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Abstract: The exploitation of visible-light active photocatalytic materials can potentially change the
supply of energy and deeply transform our world, giving access to a carbon neutral society. Currently,
most photocatalysts are produced through low-ecofriendly, energy dispersive, and fossil-based syn-
thesis. Over the last few years, research has focused on the development of innovative heterogeneous
photocatalysts by the design of sustainable and green synthetic approaches. These strategies range
from the use of plant extracts, to the valorization and recycling of metals inside industrial sludges or
from the use of solventless techniques to the elaboration of mild-reaction condition synthetic tools.
This mini-review highlights progresses in the development of visible-light-active heterogeneous pho-
tocatalysts based on two different approaches: the design of sustainable synthetic methodologies and
the use of biomass and waste as sources of chemicals embedded in the final photoactive materials.
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1. Introduction

Photochemistry plays a crucial role in the so-defined “Earth green transition”, i.e.,
the transition towards a climate-neutral economy [1,2]. Indeed, thanks to photocatalytically
active materials, it is possible to exploit sunlight as an energetical source for unlimited func-
tions ranging from the evolution of hydrogen through water splitting to the degradation of
pollutants or to photopolymerization [3–8]. Considering that the sun continuously irradi-
ates the planet with 120,000 terawatts, amounting to almost 6000 times the Earth’s energy
consumption, the potentialities of photochemistry are really unlimited [9]. However, the
direct use of sunlight is still poorly exploited, while the use of the “stocked” form of solar
energy, i.e., fossil fuels, represents the main power source of humanity. Indeed, the sun has
been giving energy (in the form of light and heat) to the planet for over 4.5 billion years,
and this irradiation has been captured and chemically transformed into fossil fuels over
millions of years. Despite the sun being expected to keep shining on the Earth for at least
another four billion years before becoming a full-blown giant red star whose brightness
will burn the planet, the rate of production of fossil fuels is enormously slower that the
rate of consumption. As a result, fossil fuels are classified as non-renewable resources (at
least on a decade-scale and not on an eon-scale) [10]. Furthermore, and more importantly,
the use of fossil fuels implies the release, in just a few years, of carbon accumulated over
millions of years [11]. This carbon emission, mainly in the form of carbon dioxide, is
faster that the ability of the planet to “capture” and fix it again, with the consequence
of an atmosphere filled with carbon dioxide. A truly novel situation for mankind, gen-
erating unexpected consequences [12–15]. As a result, sunlight should be exploited in
a faster and more direct way. One option could be the proper use of biomass, which is
one of the greenest ways to produce energy—in the (direct) form of electricity (e.g., by
burning biomass) or as hydrogen, chemical products, and biodiesels, among others [16,17].
It should be noted that, similar to the use of fossil fuels, the use of biomass consists of
exploiting solar energy already converted into chemical bonds by the action of chlorophyll,
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i.e., nature’s photocatalyst, but in the form of renewable and carbon neutral resources.
However, the use of biomass entails some important limits, such as the possible detriment
of food production or, as in the case of the use of biodiesel, the release of particulates into
the environment [18,19]. On the other hand, photochemistry offers, at least on a theoretical
level, the possibility of directly using sunlight, avoiding all the drawbacks rising from the
utilization of biomass [20].

As a result, over the last few years, national and international policies, such as those
by the UN or EU, but more importantly researchers’ innovative spirit, have driven the
investigation into visible light active photoactive materials for numerous achievements.
Special focus should be put on photocatalysts developed by green and environmentally
friendly synthesis. In fact, this approach follows the principles of sustainable development
and fully fills the idea of green transition: there is no real benefit in developing a material
with high photocatalytic activity, but with a negative impact on the environment due to its
low-sustainable production. Many research groups have, therefore, developed different
green and environmentally friendly photocatalysts, as summarized in recent reviews
(Table 1).

Table 1. Recent reviews describing green photocatalytic materials.

Title Ref.

Bio-inspired and biomaterials-based hybrid photocatalysts for environmental
detoxification: A review [21]

Green synthesis: Photocatalytic degradation of textile dyes using metal and
metal oxide nanoparticles-latest trends and advancements [22]

Recent Development of Photocatalysts Containing Carbon Species: A Review [23]

Graphene-Based Materials as Efficient Photocatalysts for Water Splitting [24]

Lignin-Based Composite Materials for Photocatalysis and Photovoltaics [25]

The purpose of this mini-review is to provide a summary of the most recent insights
into the development of innovative photocatalysts by focusing on visible light active
materials prepared through the valorization of biomass and waste: as far as we know, a
similar review is not present in the literature. In detail, this work describes, in two separate
sections, photocatalysts produced via sustainable processes (i.e., focusing on the synthetic
steps) and photocatalysts produced by englobing in the final product biomass or waste
materials (i.e., using them as sources of chemicals).

2. A Green Synthetic Approach

A primary approach to producing sustainable photocatalysts is through environ-
mentally friendly and green synthesis. This approach follows, as much as possible, the
12 principles of green chemistry [26,27], and suggests a rapid solution for the sustainable
preparation of photocatalysts.

