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Abstract: One of the most important challenges in polymer science is a rigorous understanding of
the molecular mechanisms of rubber elasticity by relating macroscopic deformation to molecular
changes and deriving the constitutive stress—strain equation for the elastomeric network. The models
developed from the last century to today describe many aspects of the physics of rubber elasticity;
although these theories are successful, they are not complete. In this review we analyze the main
theoretical and phenomenological models of rubber elasticity, including their assumptions, main
characteristics, and stress—strain equations. Then, we compare the predictions of the theories to our
experimental data of polydimethylsiloxane (PDMS) rubber, in order to highlight the goodness of the
reviewed models. The nonaffine and phenomenological deformation models verify the experimental
curves in tension and compression in the whole investigated deformation range A < 2. On the
contrary, the affine deformation hypothesis is rigorously verified only in the deformation range
A<,

Keywords: rubber elasticity models; constitutive stress—strain equations; affine deformation;
nonaffine deformation; ideal rubbers; tube models; cross-links; entanglements

1. Introduction

Finding the relation between the mechanical and the molecular properties of materials
is a long-standing and widely explored task. Despite the progress achieved in this field,
there are still open issues to be addressed. The situation becomes complicated in the
case of polymer materials, where it is necessary to treat macromolecules consisting of
a large number of monomers. This present review analyzes the existing approaches
to treating rubber elasticity in terms of the relation between elasticity and the polymer
network. The difficulties are discussed: for instance, the non-hierarchical topology of the
network leading to enhanced constraints and nonlinearity for large deformations. The most
efficient approaches to overcome this are statistical mechanics and molecular dynamics.
Furthermore, recent advances are analyzed, taking into account the structure, defects, and
connectivity of real rubber networks. Finally, a careful comparison of the respective models
with our experimental data are performed.

From the point of view of statistical thermodynamics, linear polymers are long and
flexible chains without the structural details of the monomer unit, according to Staudinger’s
Makromolekulare Theorie of 1920 [1]. The Swiss scientist Werner Kuhn was the first to use
the Boltzmann entropy equation applied to the statistical thermodynamics of the isolated
chain in a dilute solution in 1934, calculating the elastic restoring force of the random
coil [2]. Later, in 1946, Kuhn used a statistical macromolecule model to develop the first
theory of the entropic elasticity of rubber [3].

To understand the entropic spring behavior of polymer chains, we include the step-
by-step detailed derivation of the elastic restoring force of the random coil provided by
de Gennes for the fundamental model of the polymer chain on a periodic lattice [4]. The
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entropy S (7) associated with the polymer chain is related to the number of conformations

(or paths) Ny, (7) of n links (or steps) from zero to 7, according to the Boltzmann equation:

s(7) = klog(Nu(7))
Let us calculate the total number () of possible paths on the periodic lattice: if each

node has z neighbors (coordination number), the number of distinct possibilities at each
step is z and the total number of paths after n steps will be the following:

Q=) N, (7) =z"
r
The end-to-end vector 7 is the sum of the n step vectors:

1+;2+...+;nzz

1

LN
ai
=1

—
where each term a; is a vector of modulus a with z possible orientations. The vectors have
completely independent orientations, and this has important consequences: the root mean
square end-to-end distance varies linearly with #:

Rj= () = (i) =L (af) =aom
ij i
In fact, the cross products cancel each other out:
<Zi : ;]> = <Lll‘ . ﬂj - COSs 191]> =4a;- a]-<cos l9l]>
i #j(cos®j) =0
i=j(cosdj) =1
The power law of the random walk size is as follows:

R%:Za%:azmzxM

1

where M is the molecular weight of the polymer.
The probability distribution function in 7 is defined by the following;:

()

r) =
5
Ny(r
()
from which there is the following;:

N(7) = p(7)

where p (7) is Gaussian if the number of independent steps is large:
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From the Boltzmann equation, we obtain the change in entropy of the chain for a
given elongation:
AS (7) = - 3—k2r2
2R;

Entropy decreases quadratically as the elongation increases. For the free energy
variation, we have the following:

AG(7) =aH(7) - T-as(7)
In the model, the enthalpy H is constant, independently of the conformation of the
chain, and therefore cancels out in the free energy difference. We have the fundamental

relation as follows: . T
AG (7) = 3 r?
2Rj

As a result, the polymer chain experiences the elastic entropy force:

== JIAG 3k-T—

The minus sign has a vectorial meaning and indicates that the restoring force is
opposite to the deformation. The chain behaves as a linear entropic spring whose force
constant is proportional to the temperature and inverse to the mean square end-to-end
distance and therefore to the chain length and molecular weight [4-6] (Scheme 1).

Scheme 1. The stretched low-entropy chain shows a linear restoring force (in red) toward the

unstretched high-entropy state: the random coil behaves like an entropic spring with an elastic

3kT
modulus T’y

The fundamental aim of a rubber statistical mechanical model is to obtain an equation
of state for the macromolecular network, which will describe the stress—strain behavior of
rubbers for any deformation, including swelling. Numerous models have been proposed
and rigorous statistical mechanical theories describing the mechanical behavior of rubber
networks were given in the early 1940s by Kuhn, Flory, Rehner, James, Guth, Wall, Earlier,
Treloar, and Mark [7-9].

