Innovation in 3D Braiding Technology and Its Applications
Abstract
:1. Introduction
2. Three-Dimensional Braiding Fabrics and Machine Types
2.1. Three-Dimensional Braiding Methods
2.2. Characteristics of 3D Braid Technology Process
3. Machine Developments for Lightweight and Medical Applications
3.1. Rotary 3D Braiding Machine
3.2. Three-Dimensional Hexagonal Braiding Machine
4. Applications
4.1. Three-Dimensional Braided Textiles for Lightweight Applications
4.1.1. FRPC
4.1.2. CMC
4.2. Medical Applications
4.2.1. Complex Stent Structures
4.2.2. Artificial Ligaments
5. Conclusions and Future Innovations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gries, T.; Veit, D.; Wulfhorst, B. Geflechtherstellung. In Textile Fertigungsverfahren: Eine Einführung; Hanser: München, Germany, 2019; pp. 235–240. ISBN 978-3-446-45684-6. [Google Scholar]
- Bilisik, K. Three-dimensional braiding for composites: A review. Text. Res. J. 2012, 83, 1414–1436. [Google Scholar] [CrossRef]
- Bilisik, K. Cartesian 3D braiding. In Advances in Braiding Technology; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 107–145. [Google Scholar]
- Kostar, T.D.; Chou, T.-W. A methodology for Cartesian braiding of three-dimensional shapes and special structures. J. Mater. Sci. 2002, 37, 2811–2824. [Google Scholar] [CrossRef]
- Yamamoto, T.; Hirokawa, T. Advanced Joint of 3D Composite Materials for Space Structure. In Proceedings of the 35th International SAMPE Symposium, Anaheim, CA, USA, 2–5 April 1990; pp. 1069–1077. [Google Scholar]
- D’Amora, U.; Gloria, A.; Ambrosio, L. Composite materials for ligaments and tendons replacement. In Biomedical Composites; Elsevier BV: Amsterdam, The Netherlands, 2017; pp. 215–235. [Google Scholar]
- Aibibu, D.; Hild, M.; Cherif, C. An overview of braiding structure in medical textile. In Advances in Braiding Technology; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 171–190. [Google Scholar]
- Bogdanovich, A. An overview of three-dimensional braiding technologies. In Advances in Braiding Technology; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 3–78. [Google Scholar]
- Potluri, P.; Nicolais, L. Braiding. In Wiley Encyclopedia of Composites; Wiley: Hoboken, NJ, USA, 2012; p. 020. [Google Scholar]
- Guyader, G.; Gabor, A.; Hamelin, P. Analysis of 2D and 3D circular braiding processes: Modeling the interaction between the process parameters and the pre-form architecture. Mech. Mach. Theory 2013, 69, 90–104. [Google Scholar] [CrossRef]
- Chellamani, K.; Sudharsan, J.; Sathish, J. Medical Textiles Using Braiding Technology. In Journal of Academia and Industrial Research (JAIR); JAIR: Chennai, India, 2015. [Google Scholar]
- Ko, F.K. Handbook of Industrial Braiding; Atkins and Pearce: Covington, KY, USA, 1989. [Google Scholar]
- Kyosev, Y. (Ed.) Advances in Braiding Technology: Specialized Techniques and Applications; Woodhead Publishing Series in Textiles; Woodhead Publishing: Oxford, UK, 2016; ISBN 978-0-08-100926-0. [Google Scholar]
- Kyosev, Y. Braiding Technology for Textiles; Woodhead Publishing Series in Textiles; Woodhead Publishing: Waltham, MA, USA, 2014; ISBN 978-0-85709-135-2. [Google Scholar]
- Tsuzuki, M. Threedimensional Fabric Woven by Interlacing Threads with Rotor Driven Carriers. U.S. Patent 5067525a, 26 November 1991. [Google Scholar]
- Kostar, T.D.; Chou, T.-W. Process simulation and fabrication of advanced multi-step three-dimensional braided preforms. J. Mater. Sci. 1994, 29, 2159–2167. [Google Scholar] [CrossRef]
- Herzog GmbH. Flecht- Und Spulmaschinen Vom Marktführer. Oldenburg, Germany. Available online: www.herzog-online.com (accessed on 1 May 2021).
- Grigat, N.; Kolloch, M.; Sackmann, J.; Praß, N. Retrofitting of Textile Machines for an Efficient Digital Production. Text.4U Texdata Int. Mag. 2020, 1/2, 62–63. [Google Scholar]
- MODBUS Communication -MATLAB & Simulink-MathWorks Deutschland. Available online: www.mathworks.com (accessed on 23 April 2021).
- TexMind–Software and Consulting for Textiles. Available online: www.texmind.com (accessed on 5 May 2021).
- 3MTM NextelTM Roving 610. Available online: https://www.3mdeutschland.de/3M/de_DE/p/d/b40066332/ (accessed on 17 September 2020).
