin, N.; Titov, V.; Agafonov, A. Effect of low-temperature underwater plasma produced of new properties of Mo–Ti mixed oxide composites for electron transport layer in the dye-sensitized solar cells. J. Alloys Compnd. 2021, 858, 157664. [Google Scholar] [CrossRef]
- Khlyustova, A.; Sirotkin, N.; Titov, V.; Agafonov, A. One-Pot Underwater Plasma Synthesis and Characterization of Fe-and Ni-Doped Boehmite. Cryst. Res. Technol. 2022, 57, 2100117. [Google Scholar] [CrossRef]
- Khlyustova, A.; Sirotkin, N.; Kraev, A.; Titov, V.; Agafonov, A. Plasma–liquid synthesis of MoOx and WO3 as potential photocatalysts. Dalt. Trans. 2020, 49, 6270–6279. [Google Scholar] [CrossRef]
- Shawabkeh, R.A.; Tutunji, M.F. Experimental study and modeling of basic dye sorption by diatomaceous clay. Appl. Clay Sci. 2003, 24, 111–120. [Google Scholar] [CrossRef]
- Cheung, A.C.; Gordon, R.M.; Merer, A.J. Laser-induced fluorescence and discharge emission spectra of FeO; Evidence for a 5Δi ground state. J. Mol. Spectrosc. 1981, 87, 289–296. [Google Scholar] [CrossRef]
- Youssef, N.A.; Selim, M.M.; Kamel, E.S. The decomposition of hydrogen peroxide over pure and mixed copper oxide and iron oxide. Bull. Soc. Chim. Fr. 1991, 5, 648–653. [Google Scholar]
- Khlyustova, A.; Sirotkin, N.; Kusova, T.; Kraev, A.; Titov, V.; Agafonov, A. Doped TiO2: The effect of doping elements on photocatalytic activity. Mater. Adv. 2020, 1, 1193–1201. [Google Scholar] [CrossRef]
- Panthawan, A.; Jumrus, N.; Sanmuangmoo, P.; Thongpan, W.; Kumpika, T.; Sroila, W.; Kantarak, E.; Tauntranont, A.; Singjai, P.; Thongsuwan, W. Photocatalytic efficiency under visible light of a novel Cu–Fe oxide composite films prepared by one-step sparking process. Sci. Rep. 2022, 12, 4239. [Google Scholar] [CrossRef]
- Norouzi, A.; Nezamzadeh-Ejhieh, A. α-Fe2O3/Cu2O heterostructure: Brief characterization and kinetic aspect of degradation of methylene blue. Phys. B Condens. Matt. 2020, 599, 412422. [Google Scholar] [CrossRef]
- Rashad, M.M.; Mohamed, R.M.; Ibrahim, M.A.; Ismail, L.F.M.; Abdel-Aal, E.A. Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources. Adv. Powder Tech. 2012, 23, 315–323. [Google Scholar] [CrossRef]
- Sarmah, K.; Pratihar, S. Synthesis, characterization, and photocatalytic application of iron oxalate capped Fe, Fe–Cu, Fe–Co, and Fe–Mn oxide nanomaterial. ACS Sustain. Chem. Eng. 2017, 5, 310–324. [Google Scholar] [CrossRef]
- Abhilash, M.R.; Akshatha, G.; Srikantaswamy, S. Photocatalytic dye degradation and biological activities of the Fe2O3/Cu2O nanocomposite. RSC Adv. 2019, 9, 8557–8568. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Zhang, G.; Ma, P.; Qiu, X.; Zhang, H.; Yang, H.; Liu, G. Novel magnetically separable Ag3PO4@CuFe2O4 micro-nanocomposite with highly enhanced visible-light-driven photocatalytic activity. Mater. Lett. 2018, 210, 271–274. [Google Scholar] [CrossRef]