The current understanding of the molecular mechanism of rubber elasticity is based
on two ideal classical theories: the affine or phantom network models. These linear theories
derive the behavior of the rubber from the statistical properties of the isolated chains. In
particular, they state that the elastic free energy of a network equals the sum of the elastic
free energies of the single chains. More precisely, the interactions between the polymer
chains are independent of the state of deformation and do not contribute to the elastic free
energy change. In addition, the end-to-end distribution of the network chains is Gaussian,
that is, the excluded volume interactions are ignored. Thus, the classical rubber theories are
based on the ideal chain, which may pass freely through its neighbors as well as through
itself, i.e., the phantom Gaussian chain or random coil [7,8,10].

Experiments demonstrate that the two classical models fail to predict the stress—
strain behavior of elastomers at large strain. This has prompted the development of
phenomenological theories of continuum mechanics, where only the macroscopic state of
the sample is of concern rather than the molecular mechanism [7,11].
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Despite their differences, the two ideal molecular models are still useful for the in-
terpretation of experimental data and have formed the basis of more advanced elastic-
ity theories, which take into account the nonlinearity of intermolecular entanglements
(topological constraints) among the cross-linked chains (active chains) observed in real
networks [7,8,10].

The observed differences between the experiments on real rubbers and the predictions
of the classical theories should be attributed to the network defects (including inactive
dangling chains and loop structures) and entanglements intrinsic to active chains. The stress
softening with increasing tensile strain or swelling is the best-known effect arising from
the deformation-dependent contributions from chain entanglements. In fact, around 1970,
the role played by entanglements, which result from the chain uncrossability, led to new
theoretical models for real rubber networks treating deviations from classical behavior—the
constrained junction, slip-link, and tube models [10,12]—and the real elastic network theory,
which takes into account the presence of isolated defects in a rubber network [13,14].

In agreement with the experimental data, in the entanglement models, trapped entan-
glements contribute to the free energy change of the stretched network: the reduction in
the entropy variation under stretching and therefore in the restoring force would be due to
the entanglements on the active chains.

In the constrained junction model, the surrounding chains limit the mobility of active
chains and therefore the motion of junction points. According to the constrained junction
model, the elastic free energy of the elastomeric network varies between the phantom
and the affine models; hence, the properties of the two classical models are bridged if
topological constraints are taken into account. For the constrained junction and the slip-link
models, due to stretching, there is an increase in the freedom of the chain to fluctuate, since
the space available to a chain along the direction of stretch increases.

Different tube models have been developed, such as the affine model of Marrucci [15] and
the nonaffine models of Rubinstein and Panyukov [16,17]. Moreover, we will illustrate some
notions of the phenomenological theory of Mooney and Rivlin [18,19].

2. Experimental Method

In our previous papers [20-22], theological, mechanical, and dynamic mechanical
experiments were performed and modeled. Now, we prepared an optimal end-linked
PDMS rubber (Scheme 2) and the experimental stress—strain curves were compared with
the corresponding theoretical equations of the reviewed theories.

H H CH, CH,
| cu{ «cH] CH;| |
G c NS O S — OO

PPN
H2C¢ Seil Nsi ] Nsi” %CHZ
| | | CH, CH,
CH CHy =~ CHy
CH, CH,
prepolymer
+ —
CH, CH,
CH;, [cHy 1 [cH; |1 cH, |
HC | ol _okll o\ | _~cH; CH, CH,
Si Si Si Si |
cHy [cHy | [n | cny |

curing agent
end-linked rubber network
Scheme 2. The molecular structures of the vinyl-terminated prepolymer (on the top left), hydride-
substituted curing agent (on the bottom left), and three-dimensional end-linked network of PDMS
rubber (on the right) are shown. The reactive groups (in red) are reported.
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A PDMS liquid elastomer (Dow Corning Sylgard) medium-viscosity LE-M, as defined
in previous papers [20,21], was considered. The LE-M rubber was obtained using a 10:1
weight ratio of prepolymer to curing agent at 30 °C, as recommended.

In a previous paper [20], we determined that the LE-M polymer liquid has a zero-shear
rate viscosity 19 = 5.1 Pa - s and an average number of molecular weight M,, = 43,100
unified atomic mass units, with n = 309 monomers of -Si(CHj3),0O-. Since M,, > M., where
M. = 21,000 — 33,000, this is the critical molecular weight for the PDMS [21]. LE-M is
a viscoelastic polymer melt with an entangled chain. For the PDMS, the entanglement
molecular weight M, [23] is related to M. as M, = % ; consequently, the entanglement
density per chain v = 11\\/172 of the LE-M polymer melt is included in the range v = 3-5.

A Q800 dynamic mechanical analyzer (TA Instruments, New Castle, DL, USA) was
used and the isothermal experiments at 30 °C were performed, characterizing the LE-M
rubber in both compression and tension by means of accurate stress—strain curves at a
5 x 10~* min~! strain rate. The amplitude of the stress—strain curves was investigated
to the best of experimental possibilities up to A < 2 in tension mode and up to A < 1in
compression mode.

In order to compare the constitutive stress—strain equations of the reviewed models, a
nonlinear regression analysis of the experimental curves was performed. In this way, it was
possible to corroborate and highlight the efficiency of the elasticity models of the rubber
behavior in tension and in compression experiments. This present study may stimulate
further investigations where the cross-linking density, temperature, amplitude, and strain
rate in the stress—strain curves are varied systematically.