According to the literature, a captivating method for the green synthesis of photocata-
lysts is the reduction as well as stabilization/capping of metal ions using different plant
extracts with high content of polyphenols, or more in general of phytochemicals. This
approach is clearly not limited to the production of photocatalysts, but is also exploited for
the preparation of many other catalysts and materials, such as nanocatalysts, electrodes,
etc. [28]. It has to be remarked that when vegetable extracts are used for the production of
photocatalysts, sunlight can be considered the central core of the methodology, being the
source of energy used for the production of the phytochemicals (though photosynthesis)
and activation of the produced photocatalyst, as illustrated in Figure 1.
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Figure 1. Conceptual illustration of the role of the sun in the synthesis of phytochemicals and the 
activation of photocatalysts produced using phytochemicals as stabilizing/reducing agents. 
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zinc, and titanium dioxide, whether supported/in combination with other compounds or 
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Recently, Bi et al. described a solid-state milling approach for the preparation of sil-
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dation of different common dyes such as methyl violet, methyl orange, malachite green, 
and colorless bisphenol A, in comparison with the same compound prepared via a tradi-
tional method. The iodine content was demonstrated to be capable of optimizing the en-
ergy band structure while the in situ preparation of AgI/BiOAc resulted in the catalyst 
possess closely contacted interfaces, a beneficial effect for the transfer and recombination 
of electrons and holes. 

More recently, Nehru and coworkers studied the synthesis of silver nanoparticles 
supported over titanium dioxide (Ag@TiO2) using aloe vera (Aloe perfoliata) gel as a cap-
ping and reducing agent [30]. The material was tested in the photodegradation of picric 
acid under visible light irradiation. Additionally, anticancer activity against lung cancer 
cell lines was determined, and it was proved that the adsorption of visible light enhanced 
the anticancer sensitivity by killing and inhibiting cancer cell reproduction. Similarly, Ag 
nanoparticles, (40 nm average crystalline size according to XRD) showing photocatalytic 
and antimicrobial activity, were prepared using jasmine (Jasminum officinale) extract [31]. 
In more detail, the particles were synthesized through a simple, green, eco-friendly, non-
toxic, and cost-effective method using the extract of jasmine flower as a capping and sta-
bilizing agent. The so-synthesized particles showed good performances in the degrada-
tion of methyl blue, a standard dye for degradation test, under visible light irradiation. 
Additionally, the particles were proved to possess antimicrobial characteristics for both 
grams positive and negative bacteria. Other recently employed plant extracts for the syn-
thesis of silver-based photocatalyst include Nīm (Azadirachta indica) tree fruit extract [32], 
solanum surattense (Solanum virginianum) leaves extract [33], chili (Capsicum annuum) ex-
tract [34], apple (from Malus domestica tree) and grape (from Vitis vinifera tree) extract [35], 
garlic (Allium sativum) extract [36], devil pepper (Rauvolfia tetraphylla) leaves extract [37], 

Figure 1. Conceptual illustration of the role of the sun in the synthesis of phytochemicals and the
activation of photocatalysts produced using phytochemicals as stabilizing/reducing agents.

Other approaches include solventless techniques, such as using milling tools, the use
of environmentally friendly reactants, the use of mild reaction conditions, etc. Between
most studied photocatalysts, a special focus should be put on those based on silver, iron,
zinc, and titanium dioxide, whether supported/in combination with other compounds or
in their pure form.

2.1. Silver-Based Photocatalsyts

Recently, Bi et al. described a solid-state milling approach for the preparation of
silver iodide/bismuth oxide acetate (AgI/BiOAc) [29]. In details, the novel photocatalyst
was prepared via a facile, green, and environmentally friendly one-pot milling method.
The photocatalyst showed enhanced visible-light photocatalytic performances for the
degradation of different common dyes such as methyl violet, methyl orange, malachite
green, and colorless bisphenol A, in comparison with the same compound prepared via a
traditional method. The iodine content was demonstrated to be capable of optimizing the
energy band structure while the in situ preparation of AgI/BiOAc resulted in the catalyst
possess closely contacted interfaces, a beneficial effect for the transfer and recombination
of electrons and holes.