- Keerthana, S.P.; Yuvakkumar, R.; Ravi, G.; Pavithra, S.; Thambidurai, M.; Dang, C.; Velauthapillai, D. Pure and Ce-doped spinel CuFe2O4 photocatalysts for efficient rhodamine B degradation. Environ. Res. 2021, 200, 111528. [Google Scholar] [CrossRef]
- Cheng, D.; Yan, C.; Liu, Y.; Zhou, Y.; Lu, D.; Tang, X.; Cai, G.; Li, D.; Zhau, Z.; Wang, X. Loading CuFe2O4 onto ceramic fabric for photocatalytic degradation of methylene blue under visible light irradiation. Ceram. Int. 2022, 48, 1256–1263. [Google Scholar] [CrossRef]
- Morrison, S.R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes; Plenum Press: New York, NY, USA, 1980. [Google Scholar]
Sample | Cathode | Anode |
---|---|---|
Fe–Cu 0.25 A | 0.0015 (Fe) | 0.0043 (Cu) |
Fe–Cu 0.8 A | 0.0019 (Fe) | 0.0113 (Cu) |
Cu–Fe 0.25 A | 0.001 (Cu) | 0.0019 (Fe) |
Cu–Fe 0.8 A | 0.0203 (Cu) | 0.0033 (Fe) |
Sample | Dav, nm | ζ, mV |
---|---|---|
Fe–Cu 0.25 A (S1) | 114 ± 12 | 31.0 |
Fe–Cu 0.8 A (S2) | 169 ± 17 | 15.6 |
Cu–Fe 0.25 A (S3) | 151 ± 15 | −19.5 |
Cu–Fe 0.8 A (S4) | 251 ± 24 | 29.5 |
Fe/Cu oxides (S5) | 317 ± 17 | 17.4 |
S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|
50–70 | 65–90 | 110–140 | 130–180 | 120–150 |
Parameter | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|
Qexp, mg/g | 7.35 | 6.15 | 4.84 | 3.67 | 2.45 |
Pseudo-first-order | |||||
Qe, mg/g | 6.79 | 6.46 | 4.47 | 4.19 | 2.42 |
K1, | 0.13 | 0.05 | 0.09 | 0.18 | 0.07 |
R2 | 0.97 | 0.79 | 0.97 | 0.97 | 0.95 |
Pseudo-second-order | |||||
Qe, mg/g | 9.11 | 8.08 | 43.38 | 14.07 | 6.64 |
K2, | 0.03 | 0.06 | 0.03 | 0.04 | 0.04 |
R2 | 0.62 | 0.98 | 0.36 | 0.3 | 0.26 |
Intraparticle diffusion | |||||
Kd, | 1.37 | 1.12 | 0.91 | 0.79 | 0.47 |
C | 0.34 | −0.96 | 0.09 | −0.16 | −0.22 |
R2 | 0.96 | 0.82 | 0.98 | 0.86 | 0.96 |
Parameter | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|
Qexp, mg/g | 5.79 | 8.19 | 8.21 | 5.33 | 8.13 |
Pseudo-first-order | |||||
Qe, mg/g | 5.72 | 7.56 | 4.35 | 2.56 | 7.23 |
K1, | 0.08 | 0.08 | 0.21 | 0.18 | 0.16 |
R2 | 0.88 | 0.96 | 0.88 | 0.82 | 0.94 |
Pseudo-second-order | |||||
Qe, mg/g | 7.13 | 83.75 | 55.2 | 46.08 | 23.96 |
K2, | 0.04 | 0.08 | 0.01 | 0.01 | 0.04 |
R2 | 0.1 | 0.68 | 0.38 | 0.61 | 0.27 |
Intraparticle diffusion | |||||
Kd, | 1.16 | 1.51 | 1.28 | 0.79 | 1.65 |
C | −0.48 | 0.09 | 2.89 | 2.02 | 0.51 |
R2 | 0.91 | 0.97 | 0.6 | 0.55 | 0.83 |
Parameter | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|
Qexp, mg/g | 4.04 | 6.38 | 10.61 | 12.09 | 5.79 |
Pseudo-first-order | |||||