3. Molecular and Phenomenological Models
3.1. The Affine Network Model

In the Affine network model proposed by Kuhn, Wall, and Flory [3,7,24,25], it is assumed
that the rubber network consists of independent random coils and the ends of the active
chains are rigidly attached to an elastic background (i.e., the continuum space for taking into
account the macroscopic deformation until the molecular scale), which deforms affinely
(i.e., the macroscopic deformation applied on the body is translated uniformly to the
microscopic level) (Scheme 3). Then, the average positions and fluctuation amplitudes of
the junctions change affinely with macroscopic deformation.

Scheme 3. Picture of the affine network model. At the top, the ends (green circles) of an active
chain (black line) are connected to the elastic background (gray parallelogram) that affinely deforms
(A). Below, the isotropic fluctuation amplitudes of the junctions deform in an ellipsoidal affine
way filling the space without overlaps (B). The affine deformations Ay = 2and A, = A; = 1/V2
were applied.
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In uniaxial stretching, Ay = A. Considering the incompressibility condition A, = A, =
AL/2 (i.e., ideal rubber with a volume variation AV = 0 and a Poisson’s ratio v = %), the
expression for the engineering stress reads as follows:

1 1
Oaff = kTv (/\ - )\2> = Gaff (/\ - )\2> 2)

where v is the density of elastically active chains that deform and store energy upon
network deformations.

3.2. Derivation of the Stress—Strain Equation for the Flory Affine Model

To learn more about the Flory affine model, we include the step-by-step detailed
derivation [24]. Consider the rubber as a network of N interconnected chains. Since the
process of cross-link formation is random, the resulting chains will have random lengths.
Thus, the end-to-end vectors will be distributed according to the Gaussian probability
density function p(?) previously calculated for the isolated chain in a dilute solution.

Consider the homogeneous deformation of a rubber cube of side Ly and volume Vj,
where &y, &y, &, are the deformation factors. Assuming that the chains and cross-link points
are altered in the stretching process in an affine way, then the chain i characterized by the
end-to-end vector 71’1 having components (x;, y;, z;) after the deformation, must have had

Xi Vi zZi

-, =t, -t | before the deformation.
xRy Xz

components (

The number of chains N;(x;, y;,z;) having the components of the end-to-end vector
between x; and x; + Ax, y; and y; + Ay, and z; and z; + Az after the deformation is given
by the following:

AxAyAz

axayaz

X Pz
Ni(xi,yi, zi) = N~p<’ Yi l)

wy oy
Using the probability density function of the freely jointed chain model, we have
the following:

B EANN AN EAS
Ni(x;,y;,z)=N-[ L2 ) - — fach JL i
i(xi,yi,2i) <7Té exp| —pB i + %y + i
Consider the transformation of the distributions by a deformation along the axis of a
constant volume factor.

Xi P Z;
Ni(xi/yilzi) =N- p(l Yi 1>

7 7
ax' oy o

AxAyAz
axayaz

AxAyAz
K&yl

Using the probability density function g(?) of the freely jointed chain model, we have
the following:

Ni(xi,yi,zi) = N - (7@>3'eXp <_ﬁ2 l(z)er ("%;)24— (02)2

Consider the transformation of distributions g(x), g(v), ¢(z) by a deformation along

the x axis of a constant volume factor ay = 4. Then, ay - oty -0z = land ay = a; = —— = 1.
y y N,

> ~AxAyAz

Rl

While the x component distribution widens, the v, z component distributions narrow.

To calculate the entropy change associated with the deformation, we will calculate the
configurational entropy change involved in the formation of a deformed network structure
defined by ay, &y, a;, then, subtracting the entropy of the undeformed network, we will
obtain the entropy associated with the deformation.

We need to find the probability () that a non-cross-linked polymer spontaneously
realizes a configuration consistent with the formation of a deformed network having N;
chains in the states (x;, y;, z;), as required by the previous equation. Let us denote by ()4
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the probability that this condition is satisfied. Furthermore, it is necessary that the # units
that give rise to the cross-links are suitably close: let us denote by (), the probability that
this event occurs. Then, the probability that the two conditions are satisfied simultaneously
is given by () = (31 - ().

The probability that a given chain has the components (x;,y;, z;) in the fields Ax, Ay,
and Az is given by the following:

gi = 8(xi, i, z;) AxAyAz

Then, the probability that each chain of the entire system satisfies a certain set of
coordinates (those associated with a distribution) is given by the product of these factors.
Grouping together those with the same coordinates, we have the following:

I8}

This expression must be multiplied by the number of permutations of the chains
on the specified distribution, that is, the number of exchanges that leave the distribution
unchanged, obtaining the following:

nj
8i

Q] = H!Hi
1’11‘!