More recently, Nehru and coworkers studied the synthesis of silver nanoparticles sup-
ported over titanium dioxide (Ag@TiO2) using aloe vera (Aloe perfoliata) gel as a capping and
reducing agent [30]. The material was tested in the photodegradation of picric acid under
visible light irradiation. Additionally, anticancer activity against lung cancer cell lines was
determined, and it was proved that the adsorption of visible light enhanced the anticancer
sensitivity by killing and inhibiting cancer cell reproduction. Similarly, Ag nanoparticles,
(40 nm average crystalline size according to XRD) showing photocatalytic and antimi-
crobial activity, were prepared using jasmine (Jasminum officinale) extract [31]. In more
detail, the particles were synthesized through a simple, green, eco-friendly, nontoxic, and
cost-effective method using the extract of jasmine flower as a capping and stabilizing agent.
The so-synthesized particles showed good performances in the degradation of methyl
blue, a standard dye for degradation test, under visible light irradiation. Additionally, the
particles were proved to possess antimicrobial characteristics for both grams positive and
negative bacteria. Other recently employed plant extracts for the synthesis of silver-based
photocatalyst include Nı̄m (Azadirachta indica) tree fruit extract [32], solanum surattense
(Solanum virginianum) leaves extract [33], chili (Capsicum annuum) extract [34], apple (from
Malus domestica tree) and grape (from Vitis vinifera tree) extract [35], garlic (Allium sativum)
extract [36], devil pepper (Rauvolfia tetraphylla) leaves extract [37], and small-flowered black
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hawthorn (Crataegus pentagyna) fruit extract [38]. Some plant extracts were also used for the
preparation of different bimetallic photocatalysts, such Ag/CuO [39]. In details, Cyperus
pangorei leaves extract was used to synthetize Ag/CuO nanoparticles by a co-precipitation
method starting from Cu2+ and Ag2+ ions. The photocatalytic activity of Ag/CuO was
studied in the Rhodamine B dye degradation under visible light irradiation, proving that
Ag-doped with CuO improved the catalytic performances in comparison with pure CuO.
The material was also tested against Gram-positive (Staphylococcus aureus-S. aureus) and
Gram-negative (Escherichia coli-E. coli) bacteria.

Another green synthetic approach for the preparation of silver-based photocatalyst in-
volved an ion exchange approach [40]. Specifically, a novel plasmonic Ag@AgVO3/BiVO4
heterostructure was prepared via an in situ topotactic sustainable ion exchange-reduction
method, as illustrated in Figure 2.
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Figure 2. Schematic representation of preparation and utilization of Ag@AgVO3/BiVO4 heterostruc-
ture. Taken from [40] with the permission of Elsevier.

The novel ternary heterostructure was composed of AgVO3 nanobelts loaded with
BiVO4 nanosheets and Ag nanoparticles, which grew in situ on the surface of AgVO3
through a topotactic transformation with the assistance of polyvinylpyrrolidone (PVP).
PVP not only made the recycling of Ag possible, but also induced a surface plasmon
resonance effect in the composite, via a novel green approach. The photocatalytic tests
for the degradation of rhodamine B indicated that the novel Ag@AgVO3/BiVO4 compos-
ite material showed a significantly enhanced photocatalytic activity under visible light
irradiation compared to AgVO3, Ag@BiVO4 and Ag@AgVO3/BiVO4. This behavior was
ascribed to the SPR effect of Ag NPs and to the large specific surface area combined with the
stable heterostructure. The photocatalyst was also demonstrated to possess antimicrobial
properties.

Liu and coworkers proposed another green method for the preparation of silver
nanoparticles (50 nm) supported on AgCl using microbial culture broths and visible light
irradiation [41]. In detail, the nanoparticles were prepared by first forming a colloidal
dispersion of AgCl in a microbe-free aqueous lysogeny broth (Miller) solution. Then,
an in situ photoreduction driven by sunlight formed small plasmonic Ag@AgCl. The
biomolecular ligands of the microbial solution broth worked as a promoter of the reduction
process, making the formation of novel Ag@AgCl structures with improved photochemical
activity possible. Remarkably, these structures were not obtainable via a standard chemical
reduction process, as shown in Figure 3.
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Table 2 summarizes last works for the preparation of silver-based photocatalysts via
sustainable synthetic approaches.

Table 2. Silver-based photocatalysts prepared through green synthetic approaches.

Photocatalyst Green Synthetic Approach Application Ref.

AgI/BiOAc One-pot solventless milling approach Dye degradation [29]

Ag/TiO2
Use of plant extract gel (Aloe perfoliata) as a capping and

reducing agent
Picric acid degradation;

anticancer activity [30]

Ag nanoparticles Use of leaves extract (Jasminum officinale) as a capping and
stabilizing agent

Dye degradation;
antimicrobial activity [31]

Ag/AgCl nanocomposites Use of fruit extract (Azadirachta indica) as a capping and
stabilizing agent

Dye degradation;
antimicrobial activity [32]

Ag nanoparticles Use of leaves extract (Solanum virginianum) as a stabilizing
and reducing agent

Dye degradation; antibacterial
activity [33]

Ag/Ag2O nanoparticles Use of fruit extract (Capsicum annuum) as a stabilizing and
reducing agent Dye degradation [34]

Ag/CuO Use of leaves extract (Cyperus pangorei) as a stabilizing and
reducing agent

Dye degradation; antibacterial
activity [39]

Ag nanoparticles Use of fruit extracts (Malus domestica and Vitis vinifera) as
stabilizing and reducing agents

Dye degradation; antibacterial
activity [35]

Ag/CeO2 Use of plant extract (Allium sativum) as a stabilizing agent Dye degradation; antibacterial
activity [36]

Ag nanoparticles Use of leaves extract (Rauvolfia tetraphylla) as a stabilizing
agent