Qe, mg/g | 2.99 | 5.91 | 6.24 | 6.69 | 5.49 |
K1, | 0.09 | 0.04 | 0.19 | 0.15 | 0.19 |
R2 | 0.85 | 0.94 | 0.72 | 0.71 | 0.94 |
Pseudo-second-order | |||||
Qe, mg/g | 94.97 | 32.69 | 171.23 | 41.32 | 9.99 |
K2, | 0.02 | 0.03 | 0.03 | 0.01 | 0.25 |
R2 | 0.66 | 0.62 | 0.1 | 0.16 | 0.31 |
Intraparticle diffusion | |||||
Kd, | 0.67 | 0.72 | 1.96 | 2.02 | 1.41 |
C | 0.63 | 0.02 | 2.38 | 3.32 | 0.29 |
R2 | 0.90 | 0.99 | 0.65 | 0.68 | 0.97 |
Parameter | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|
Rhodamine B | |||||
K, min−1 | 0.0069 | 0.0637 | 0.1564 | 0.0108 | 0.0049 |
R2 | 0.90 | 0.98 | 0.93 | 0.92 | 0.91 |
Reactive Red 6C | |||||
K, min−1 | 0.0187 | 0.1165 | 0.0059 | 0.0095 | 0.0125 |
R2 | 0.90 | 0.90 | 0.92 | 0.94 | 0.95 |
Methylene Blue | |||||
K, min−1 | 0.0878 | 0.1129 | 0.0068 | 0.0048 | 0.0138 |
R2 | 0.98 | 0.90 | 0.97 | 0.93 | 0.98 |
Photocatalyst | Synthesis Method | Degradation Efficiency/Time | K, min−1 | Ref. |
---|---|---|---|---|
Methylene Blue | ||||
Cu–Fe oxides | One-step sparking | 75% | [34] | |
α-Fe2O3/Cu2O heterostructures | Hydrothermal precipitation | 55.5–81%/45 min | 0.025 | [35] |
CuFe2O4 | Hydrothermal | 80–96%/60 min | [36] | |
Fe(ox)-FeO/CuO | Chemical precipitation | 95%/100 min | [37] | |
S1 S2 | Underwater plasma | 100%/50 min 100%/20 min | 0.0878 0.1129 | This work |
Rhodamine B | ||||
Fe2O3/Cu2O | Hydrothermal + sonication | 90%/120 min | 0.726 | [38] |
CuFe2O4 | Sol-gel auto-combustion | 5%/30 min | 0.0006 | [39] |
CuFe2O4 | Hydrothermal | 50%/140 min | [40] | |
CPF/CuFe2O4 | Coprecipitation | 98.2%/80 min | 0.0235 | [41] |
S1 S2 | Underwater plasma | 99.7%/60 min 100%/15 min | 0.0069 0.0637 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agafonov, A.; Evdokimova, A.; Larionov, A.; Sirotkin, N.; Titov, V.; Khlyustova, A. Sorption and Photocatalytic Characteristics of Composites Based on Cu–Fe Oxides. Physchem 2022, 2, 305-320. https://doi.org/10.3390/physchem2040022
Agafonov A, Evdokimova A, Larionov A, Sirotkin N, Titov V, Khlyustova A. Sorption and Photocatalytic Characteristics of Composites Based on Cu–Fe Oxides. Physchem. 2022; 2(4):305-320. https://doi.org/10.3390/physchem2040022
Chicago/Turabian StyleAgafonov, Alexander, Anastasia Evdokimova, Andrey Larionov, Nikolay Sirotkin, Valerii Titov, and Anna Khlyustova. 2022. "Sorption and Photocatalytic Characteristics of Composites Based on Cu–Fe Oxides" Physchem 2, no. 4: 305-320. https://doi.org/10.3390/physchem2040022
APA StyleAgafonov, A., Evdokimova, A., Larionov, A., Sirotkin, N., Titov, V., & Khlyustova, A. (2022). Sorption and Photocatalytic Characteristics of Composites Based on Cu–Fe Oxides. Physchem, 2(4), 305-320. https://doi.org/10.3390/physchem2040022