- Schreiber, F. Three-dimensional hexagonal braiding. In Advances in Braiding Technology; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 79–88. [Google Scholar]
- Schreiber, F.; Ko, F.K.; Yang, H.-J.; Amalric, E.; Gries, T. Novel Three-Dimensional Braiding Approach and Its Products. In Proceedings of the ICCM-17: 17th International Conference on Composite Materials, IOM Communications: Edinburgh International Convention Centre (EICC), Edinburgh, UK, 27–31 July 2009. [Google Scholar]
- Mungalov, D.; Bodanovich, A. Automated 3D Braiding Machine and Method. U.S. Patent 6,439,096, 27 August 2002. [Google Scholar]
- Bogdanovich, A.; Mungalov, D. Recent Advancements in Manufacturing 3D Braided Preforms and Composites. In Proc ACUN-4 Composite Systems-Macro Composites, Micro Composites, Nanocomposites; University of New South Wales: Sydney, Australia, 2002. [Google Scholar]
- Schreiber, F.; Theelen, K.; Schulte Südhoff, E.; Lee, H.; Ko, F.; Gries, T. 3D-Hexagonal Braiding: Possibilities in near-Net Shape Preform Production for Lightweight and Medical Applications. In Proceedings of the 18th International Conference on Composite Materials, Jeju Island, Korea, 21–26 August 2011. [Google Scholar]
- Bach, C.; Schreiber, F.; Theelen, K.; Schulte Südhoff, E.; Lee, H.-Y.; Ko, F.K.; Gries, T. 3D Hexagonal Braiding: Opportunities for Manufacturing Complex Braided Structures. Inst. Text. RWTH Aachen Univ. 2012, 59, 99. [Google Scholar]
- Krenkel, W. (Ed.) Deutsche Gesellschaft für Materialkunde. In Keramische Verbundwerkstoffe: DGM-Seminar “Keramische Verbundwerkstoffe”, Veranstaltet am 19. und 20.11.2002 in Stuttgart; Wiley-VCH [u.a.]: Weinheim, Germany, 2003; ISBN 978-3-527-30529-2. [Google Scholar]
- Bansal, N.P.; Lamon, J.; American Ceramic Society (Eds.) Ceramic Matrix Composites: Materials, Modeling and Technology; Wiley: Hoboken, NJ, USA, 2015; ISBN 978-1-118-23116-6. [Google Scholar]
- Textile Werkstoffe für den Leichtbau; Cherif, C. (Ed.) Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-17991-4. [Google Scholar]
- Bulat, M.; Ahlborn, H.; Gnädinger, F.; Michaelis, D. Braided carbon fiber composites. In Advances in Braiding Technology; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 383–394. [Google Scholar]
- American Ceramic Society. Ceramic engineering and science proceedings. In Mechanical Properties and Performance of Engineering Ceramics and Composites IX: A Collection of Papers Presented at the 38th International Conference on Advanced Ceramics and Composites, 26–31 January 2014, Daytona Beach, Florida; [Papers Presented in the Mechanical Behavior and Performance of Ceramics & Composites Symposium during the 38th International Conference & Exposition on Advanced Ceramics and Composites (ICACC)]; Singh, D., Ed.; Wiley: Hoboken, NJ, USA, 2015; ISBN 978-1-119-03118-5. [Google Scholar]
- Bhatia, T.; Jarmon, D.; Shi, J.; Kearney, S.; Kojovic, A.; Hu, J.; Prociw, A. CMC Combustor Liner Demonstration in a Small Helicopter Engine. In Proceedings of the Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Education; Electric Power; Manufacturing Materials and Metallurgy; ASMEDC: Glasgow, UK, 2010; pp. 509–513. [Google Scholar]
- Krenkel, W. (Ed.) Ceramic Matrix Composites: Fiber Reinforced Ceramics and Their Applications; Wiley-VCH: Weinheim, Germany, 2008; ISBN 978-3-527-31361-7. [Google Scholar]
- Lee, J.M.; Park, K.W.; Koo, B.-K.; Kim, H.-S. Stenting of Coronary Bifurcation Lesions: A Literature and Technical Review. Curr. Cardiol. Rep. 2015, 17, 45. [Google Scholar] [CrossRef] [PubMed]
- Latib, A.; Colombo, A.; Sangiorgi, G.M. Bifurcation stenting: Current strategies and new devices. Heart 2008, 95, 495–504. [Google Scholar] [CrossRef]
- Melikian, N.; Di Mario, C. Treatment of bifurcation coronary lesions: A review of current techniques and outcome. J. Interv. Cardiol. 2003, 16, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Waksman, R.; Bonello, L. The 5 Ts of Bifurcation Intervention: Type, Technique, Two Stents, T-Stenting, Trials. JACC Cardiovasc. Interv. 2008, 1, 366–368. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.; Ficker, F.; Miksch, R. Variation Braiding Technology by the Example of Novel Stent Structures. In Proceedings of the STRUTEX 2018, Liberec, Czech Republic, 4 December 2018; Volume 1, pp. 11–13. [Google Scholar]