Reworking and moving on to logarithms, we have the following:
In)y = Z n;In gin
i 1
Substituting the expressions of g; and #; found above, we have the following;:

(43 +a2 +a2-3)
2

InQ; =—n — In(axayaz)

The probability that one of the n cross-linking units has another unit nearby within a
volume JV (interaction space) is given by the following:

(n-1)%

where V is the total volume.
The probability that another of the n — 2 remaining units has a new unit nearby will

be the following:

2%

(n—3) Vv

and so on.
The probability that the 5 pairs are paired with each other is then as follows:

sV\?
O = (n—1(n-3) ...~
2= =1 (0-3) - (5)
Reworking, we have the following;:
InQ)y = —g In (axayaz) + constant

where the constant is a term independent of the deformation.
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Consequently, from the Boltzmann equation, we obtain the entropy of the formation
of the deformed network:

k-
S=kInQ = k(InQ; + In ) =constant — ?n (zxi + tx; + a2 — 31n(0¢x¢xyucz))

It is noteworthy that the parameter B that characterizes the Gaussian probability
distribution and that depends on the chain length (the number of monometric units and
the length of the bonds) is not present in the entropy equation. The only quantity that
characterizes the network structure is the number of cross-links #.

The deformation entropy is obtained by subtracting the entropy of the deformed
network from that of the undeformed network Sy obtained by ay = ay = a; = 1:

k-n

AS=S5—5)= —?( i—kai—i—a% —31n(1xxocyzxz)>

In particular, for uniaxial deformation at a constant volume, we have the following:

Ay 0y, =land ay = &, ay = ay, =
Y Y

Sl

We then have the following;:

AS:—M<0¢2+2—3)
2 o

The thermodynamic expression of the spring force for ideal rubber is as follows:

2S
=T (m)w

By definition L = aLj, and so we have the following;:

T [0S
Pty (i),
We then have the following:

<BS> <8AS> ( 1 >
— = — =—k-nla——=
on)ry o Jry a2

. RT -n ‘ l
Y a2
where 7 is in mol.

The equation obtained represents the ideal rubber constitutive stress—strain equation.

We observe the presence of three factors: the temperature dependence RT, the struc-
tural factor {;, and the deformation factor (zx — “1—2> The structural factor represents the
density of cross-links and the deformation factor prescribes a nonlinear shape for the
stress—strain curve. The linear temperature dependence is experimentally confirmed and
the nonlinear stress—strain curve is in good agreement with the experimental data in the
low-strain range, in traction up to # < 4 and in compression up to & < 1. For larger
deformations, non-entropic factors intervene, which cause a deviation from the theory [7].
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3.3. The Phantom Network Model

The phantom network model is one of the pioneering models that considered the effect
of the entanglement density on the fluctuations of the chain ends [26-28]. James and Guth
also assumed that all junctions at the surface of the network are fixed and deform affinely
with macroscopic strain, while all junctions and chains inside the bulk of the network
fluctuate around their mean positions.

The mean positions of junctions deform affinely with macroscopic deformation, and
the junctions of network chains fluctuate around their mean positions due to thermal
motions accounting for the entanglements on network chains. Then, the isotropic amplitude
fluctuations are not affected under stretching (Scheme 4).

Scheme 4. Picture of the Phantom network model. At the top, the effective chains (thin black lines on
the right) on the elastomer surface transmit the macroscopic strain to the network bulk (A). Below,
the lattice deformation is affine; on the contrary, the amplitude of the fluctuations is invariant under
stretching and the fluctuations overlap in the transverse direction (B). The affine deformations A, = 2
and Ay = A; =1/ v/2 have been applied.

The fluctuation amplitude determines how strongly the macroscopic deformation of
the network is coupled to the deformation of single chains. Macroscopic deformation is
transmitted to the bulk of the network through the effective chains attached to the rubber
surface. Therefore, no constraint is imposed on the junctions, whose amplitude is assumed
to be independent of the macroscopic extension ratio and chain length. James and Guth
assume that the active chains are Gaussian and interact only at the junction points: this
means that the network chains can freely move through one another—hence, the phantom
network model—and the excluded volume effects are neglected in the theory [8,29].

The constitutive equation of the Phantom network model in uniaxial stretching is as follows:

Uph—kTU(ffz) </\— /\12) —kT(v—y)<A— ;2) = Gph()\—;z> (3)
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where the functionality f and the density of cross-links y connect at least three elastically
active chains. Then, we have Gp, = CppGag, where Cpp, = % is the elastic effectiveness of
each active chain in the phantom network theory. For high functionalities, the affine and
phantom network theories tend to coincide.

Recently, Olsen and Johnson [13,14], based on experimental data from isotopic labeling
spectrometry, developed a theory that takes into account the role of defects in the elasticity
of the phantom network. The Real elastic network theory (RENT) considers the presence of
isolated loops of increasing order and dangling ends; in this way, the elastic effectiveness
Cpn of the network is the average of the elastic effectiveness C; of different active chains, so
Cph = (Cy) and we also have the following:

-2 2 &
Cph = ff [1 - /TZ,; xl] 4)

where x; is the fraction of the /th-order loop.

Lang et al. proposed [30] a convenient way to model cross-link fluctuations in a
phantom network, attaching virtual chains of n segments between the ends of the network,
strands of N segments, and the affinely deforming non-fluctuating elastic background
(Scheme 5). This allows the reduction of a complex network connectivity to a single
combined chain, where the fixed end-points of this combined chain deform affinely. The
cross-link contribution to elasticity is then written using combined chains of N + 2n seg-

ments, as follows:
N

" N+2n
where only the N segments of the real chain out of the N + 21 segments of the combined
chain contribute to stress. The model of cross-link fluctuations provides G > Gpp. The situ-

ation is different for the models of entangled networks. Here, an entanglement contribution
Ge is added to a cross-link contribution G¢; then, G = G¢ + Ge.