Dye degradation; antibacterial
activity, LED preparation [37]

Fe3O4/SiO2/Cu2O-Ag
nanocomposites

Use of fruit extract (Crataegus pentagyna) as a capping and
reducing agent

Magnetically recoverable
photocatalyst for dye

degradation
[38]

Ag@AgVO3/BiVO4
heterostructure

Recycling of Ag during the synthetic step and introduction
of the surface plasmon resonance effect

Dye degradation; antibacterial
activity [40]

Ag@AgCl
Use of microbial culture broths (tryptic soy broth (TSB) and
Lysogeny broth (LB)) for enhancing the photoreduction of

silver precursor
Dye degradation [41]
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2.2. Iron-Based Photocatalsyts

The use of plant extracts is also largely employed for the preparation of iron-based
photocatalysts. For example, photocatalytically active hematite nanorods, Fe2O3, were
prepared using the resin of the stems of banana (Musa paradisiaca Linn) flowers [42]. During
the one-pot synthetic phase, the natural resin acted as both an oxygen source as well as
structure stabilizing agent. The so-obtained material was characterized with different
techniques, and it was demonstrated that the rods have lengths between 528 and 72 nm,
as illustrated in SEM images in Figure 4. The photocatalytic efficiency of the catalyst was
investigated by solar induced reduction of dichromate and degradation of malachite green
as well as via photoelectrochemical water splitting experiments. In addition, the material
was proved to possess potential to work against lung cancer.
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Aravind’s research group developed a novel solution for the preparation of iron
oxide nanoparticles using a waste generated from the avocado industry [43]. Specifi-
cally, phytochemicals found in avocado fruit (Persea americana) rind extract were used
as reducing and stabilizing agent for the formation of iron nanoparticles starting from
iron nitrate (III), in an eco-friendly and cost competitive method. The nanoparticles were
employed as a photocatalyst for the decolorization of a sequence of different commonly
employed dyes, including malachite green, Congo red, crystal violet, safranin, and methyl
orange. In addition, the iron oxide nanoparticles showed antibacterial response against
some Gram-negative and Gram-positive bacteria (such as Escherichia coli, Streptococcus sp.,
Staphylococcus sp., Salmonella sp., Bacillus sp., Pseudomonas sp. and Proteus sp.). Similarly,
Rawat et al. prepared multi-structured Fe2O3 nanoparticles using Rhaphiolepis indicia leaves
extracts. In detail, the eco-friendly green synthesis was carried out by using the hydroxyl
groups of the polyphenols as a reducing agent, with the carboxyl and carbonyl groups as
capping agents. Thanks to different characterization techniques, including XRD, FTIR, TEM
and SEM, it was proved that multi-structured Fe2O3 was formed by nano-scaled hexagonal,
rectangular slabs, pentagonal plates, and rods. The so-produced Fe2O3 nanostructure
showed visible-light photocatalytic behavior for the degradation of Reactive Yellow-86 dye,
a pollutant found in textile wastewater. The removal efficiencies were found to also be
stable after five recycles, proving the good reusability of the photocatalyst [44].

Other natural extracts for the production of iron nanoparticles include, for example,
billygoat-weed (Ageratum conyzoides) plant extract [45] or roselle (Hibiscus sabdariffa) flower
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extract [46]. Table 3 summarizes iron-based visible-light-active photocatalysts prepared
using plant extracts.

Table 3. Iron-based photocatalysts prepared through green synthetic approaches.

Photocatalyst Green Synthetic Approach Application Ref.

Fe2O3 nanorods Use of a natural resin (Musa Paradisiaca Linn) as an
oxygen source and stabilizing agent

Dye degradation;
photoelectrochemical water

splitting; antibacterial activity
[42]

Iron oxide nanoparticles Use of food waste (Persea americana) as a stabilizing
and reducing agent

Dye degradation; antibacterial
activity [43]

Fe3O4 multistructured
nanoparticles

Use of leaves extract (Rhaphiolepis indicia) as a
capping and reducing agent Dye degradation [44]

Iron oxide nanoparticles Use of plant extract (Ageratum conyzoides) as a
stabilizing and reducing agent

Dye degradation, antibacterial
activity [45]

Iron oxide nanoparticles Use of leaves extract (Hibiscus sabdariffa) as a
stabilizing and reducing agent Dye degradation [46]