- Putz, R.; Mühlhofer, H.; Ercan, Y. Bänder des Kniegelenks. Der Orthopäde 2007, 36, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Girgis, F.G.; Marshall, J.L.; Jem, A.R.S.A.M. The Cruciate Ligaments of the Knee Joint. Clin. Orthop. Relat. Res. 1975, 106, 216–231. [Google Scholar] [CrossRef] [PubMed]
- Wilcke, A. Vordere Kreuzbandläsion Anatomie Pathophysiologie Diagnose Therapie Trainingslehre Rehabilitation; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 978-3-7985-1958-9. [Google Scholar]
- Fu, F.H.; Schulte, K.R. Anterior Cruciate Ligament Surgery 1996: State of the Art? Clin. Orthop. Relat. Res. 1996, 325, 19–24. [Google Scholar] [CrossRef]
- Batty, L.M.; Norsworthy, C.J.; Lash, N.J.; Wasiak, J.; Richmond, A.K.; Feller, J.A. Synthetic Devices for Reconstructive Surgery of the Cruciate Ligaments: A Systematic Review. Arthrosc. J. Arthrosc. Relat. Surg. 2015, 31, 957–968. [Google Scholar] [CrossRef]
- Cooper, J.A.; Lu, H.H.; Ko, F.K.; Freeman, J.W.; Laurencin, C.T. Fiber-based tissue-engineered scaffold for ligament replacement: Design considerations and in vitro evaluation. Biomaterials 2005, 26, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Ferreira, F.N.; Alves, N.M.; Paiva, M.C. Biodegradable polymer nanocomposites for ligament/tendon tissue engineering. J. Nanobiotechnol. 2020, 18, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Costa-Almeida, R.; Domingues, R.M.; Fallahi, A.; Avci, H.; Yazdi, I.K.; Akbari, M.; Reis, R.L.; Tamayol, A.; Gomes, M.E.; Khademhosseini, A. Cell-laden composite suture threads for repairing damaged tendons. J. Tissue Eng. Regen. Med. 2017, 12, 1039–1048. [Google Scholar] [CrossRef]
- Barber, J.G.; Handorf, A.M.; Allee, T.J.; Li, W.-J. Braided Nanofibrous Scaffold for Tendon and Ligament Tissue Engineering. Tissue Eng. Part A 2013, 19, 1265–1274. [Google Scholar] [CrossRef]
- Ramakrishna, H.; Li, T.; He, T.; Temple, J.; King, M.W.; Spagnoli, A. Tissue engineering a tendon-bone junction with biodegradable braided scaffolds. Biomater. Res. 2019, 23, 11. [Google Scholar] [CrossRef]
- Mengsteab, P.Y.; Freeman, J.; Barajaa, M.A.; Nair, L.S.; Laurencin, C.T. Ligament Regenerative Engineering: Braiding Scalable and Tunable Bioengineered Ligaments Using a Bench-Top Braiding Machine. Regen. Eng. Transl. Med. 2020, 1–9. [Google Scholar] [CrossRef]
- Zhengning, L.; Haichen, L.; Ge, C.; Frank, K. Simulation and characterization of circular hexagonal braiding fabricstructure. Ind. Text. 2020, 71, 23–27. [Google Scholar] [CrossRef]
Feature | Rotary 3D Braiding Machine | Hexagonal 3D Braiding Machine |
---|---|---|
Size of machine bed | 19,600 cm2 | 1400 cm2 |
Tracks | Yes | No |
Process type | Quasi-continuous | Discontinuous |
Switching device | Pneumatic switch gear | Switching devices inspired by lace braiding |
Maximum number of bobbins | 48 | 60 |
Number of horn gears | 25 | 7 |
Processed materials | Glass, carbon, and ceramic fibers | Nitinol, magnesium, and polymer fibers (e.g., PCL, PET, PLLA) |
Control software | Open source—MATLAB | Ros2 framework and Python |
TR Level | 7 | 7 |
Application field | Composite lightweight materials | Medical textiles |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emonts, C.; Grigat, N.; Merkord, F.; Vollbrecht, B.; Idrissi, A.; Sackmann, J.; Gries, T. Innovation in 3D Braiding Technology and Its Applications. Textiles 2021, 1, 185-205. https://doi.org/10.3390/textiles1020009
Emonts C, Grigat N, Merkord F, Vollbrecht B, Idrissi A, Sackmann J, Gries T. Innovation in 3D Braiding Technology and Its Applications. Textiles. 2021; 1(2):185-205. https://doi.org/10.3390/textiles1020009
Chicago/Turabian StyleEmonts, Caroline, Niels Grigat, Felix Merkord, Ben Vollbrecht, Akram Idrissi, Johannes Sackmann, and Thomas Gries. 2021. "Innovation in 3D Braiding Technology and Its Applications" Textiles 1, no. 2: 185-205. https://doi.org/10.3390/textiles1020009
APA StyleEmonts, C., Grigat, N., Merkord, F., Vollbrecht, B., Idrissi, A., Sackmann, J., & Gries, T. (2021). Innovation in 3D Braiding Technology and Its Applications. Textiles, 1(2), 185-205. https://doi.org/10.3390/textiles1020009