G kTv )

.
v

777777

Scheme 5. The Lang cross-link fluctuation network. The red dots represent the fluctuating junctions,
the thick black line is the probe chain, and the thin black lines show the attached network strands.
The dashed red lines are the additional virtual chains that are attached to the non-fluctuating elastic
background. A single combined chain (network chain plus two virtual chains) of N + 2n segments
is highlighted.
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In Figure 1, the constitutive stress—strain equations of the affine and phantom network
models are matched against our experimental data. The phantom and affine models give a
good qualitative picture of rubber elasticity, and they are satisfactory at very low and low
extension ratios, respectively. However, neither of the two models is able to account for the
behavior observed at a higher strain. At a low deformation, a rubber exhibits properties
between those of the phantom and affine models, since the extent of the fluctuations should
depend on macroscopic strain, being less in the unstretched network and more in the
deformed network.

800+
+ Experimental Data
== Affine Network

6001 | — Phantom Network = T
== Phantom Network (/= 4)

24004 e
S I
2000 oz e
(=== . y - -
1 1.2 1.4 1.6 1.8
i
A
) 0.8 0.85 0.9 0.95 |
01 : ' ' ' !
S e
= -107
=2
S .15 ' :
+ Experimental Data
201 == Afline Network
-~ — Phantom Network (= 3)
5] |~ Phantom Network (/= 4)

Figure 1. The stress—strain equations of the affine and phantom network models are matched against
the experimental (blue lines) tensile (above) and compression (below) stress—strain curves of the
LE-M rubber at 30 °C.

3.4. The Constrained Junction Models

The disagreement between the experimental data and the predictions of the phantom
and affine models contributed to the most interesting advances in the theories of rubber
elasticity introduced after 1975. These approaches, known as constrained network mod-
els, take into account the contributions of trapped entanglements to the elasticity of the
network [8,17,29,31-34].

Among the models that attempt to account for the effect of topological constraints on
active chains are constrained junction models. They are based on the initial work of Allegra
and Ronca [35], later developed in the theories of Flory and Erman [36-39].

The presence of entanglements diminishes the fluctuations of junctions closer to the
affine model’s assumptions, whereas the increase in deformation decreases the density of
the chains around a given junction, and therefore the range of fluctuations is closer to that of
the phantom model. This effect is modeled by a harmonic potential acting on the junction
points of the phantom network, then reducing the fluctuations of the active chains by
restricting the motions of the cross-links. The constraining potential can be represented by
confining the virtual chains’ connecting junction points to the elastic background (Scheme 6).
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The space available for chain fluctuations changes as a result of network deformations, as
chains move further apart or closer together. To take this effect into account, the confining
potential acting on the cross-links is assumed to change with the network deformation.
Thus, the fluctuations of the virtual chains deform affinely with the network deformation.
In both theories, the effects of the constraints are local and decrease with increasing strain;
the difference between the two theories is that, in the Ronca—Allegra theory, the fluctuations
of junctions become exactly affine as the undeformed state is approached; on the other
hand, in the Flory—Erman theory, they are close to but below those of the affine state. In
the approach of Ronca—Allegra [35] (Scheme 7), the ratio between the fluctuations along
two directions would equal that between the corresponding stretch ratio—sy /s, = Ay /Ay—
but no assumption was made on the magnitude of fluctuations. The engineering stress,
referring to a uniaxial tension test, reads as follows:

k A
a2 (1 )

Scheme 6. Picture of the Constrained junction model. The virtual chains (green lines) connecting each
network cross-link (red junction) to the elastic background (at the green triangles).

Scheme 7. Picture of the Ronca—Allegra model. The lattice deforms in an affine way and the fluctuation
ellipsoids deform in a proportional way to the stretching of the lattice. The affine deformations
Ay =2and Ay = A, = 1/+/2 have been applied.

The stress of the constrained models takes the general form that follows:

0 = 0pn(1+ fenstr(A)) (7)
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S004

where fnstr takes into account steric hindrances to the Brownian motion of the network.
The engineering stress of the Flory-Erman model is given by the work of [40,41].

2 AK(A%) —A72K(A7D) .
f-2 A—A2 ®)

where K is the trace of the stress tensor (i.e., the sum of the principal stresses) for an uniaxial
deformed network.

In Figure 2, the stress—strain equations of the affine network and Ronca-Allegra
models are matched against the experimental curves of the LE-M elastomer in tension or
compression modes: the stress—strain curves for low deformations overlap perfectly.

Oc—j = Oph 1+

60O

* Experimental Data
== Afline Network
Ronca-Allegra

kPa

[

400+

2004

(] (.83 0.9 0.95 ]

12 1.4 1.6 18

« Experimental Data
-- Affine Network
Ronca-Allegra

Figure 2. Comparison of the Affine and Ronca—Allegra models with experimental data of the LE-M
rubber at 30 °C: the stress—strain equations of the models are matched against the experimental (blue
lines) tensile (above) or compression (below) states for the LE-M rubber at 30 °C.