2.3. Zinc-Based Photocatalsyts

The preparation of ZnO photocatalysts via green methodologies has received many
attentions in the last decade [47]. More in details, the use of different natural extracts has
gained interest due to the easiness of the preparation of ZnO nanoparticles employing
them. It must be remarked that pure ZnO catalysts are active only in the UV region, due
to their large band gap. However, recently proposed synthetic green solutions might be
modified to prepare visible-light active doped/modified ZnO nanoparticles and deserve to
be mentioned. For example, ZnO nanoparticles (with an average diameter of 18–25 nm)
were prepared by using the leaf extract of the plant Ruta chalepensis, as illustrated in
Figure 5.
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Figure 5. Schematic representation of the preparation and utilization of ZnO nanoparticles. Taken
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The material showed a band gap of 2.86 eV (remarkably lower than the band gap of
chemically synthetized ZnO of 3.35 eV) due to lower charge transfer resistance.
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Additionally, Yang and coworkers prepared ZnO nanoparticles with peculiar quaker
ladies flower type structure using a mixture of extracts from different plants of the family
Araliaceae [48]. In detail, the extract was derived from four of the roots of panax plants
including Panax ginseng, Acanthopanax senticosus, Kalopanax septemlobus and Dendropanax
morbifera. Similarly, Zheng et al. developed a synthesis of ZnO nanoparticles using roselle
flower (Hibiscus sabdariffa) and oil palm (Elaeis guineensis) leaf extracts as stabilizing and
reducing agents in combination with NaOH [49]. The particles were found to be in the
size of 10–15 nm and in the form of agglomerated spherical shape. Other plant extracts
used for the preparation of ZnO nanoparticles include, among others, Becium grandiflorum
leaves extract, [50] sea buckthorn (Hippophae) fruit extract [51], sugar leaf (Stevia rebaudiana)
extract [52], or Green tea [53].

In order to directly prepare visible-light active Zn-base photocatalysts, the researchers’
efforts focused on the design of green methodologies for the simultaneous combination
of different metals to produce composites/supported systems active under visible light
irradiation.

For example, p-Co3O4/n-ZnO composite catalysts were produced by a co-precipitation
method using hyacinth (Eichhornia Crassipes) plant extract [54]. The use of plant extract
during the synthesis was proved to enhance the catalytic performances for the degradation
of methylene blue under visible light irradiation. In addition, the formation of p-n junction
simplifies the photogenerated electron–hole separation and further improved the catalytic
efficiency. With a similar approach, Shaheen and coworkers prepared CuO/ZnO nanopar-
ticles photocatalytically active for the degradation of methylene blue [55]. In details, they
used a penicillin extract (Penicillium corylophilum As-1) to synthesize the photocatalyst in a
fast, green, and easy way, as shown in Figure 6.
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Ag-ZnO nanocomposites (15–25 nm) were likewise prepared using potato peel extract
(Solanum tuberosum) and used for dye degradation under visible light irradiation [56].
Other recently described green methodologies for the preparation of ZnO based photoac-
tive composites include, as reported in Table 4, the preparation of Ag-ZnO nanoparti-
cles using Excoecaria agallocha leaf extract under a controlled ultrasound cavitation tech-
nique [57], the synthesis of ZnO/GdCoO3 nanocomposites in a two-phase system utilizing
Myristica fragrans leaf extracts via a high-speed stirring method [58], the preparation of
Au-ZnO hetero-nanostructures using employing pecan nuts (Carya illinoinensis) leaves
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extract [59], or the synthesis of Co-doped ZnO through the accumulation of cobalt ion onto
Eichhornia crassipes plant tissue for different days and combined with zinc [60].

Table 4. Zinc-based photocatalysts prepared through green synthetic approaches.

Photocatalyst Green Synthetic Approach Application Ref.

ZnO nanoparticles Use of leaves extract (Ruta chalepensis) as a stabilizing agent Dye degradation (UV
irradiation) [47]

ZnO nano-flowers Use of roots extract (Araliaceae family) as a stabilizing agent Dye degradation (UV
irradiation) [48]

ZnO nanoparticles Use of leaves extract (Hibiscus sabdariffa and Elaeis guineensis)
as stabilizing agents

Dye degradation (UV
irradiation) [49]

ZnO nanoparticles Use of leaves extract (Becium grandiflorum) as a stabilizing
agent

Dye degradation (UV
irradiation); antimicrobial

activity
[50]

ZnO nanoparticles Use of fruit extract (Hippophae) as a stabilizing agent Dye degradation (UV
irradiation) [51]

ZnO nanoparticles Use of leaves extract (Stevia rebaudiana) as a stabilizing agent Dye degradation (UV
irradiation) [52]

Zn-TiO2 Use of plant extract (Green Tea) as a reducing agent Dye degradation (UV
irradiation) [53]

p-Co3O4/n-ZnO Use of plant extract (Eichhornia Crassipes) as a stabilizing
and oxygen source agent Dye degradation [54]

CuO/ZnO nanoparticles Use of fungi extract (Penicillium corylophilum As-1) as a
stabilizing and reducing agent Dye degradation [55]

Ag-ZnO nanocomposites Use of plant extract (Solanum tuberosum) as a stabilizing and
reducing agent Dye degradation [56]

Ag-ZnO nanoparticles Use of leaves extract (Excoecaria agallocha) as a stabilizing
agent

Dye degradation; antibacterial
activity [57]

ZnO/GdCoO3
nanocomposites

Use of leaves extract (Myristica fragrans) as a stabilizing
agent Dye degradation [58]

Au-ZnO
hetero-nanostructures

Use of leaves extract (Carya illinoinensis) as a stabilizing
agent Dye degradation [59]

Co/ZnO Use of Eichhornia crassipes plant tissue for the accumulation
of Co and sequential combination with ZnO Dye degradation [60]

2.4. Titanium Dioxide-Based Photocatalsyts

The synthesis of titanium dioxide, perhaps the most studied photocatalytic com-
pound [4,5,61–66], has greatly evolved in the past years, and numerous green and sus-
tainable synthetic approaches have been proposed. For example, recently, Tayebi et al.
prepared TiO2 based on hexagonal mesoporous silicate (HMS) and loaded by different
concentrations of natural polyphenol oak gall tannin [67]. The use of tannin prevented the
aggregation of TiO2 nanoparticles, resulting in an enhanced photocatalytic performance for
the degradation of an anionic dye (i.e., Direct yellow 86, used in paper and textile indus-
tries). Many other plant extracts have been proposed as capping, stabilizing, and reducing
agents, for the production of TiO2 nanoparticles [68–72], while other approaches include,
for example, solventless mechanochemical techniques [73,74]. Wang and coworkers pre-
pared colored TiO2 (green, gray, orange, and yellow) through a novel mechanochemical
method consisting of milling titanium dioxide with or without melamine [75]. As shown
in Figure 7, the so-prepared materials showed some or all the phases of titanium dioxide.
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Figure 7. XRD patterns (plus photographs) of TiO2 produced via mechanochemical approach.
(1) Commercially available TiO2 P25 before ball milling, (2) P25 milled in air, (3) P25 milled with
melamine in air, (4) P25 milled in Ar, and (5) P25 milled with melamine in Ar; taken from [75]
Copyright (2020), American Chemical Society.

The different colors derived from the reduced Eg (∼2.3 eV) and the presence of
chemical and physical dopants and tailored the photocatalytic activity. TiO2 photocatalyst
were tested in the degradation of methyl red under visible light irradiation, and no loadings,
such as noble metals, metals, and metal oxides were needed. Notably, the materials had a
photocatalytic activity up to five-time higher than commercially available P25 TiO2.

2.5. Miscellaneous

Other photocatalysts prepared via green and sustainable synthesis include composites
made of different oxides, such as Cerium Oxide [76], Copper Oxide [77–79], Tin Oxide [80],
or Bismuth Vanadate [81]. For example, Raki et al. [76] prepared pure CeO2 Mn/CeO2
nanocatalsyts (9–11 nm) using seed extract of Senna Alexandrina (Cassia angustifolia) as
reducing and capping agents.

3. A Focus on Materials: Waste and Bioderived Materials

A second important approach for the preparation of green photocatalysts involves the
use of biomass or waste as sources of chemicals during the synthetic steps. Differently from
the first approach, described as the design of sustainable and environmentally friendly
synthesis, this latter methodology focuses primary on the sources of materials for the
preparation of photocatalysts. This approach strongly improves the sustainability of a pro-
cess, as it could produce a photocatalyst (with all the benefits reported in the introduction
section) by exploiting largely available (i.e., biomass) or scarcely/non-valorized (i.e., waste)
materials. The photocatalytically active systems prepared using this tactic may be divided
into materials derived from biomass and waste used as sources of carbon, and materials
derived from waste and biomass used as sources of other chemicals, as schematically
illustrated in Figure 8.
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Figure 8. Conceptual valorization of waste and biomass to photocatalyst by exploitation of carbon or
other chemicals content.

3.1. Biomass and Waste as Sources of Carbon

The most diffuse method for the preparation of biomass/waste-based photocatalysts is
centered on the utilization of carbonaceous materials such as activated carbon, carbon dots,
carbon nanotube/nanofiber, graphene, fullerene, g-C3N4, and carbon sponges/aerogels,
derived from a large variety of biomass or waste [82–91]. For example, in a very recent
work, a C-ZnO/MoS2/mesoporous carbon nanocomposite was successfully prepared
by a two-step solution-processed synthetic protocol using sucrose as a carbon source
for the preparation of a mesoporous carbonaceous supporting material [92]. The novel
ternary composite exhibited a well-interconnected 3D mesoporous microstructure assem-
bled by carbon nanosheets, loaded with quasi zero-dimensional ZnO nanoparticles and
two-dimensional MoS2 nanosheets. The material showed enhanced visible-light-driven
photocatalytic performance with remarkably high photo-corrosion resistance, as demon-
strated by photodegradation tests of methyl orange (Figure 9).
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Figure 9. Photodegradation tests for methyl orange degradation using C-ZnO/MoS2/mesoporous
carbon nanocomposite. (a) Relative concentrations (C/C0) of methyl orange as a function of the
irradiation time under visible-light irradiation; (b) kinetic plots. Taken from [92] with the permission
of Elsevier.

Importantly, the incorporation of carbon in the composite radically promoted the
photoactivity and photostability of the photocatalyst, thanks to few positive synergistic
effects, such as increased surface area and active reaction sites, boosted surface charge
utilization efficiency, and lowered bandgap.