At the limit of a very strong potential, although the fluctuations of the junctions
are completely suppressed, other monomers of the chain are not constrained and their
fluctuations are almost unchanged. This is an unrealistic representation of topological
interactions in polymer networks. The constrained junction model was revised in the
constrained chain model, in which one considers the effects of the constraints on the centers
of mass of the network chains [42—44]. Nevertheless, it is still not sufficient to represent
the real topological interactions among the chains. A more realistic theory, the Diffused
constraint model, considers the constraints affecting not only the fluctuations of junctions or
mass centers but the fluctuations of all atoms along the chain backbone [45].

The main drawback of the constrained junction models is that they impose only
limited constraints on chain fluctuations. Thus, they can only represent the crossover
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between the phantom and affine models, that is, between weak constraining and strong
constraining potentials.

3.5. The Tube Models

A more realistic model, the Edwards tube model [46,47], assumes permanent entan-
glements imposed along the whole backbone by the surrounding chains and restricts the
fluctuations of all the monomers of the active chains (Scheme 8). The topological constraints
are represented by the potential applied to all monomers, restricting their fluctuations
to a confining tube. This potential is independent of network deformations and can be
represented by virtual chains connecting network monomers to the elastic background.

S

)

A

Scheme 8. Picture of the Edwards tube model. Each monomer of the network chains (black segments)
is connected to the elastic background by virtual chains (green lines).

The stress—strain constitutive equation for this model is as follows:

c 1
e

where c is the monomer concentration and N, is the number of monomers between entangle-
ments; then, ¢/ N, is the entanglement density. Edwards’ equation is analogous to that of the
affine or phantom models and takes into account a cross-link density in the modulus G.
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In tube models, the confining potential acting on a given network strand is assumed
to be formed collectively by many neighboring active chains; this justifies the use of the
mean-field description of topological entanglements.

Various tube models have been developed. In the Marrucci tube model [15] (Scheme 9),
the engineering stress is calculated by assuming that the tube constraints deform affinely
from the circular to the ellipsoidal cross-section:

1
! 2 r(AZ42A71 2 1

where a is the tube radius of the uncross-linked polymer; 4, is the tube radius into an
undeformed network (a; > ag); ¥ = a%/ a% < 1 indicates the structural difference of the
network with respect to the parent polymer; and [y is the contour length of the tubes.

‘

(X2

Scheme 9. Picture of the Marrucci tube model: the stretched network chain from the relaxed to the
unstretched state. Each active chain is constrained inside a tube defined by the entanglements with
the neighboring chains and deform affinely from the circular to the ellipsoidal cross-section.

Equation (10) differs from Equation (2) of the affine model by the presence of an
amplifying factor of the network modulus; it gives a valid description of tensile behavior,
but in compression it predicts too much softening [48].

3.6. The Slip-Link Models

In Slip-link models, the trapped entanglement is simulated by a pair of chains that slide
through a virtual ring (i.e., the slip-link), separated from each other by the tube diameter.
Then, the slip-links may move along the network chain when a deformation is applied to
the network. The cross-linking leads to permanent topological constraints, so a slip-link
acts as if it were an additional cross-link. Therefore, the slip-link model of Edwards and
Vilgis [49] uses the tube model of polymer melts to predict that entanglements will increase
the value of the modulus G over that predicted by the phantom model (Scheme 10).

Their predictions for the modulus are consistent with the experiments, and empirical
fits to these results represented by the sum of two terms:

G = Gph + G Te (11)

where G, is the plateau modulus of the polymer melt and T, is the trapped entanglement
factor of Langley less or equal to unity [9,50,51]. The first term is the contribution of the
chemical cross-links; the additional term GYTe is due to permanently trapped entangle-
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ments in the network. Equation (11) is of general applicability and does not rely on any
details of the entanglement model.

Scheme 10. Picture of the Sip-link model. The slip-link (the green dash—dotted circle) models a trapped
entanglement joining two network chains and can move among the cross-links upon the rubber stretching.

Both the constrained junction and the slip-link models’ free energies reduce to that of
the phantom network when the effect of the entanglements tends to zero. One important
difference between the two models, however, is that the constrained junction model’s free
energy equates to that of the affine network model at the limit of infinitely strong constraints,
whereas the slip-link model’s free energy may exceed that for an affine deformation [9].

3.7. The Nonaffine Tube Model

The Nonaffine tube model developed by Rubinstein and Panyukov [16] combines the
main characteristics of the constrained junction and Edwards tube models.

In this model, the amplitude of fluctuations that defines the tube diameter changes
proportionally with network deformations and the potential acts not only on junctions but
also on the monomers of active chains. The most important feature of this model is that the
tube diameter changes nonaffinely with macroscopic stretch ratios. The prediction for the
engineering stress of the Nonaffine tube model is as follows:

G 1
o= (Ot ) (0 ) "

where Gy, is the phantom modulus and Ge is the entanglement contribution to the modulus.

In the nonaffine tube model, there is no possibility of the sliding of the network
chains and the redistribution of its monomers along the contour of the tube. The slippage
mechanism of the chain along the contour of the tube was proposed by de Gennes [4] in
the reptation model of polymer melts and leads to the main modes of stress relaxation in
polymer melt reptation and tube length fluctuations. The analysis of the redistribution of
the stored length along the tube contour was made by Doi [52]; in anisotropically deformed
highly entangled networks, this redistribution will be important.