Photochem 2021, 1 158

ZnO/carbon xerogel composite were prepared using tannin as carbon source [93].
The diffuse reflectance test demonstrated that light absorption was significantly enhanced
for the composite, while the solar light-driven photodegradation tests revealed that the
synthesized composite achieved almost complete degradation of Rhodamine B.

Also, ternary Z-scheme C-doped graphitic carbon nitride/tungsten oxide (C-doped
g-C3N4/WO3) was successfully fabricated via an hydrothermal impregnation, using cellu-
lose nanocrystal as carbon source [94]. The material exhibited narrower bandgap, enhanced
visible-light absorption and separation of charge carrier, faster interfacial charge transfer,
good oxidation/reduction capacities, and consequentially improved global photocatalytic
activity performance.

Zhang’s research group developed a novel graphitized carbon nitride photocatalysts
using the desulfurized waste liquid extracting salt from coking plants, such as ammonium
thiocyanate, ammonium thiosulfate, and ammonium sulfate. The addition of the salts
provoked a large release of sulfur-containing gas during the pyrolysis, significantly in-
creasing the specific surface area and the pore volume of the photocatalysts. In addition,
pyrolysis with sulfur-containing salts resulted in the incorporation of sulfur in the carbon,
widening the band gap of the photocatalysts to 2.94 eV (i.e., enhancing its visible light
activity). The photocatalysts showed improved NOx removal efficiency under visible light
irradiation [95].

Despite the literature reporting many other types of visible light active carbona-
ceous photocatalysts derived from biomass or waste, such as a recently published lignin-
based photocatalysts [96], a photocatalyst derived from wood flour waste (illustrated
in Figure 10) [97], or a MnFe2O4-based photocatalyst supported over coal derived from
industrially produced fly ash [98], or many others [99–101], specific insights about the
preparation and utilization of these materials have already been fully described elsewhere
and are not repeated here [23–25,102–105].
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Figure 10. Synthesis and use of a carbonaceous photocatalyst derived from wood flour waste. Taken
from [97] with the permission of Elsevier.

3.2. Biomass and Waste as Sources of (Carbon) and Chemicals

Beside the use of biomass or waste as mere sources of carbon, a more elaborated
method consists in producing visible-light active photocatalysts using waste and biomass
also as sources of other chemicals.

For example, in the past years, Luque’s research group has developed different novel
compounds using waste pig bristles as sulfur (present in the bristles in the form of cys-
teine, methionine, and cysteic acid) and carbon source, including photocatalytically active
Cu2S [106–108]. The photocatalysts was specifically prepared through a fast and easy
microwave-assisted synthesis. Cu2S showed a narrow bulk band gap of 1.2 eV and was
therefore tested for the degradation of methyl red under visible light irradiation, as shown
in Figure 11.
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The results demonstrated the possibility to prepare sulfide materials, with proved
photocatalytic activity under visible light irradiation [109], with a largely produced waste
(approximatively 225 k ton of pig bristles are produced every year in the EU), which is
still poorly valorized. Alternatively, other sulfides, such as iron sulfide (pyrite, FeS2)-based
photocatalysts can be produced using marcasite waste, a waste produced in the jewelry
industry. According to Wasanapiarnpong et al., an iron sulfide-based photocatalysts can be
used for the photocatalytic degradation of lignin [110].

In the last years, the literature has reported the use of waste eggshells as a source of
calcium carbonate for the preparation of electrodes or many types of catalysts, including
photocatalysts [111–115]. Indeed, eggshells are a waste largely produced in the dairy indus-
try and its reuse and valorization could substitute the standardly employed low sustainable
processes for their end-life treatment [116]. For example, calcium oxide nanoparticles were
prepared using waste eggshells by a simple calcination process [117]. The so-produced
nanoparticles were examined for the photocatalytic dye degradation of methylene blue
and Toluidine blue in aqueous solutions. Remarkably, the catalyst could be recycled up to
seven cycles without significant losses of activity.

Recently, Gil and coworkers developed a novel strategy for the recovery and reuti-
lization of the aluminum present in the saline slags generated during Al processing [118].
With this approach the researchers prepared different valuable materials, proposing a
sustainable alternative to the disposal of this waste sludge. For instance, they employed
saline slags in a co-precipitation method to synthesize a sequence of samples containing
zinc and various proportions of aluminum/titanium [119]. The materials were used as
photocatalysts for the removal of diclofenac and salicylic acid (probably the most consumed
non-steroidal anti-inflammatory drugs) from wastewater.

With a similar aim of valorizing an industrial waste, Ferretti et al., prepared nanometric
TiO2-based magnetic catalyst using fly ash produced from the treatment of iron and
steel [120]. The photocatalysts was prepared via a first one-step hydrothermal activation,
during which the precursor was transformed into a zeolite with good magnetic properties,
and sequentially TiO2 nanoparticles were supported on the zeolites through ultrasounds
treatment. The photocatalytic activity of the novel catalysts was verified through the
abatement of methylene blue.