3.8. The Nonaffine Slip—Tube Model

A more advanced version of the model just described combines the features of tube
and slip-link models in the slip—tube model of Rubinstein and Panyukov [17,53]. In this
model, the constraints imposed by the neighboring active chains are modeled by virtual
chains attached to the elastic background at one end and ending with slip-links at the other
(Scheme 11). These slip-links can freely slide along the contour of the chains, but they are
not allowed to pass through each other. Therefore, the amplitude of slip-link fluctuations



Physchem 2024, 4

312

along the contour of the chain depends on the density of these links. At a high density, the
fluctuations are suppressed and the model reduces to the nonaffine tube model. If slippage
along the tube is allowed, the network chains redistribute their lengths along the contour
of their confining tubes; as a result, this model accounts for the redistribution of monomers
between different sections of the tube.
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Scheme 11. Picture of the Nonaffine slip—tube model: the slip-links are attached to the elastic back-
ground by virtual chains that represent the potential of the confining tube.

The dependence of engineering stress on the deformation cannot be expressed as a
closed-form expression. Nevertheless, the numerical solution of this model in the experi-
mentally relevant range 0.1 < A < 10 can be well approximated by the following equation:

G 1
e ) (- 5) 13)
0.74A 4+ 0.61A72 — 0.35

By means of Equation (13), it is possible to separate the phantom and entanglement
contributions to network elasticity, providing a reasonable description of the experimental data.

In Figure 3, the constitutive stress—strain equations of the Marrucci, Rubinstein—
Panyukov, and Edwards-Vilgis models are matched against the experimental stress—strain
curve of LE-M rubber. The Nonaffine, Slip and Marrucci tube models overlap in com-
pression in excellent agreement with the experimental data. Conversely, in tension, the
Marrucci tube model presents a substantial mismatch.
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Figure 3. Comparison of the entanglement tube models against the experimental (blue lines) tensile
(above) or compression (below) stress—strain curves for the LE-M rubber at 30 °C.

3.9. The Mooney—Rivlin Models

The theories of rubber elasticity described so far are based on a molecular approach:
although they account for the stretching of the rubber up to A =2 (i.e., ¢ = 100%), they do
not satisfactorily account for the stress—strain curve in the whole span of deformations. In
order to fit the experimental data, a different approach from the molecular models is based
on phenomenological models, considering the elastomer as a continuum [54-56]. One of
the successful phenomenological treatments is the semiempirical Mooney-Rivlin model,
which is in agreement with the experimental data up to A =4 (i.e., e = 300%) [18,19,57]. At
rest, the network is considered isotropic and incompressible and is assumed to behave
like a Hookean material upon shearing. The authors proposed the following constitutive
expression for the engineering stress:

OM—R = Z(Cl + (5\2) <)L - /\12) (14)

where C; and C; are coefficients that vary with the material under consideration and its
molecular characteristics. Contrary to the molecular models, the stress is supposed to
vary with the deformation applied. Equation (14) coincides with Equation (2) of the affine
network model, setting 2C1 = kTv and C; = 0. The values of the coefficient C; increase in
the presence of entanglements and at a low deformation. To the contrary, C; is close to
zero for highly swollen networks or by going to high temperatures to reach an equilibrium
deformation; as a result, this coefficient could be caused by the nonaffine deformation of
the entanglement network [58]. Therefore, even though Equation (14) fits the stress—strain
curve for an elastomer under practical conditions, Equation (2) remains valid for a network
at equilibrium under an applied load.

By increasing the number of parameters, the predictive accuracy of the fitting by the
Mooney-Rivlin model increases. Equation (2) represents the two-parameter Mooney-Rivlin
equation. As a general rule, if the rubber stress—strain curve has a single curvature (i.e., no
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inflection points), then Equation (2) is suitable, whereas if one or two inflection points are
present, then the five- or nine-parameter equations should be utilized [59-61].

In this present paper, the Mooney—Rivlin model in the two-, three-, or five-parameter
form proves appropriate for the LE-M rubber, as we can see from the goodness of fit shown
in Figure 4. The engineering stress for the three- and five-parameter Mooney-Rivlin model
is given by the following;:

1 1 1

1
U3—pM—R:2C1</\_ +2C2<1—> +6C3()\2_)\_1+/\2+)\3_}\4> (15)

o5 pmr =201 (A= %) +2C(1— &) +6Cs (A2 A =1+ & + & — &)
+4C4A(1— %)(A% 2 _3)
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Figure 4. Comparison of the two-, three-, and five-parameter (2-p, 3-p, and 5-p) Mooney-Rivlin
equations against the experimental (blue lines) tensile (above) or compression (below) stress—strain
curves for the LE-M rubber at 30 °C.

Now, we compare our outcome to the various models of rubber elasticity by means of
nonlinear curve fitting. Tables 1 and 2 summarize the constitutive stress—strain equations
of the models analyzed in tension and in compression, respectively, reporting the coefficient
of determination R2.
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Table 1. Comparison of constitutive stress-strain equations and R? determination coefficient in
tensile fitting.

Model Constitutive Stress—Strain Equation R?
Affine Network o5 = kTv ( A— L) 0.97608
Ronca—Allegra OR_A = ”fkT (1 + %Agf\yz) (A _ %) 0.97608

Marrucci Tube (= 1) vt = kT (34 5 (23 )*%) (A-4) 09652
Nonaffine Tube = (G e ) (A- 1) 0.99649

PR A4 A

. . Onas—t =
Nonaffine Slip—Tube G N1 0.99663
( ph 0.74/\+0.61A’%7O.35) ( ﬁ>

Two-parameter C 1
Mooney-Rivlin 02-pM-R = Z(Cl + 72> (A - F) 0.99531
Three-parameter 73 pM_R = 2C1 (A _ %) +2C, <1 _ %) 0.99978

Mooney-Rivlin
+6Cs (A=A =1+ &+ 5 — &)

Table 2. Comparison of constitutive stress—strain equations and R? determination coefficient in
compression fitting.

Model Stress—Strain Constitutive Equation R?
Affine Network 0at = kT ( A—L ) 0.99299
- = MK (1,2 37 1
Ronca—-Allegra OR_A = L( % A3+2> ( — )T) 0.99317
1
i = I 2 A242A 2 1 .
Marrucci Tube (r = 1) oMt = BukT (§ ( Bigatt ) ) ( _ ﬁ) 0.99308
Nonaffine Tube — Ge 1 0.99299
Ona—t (Gph + . A2+1> (A Az)
05 =
Nonaffine Slip-Tube e L 0.99299
( PR 7ant061n 3 —0‘35) ( w2
Two-parameter C 1
Mooney-Rivlin 2-pM-R = 2<C1 + *2) (/\ - ﬁ) 0.99301
— _ 1
Five-parameter O5-pM-R = 2C1 ()\ > + 2C2< A ) 0.99994
Mooney-Rivlin +6C3 (A2 —A -1+ % + % %) ’

+4C4A(1 - i) ()@ +2- 3)
+4C5<2/\+ iij —3) (1A— %)

The fitting of the tension curves shows a differentiation between the several models. In
particular, the Affine network, Ronca—Allegra, and Marrucci tube models show a fair match with
the experimental data. Conversely, in good agreement with the literature [53,62—64], the Non-
affine tube and Two-parameter Mooney—Rivlin models meet the experimental curve up to
A =2 1in a very satisfactory way. An increase in the fitting parameters of the Mooney—Rivlin
phenomenological model, precisely three parameters, leads to an improvement in the agreement
with the experimental data.

At high elongations, the experimental data show an upturn, thus deviating signifi-
cantly from the Mooney-Rivlin equation. Furthermore, the compression data depart from
the Mooney-Rivlin prediction [34]. However, the two-parameter Mooney-Rivlin model
has proven accurate up to 100% strain in tension and 30% strain in compression, and, using
a higher parameter model, it may provide better results at higher strains [59].

By analyzing the fitting of the stress—strain curves in compression, we observe the
same good agreement with the experimental data. This highlights the goodness of the early
molecular models in interpreting the stress—strain curve at a low deformation. Furthermore,
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the five-parameter M-R model even leads to an excellent fit of the curve in the whole
experimental strain range.

4. Conclusions

A rubber network is a system of cross-linked polymer chains that experience the
entropic elastic force of Brownian motions and confined diffusion due to covalent and
topological constraints; in general, it is a complex n-body system irreducibly nonlinear.
The ideal models originally developed consider a set of mutually independent Gaussian
coils, the entropic springs, interconnected by cross-links. To take into account the restraints
imposed by the intermolecular couplings of the entanglements, constrained, tube, and
slip-link models of increasing complexity have been proposed, improving the theoretical
predictions. A fundamental difficulty lies in the non-hierarchical topology of the rubber
network characterized by a Gaussian distribution of active strand lengths. Therefore, long-
range active chains between sites far away occur and necessarily involve the formation of
an entangled network with trapped entanglements of varying complexity, the contribution
of which becomes essential to large deformations. The most advanced models take into
account such difficulty from a statistical and dynamic point of view, treating the contribu-
tion of sliding links as perturbations on the related entropic primary effects. Furthermore,
recent advances by Olsten, Johnson, and Lang have made it possible to take into account
the ends, loops, defects, and complex connectivity present in a real rubber network.

The analysis of the reviewed models highlights the goodness of the theories in describ-
ing the elastic behavior for deformations not excessively high up. The affine deformation
models describe the compression experiments up to A < 1 but do not describe the tension
data up to A < 2. In contrast, nonaffine and phenomenological models describe well
both tension and compression experiments; this highlights that the affine deformation
hypothesis is rigorously verified only for deformations A < 1.

Further issues remain open: the deviations from the Gaussian distribution of network
chains in real rubber (1); the crucial role of the entanglement density in experimental condi-
tions (2); the experimental validation of the effect of virtual chains (3); the computational
complexity of the Slip—tube model (4); how the transformation of specific molecular orbitals
and elasticity are connected (5). Recently, theories and experiments of rubber elasticity
on hydrogel networks characterized by non-Gaussian end-to-end distribution have been
elaborated [65-67].

The literature on the theories of rubber elasticity is huge and often nebulous to a large
audience. We believe that this review with original experimental data brings a contribution
of clarity on the state of the art and can be a way of celebrating the 90-year anniversary of
Kuhn's first theory of macromolecular chemistry [2].
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