Additionally, waste printed circuit boards (PCBs) can be used to produce photocata-
lysts. This type of recycling process can prevent the end life treatment of a largely-produced
waste, since 20–50 million tons of waste electric and electronic equipment are produced
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worldwide each year [121]. For example, Qian’s research group used PCBs as copper source
to prepare a Cu2O-basedphotocatalyst, and sequentially employed it for the photocatalytic
reduction of Cr(VI) under visible light irradiation [122]. Similarly, the metals contained in
waste capacitors can be reused to prepare Ta2O5 based or BaTiO3-based visible-light active
photocatalysts [123,124].

Table 5 reports last achievements in the development of visible-light-active photocata-
lysts using biomass and waste as chemical sources.

Table 5. Photocatalysts prepared through waste and biomass as sources of chemicals.

Photocatalyst Green Synthetic Approach Application Ref.

Cu2S Microwave assisted valorization of waste pig bristles
as a sulfur and carbon source Dye degradation [106]

FeS2/titanium dioxide Marcasite waste from jewelry industry as a source of
FeS2

Lignin degradation [110]

CaO Solvent free valorization of waste eggshells as a
calcium source Dye degradation [117]

ZnTiFeAl-hydrotalcites Use of saline slags, generated during Al processing, as
an Al source

Diclofenac and salicylic acid
degradation [119]

Cu2O Waste printed circuit boards (PCBs) as sources of
copper Reduction of Cr(VI) [122]

Ta2O5-based photocatalyst Waste capacitors as sources of Ta Hydrogen production [123]

Nb-Pb co-doped and
Ag-Pd-Sn-Ni loaded BaTiO3

Milling of waste capacitors (as sources of BaTiO3, Ag,
Pd, Sn, Ni, Nb, and Pb) Hydrogen production [124]

4. Summary and Outlook

National and international policies as well as the public pressure for the shifting to
a sustainable society are sensibly changing the research and development of materials.
With no doubts, this change is also positively altering the design of new photocatalytic
compounds. This mini-review has summarized some of the most recent and innovative
approaches for the green production of visible-light-active photocatalysts, dividing the
most recent works in function of the mere synthetic approach, i.e., with a focus on the
sustainable characteristics of synthesis (e.g., the use of naturally derived nanoparticles
stabilizing and reducing agents instead of classically used fossil-derived counterparts);
or in function of the use of waste or biomass materials as sources of chemicals (e.g., the
exploitation of waste slugs as sources of metals). All these methods have a common
view of a transversal thinking aimed at avoiding low-eco-friendly procedures to produce
materials (photocatalysts) designed for a green scope (i.e., Sun-driven photocatalysis). To
date, researchers have proposed many innovative and out-of-the-box solutions for the
green preparation of visible-light active photocatalysts, which further development may
definitively change the way we know photochemistry. In addition, some investigation
paths are still barely explored and may be open to the design of an infinitive number of
new materials, such as in the case of the direct use of a waste as a photocatalyst (e.g., waste
copper slag used as photocatalysts for the degradation of toxic alcohols) [125].

Nevertheless, major restrictions still limit the large-scale application of these novel
materials. Indeed, the industrial manufacturing of green photocatalysts is still economically
inconvenient and has no investor’s interest. Clearly, fossil-based low-sustainable manu-
facturing procedures are too cheap to be substituted by procedures which scale-up have
uncertain outcomes. Additionally, most of the world’s chemical plants for the production of
materials (in general) were designed to operate with high (or at least medium)-grade-purity
raw materials, having intrinsic characteristics that are difficult to fund when operating
with biomass or waste (considering also all troubles related to the different physical and
chemical properties such as different viscosity, for example when operating with a solution
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of stabilizing agents such as EDTA in comparison with phenolic enriched solutions). It
is quite obvious that the purification of biomass and waste, for example, for the selective
extraction of chemicals (such as Sulphur in the case of [106]) will be even more complicated
and increase the production costs of the so-derived photocatalysts (although they would
probably be more active, due to the removal of impurities).

Finally, it should be mention that the practice of considering and evaluating the
end-life treatment of the novel photocatalysts (or green synthetic approaches), as well as
the determination of objective data of the overall sustainability of the processes, is still
poorly diffused. Indeed, if on a hand all the discussed methods are claimed to decrease
the environmental impact of the production of photocatalysts, on the other hand, any
end-life considerations or at least any green metrics of the processes are rarely reported
and discussed. Evidently, the use of biomass or waste during the processes could have
positive effect on the environment, but these hypotheses should be supported by critical
and objective factors. For example, green metrics such as E-Factor [126] can give a rapid
and objective view of the sustainability of the process. Additionally, more detailed analysis,
such as Life Cycle Assessments (LCA) [127], can deeply describe the potential impact of
the novel photocatalysts on the environment. Parallelly, biodegradability or composability
tests of the waste eventually produced during the preparation of the photocatalysts and
may highlight critical aspects that must be modified. Additionally, some considerations of
the production costs of the novel green photocatalysts in comparison with the standardly
employed procedures should be described.
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