Recent Advances in Combined Photothermal and Photodynamic Therapies against Cancer Using Carbon Nanomaterial Platforms for In Vivo Studies
Abstract
:1. Introduction
2. Mechanisms of Photodynamic and Photothermal Therapies
3. Carbon-Based Platforms for Photothermal and Photodynamic Therapies
4. In Vivo Studies Using a Combination between Photothermal and Photodynamic Approaches against Cancer
4.1. Photothermal and Photodynamic Therapies
4.2. Trimode Treatment
4.3. Theranostic: PDT, PTT and Diagnosis Methods
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Fitzmaurice, C.; Abate, D.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdel-Rahman, O.; Abdelalim, A.; Abdoli, A.; Abdollahpour, I.; Abdulle, A.S.M.; et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017 A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019, 5, 1749–1768. [Google Scholar] [PubMed] [Green Version]
- Lv, Y.; Tao, L.; Bligh, S.W.A.; Yang, H.H.; Pan, Q.X.; Zhu, L.M. Targeted delivery and controlled release of doxorubicin into cancer cells using a multifunctional graphene oxide. Mater. Sci. Eng. C-Mater. Biol. Appl. 2016, 59, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Ryu, T.K.; Baek, S.W.; Kang, R.H.; Jeong, K.Y.; Jun, D.R.; Choi, S.W. Photodynamic and photothermal tumor therapy using phase-change material nanoparticles containing chlorin e6 and nanodiamonds. J. Control. Release 2018, 270, 237–245. [Google Scholar] [CrossRef]
- Shi, J.J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Guo, C.S.; Zheng, N.N.; Sun, T.D.; Liu, S.Q. CsxWO3 Nanorods Coated with Polyelectrolyte Multilayers as a Multifunctional Nanomaterial for Bimodal ImagingGuided Photothermal/Photodynamic Cancer Treatment. Adv. Mater. 2017, 29, 1604157. [Google Scholar] [CrossRef]
- Romero, M.P.; Buzza, H.H.; Stringasci, M.D.; Estevao, B.M.; Silva, C.C.C.; Pereira-da-Silva, M.A.; Inada, N.M.; Bagnato, V.S. Graphene Oxide Theranostic Effect: Conjugation of Photothermal and Photodynamic Therapies Based on an in vivo Demonstration. Int. J. Nanomed. 2021, 16, 1601–1616. [Google Scholar] [CrossRef]
- Dolmans, D.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef]
- Sharman, W.M.; Allen, C.M.; van Lier, J.E. Photodynamic therapeutics: Basic principles and clinical applications. Drug Discov. Today 1999, 4, 507–517. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, C.; Feng, L.Z.; Yang, K.; Liu, Z. Functional Nanomaterials for Phototherapies of Cancer. Chem. Rev. 2014, 114, 10869–10939. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, W.T.; Cui, Y.J.; Zhou, N.L.; Shen, J. Near-infrared light-mediated photodynamic/photothermal therapy nanoplatform by the assembly of Fe3O4 carbon dots with graphitic black phosphorus quantum dots. Int. J. Nanomed. 2018, 13, 2803–2819. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.L.; Zhi, X.; Yang, M.; Zhang, J.P.; Lin, L.N.; Zhao, X.; Hou, W.X.; Zhang, C.L.; Zhang, Q.; Pan, F.; et al. Tumor-triggered drug release from calcium carbonate-encapsulated gold nanostars for near-infrared photodynamic/photothermal combination antitumor therapy. Theranostics 2017, 7, 1650–1662. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Wu, H.; Liu, H.M.; Deng, Z.T.; Liu, H.; Duan, W.L.; Liu, X.; Zheng, H.R. Molecular imaging-guided photothermal/photodynamic therapy against tumor by iRGD-modified indocyanine green nanoparticles. J. Control. Release 2016, 224, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.Z.; Sun, Z.R.; Ren, Y.; Chen, X.; Zhang, W.; Zhu, X.H.; Mao, Z.W.; Shen, J.L.; Nie, S.N. Advances in nanomaterials for use in photothermal and photodynamic therapeutics. Mol. Med. Rep. 2019, 20, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Liu, Y.; Yang, Z.; Zhang, L.; Xiao, L.J.; Liu, P.; Wang, J.; Yi, C.F.; Xu, Z.S.; Ren, J.H. Albumin/sulfonamide stabilized iron porphyrin metal organic framework nanocomposites: Targeting tumor hypoxia by carbonic anhydrase IX inhibition and T-1-T-2 dual mode MRI guided photodynamic/photothermal therapy. J. Mater. Chem. B 2018, 6, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Robinson, J.T.; Tabakman, S.M.; Yang, K.; Dai, H.J. Carbon materials for drug delivery & cancer therapy. Mater. Today 2011, 14, 316–323. [Google Scholar]
- Rajakumar, G.; Zhang, X.H.; Gomathi, T.; Wang, S.F.; Ansari, M.A.; Mydhili, G.; Nirmala, G.; Alzohairy, M.A.; Chung, I.M. Current Use of Carbon-Based Materials for Biomedical Applications-A Prospective and Review. Processes 2020, 8, 355. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Saeed, G.; Zhu, L.; Hui, K.N.; Kim, N.H.; Lee, J.H. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chem. Eng. J. 2021, 403, 126352. [Google Scholar] [CrossRef]
- Master, A.; Livingston, M.; Sen Gupta, A. Photodynamic nanomedicine in the treatment of solid tumors: Perspectives and challenges. J. Control. Release 2013, 168, 88–102. [Google Scholar] [CrossRef] [Green Version]
- Jang, B.; Park, J.Y.; Tung, C.H.; Kim, I.H.; Choi, Y. Gold Nanorod-Photosensitizer Complex for Near-Infrared Fluorescence Imaging and Photodynamic/Photothermal Therapy In Vivo. Acs Nano 2011, 5, 1086–1094. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, C.; Cheng, L.; He, W.W.; Cheng, Z.; Liu, Z. Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy. Biomaterials 2014, 35, 2915–2923. [Google Scholar] [CrossRef]
- Liu, X.D.; Yang, G.B.; Zhang, L.F.; Liu, Z.; Cheng, Z.P.; Zhu, X.L. Photosensitizer cross-linked nano-micelle platform for multimodal imaging guided synergistic photothermal/photodynamic therapy. Nanoscale 2016, 8, 15323–15339. [Google Scholar] [CrossRef]
- Yang, J.M.; Yang, H.; Lin, L.W. Quantum Dot Nano Thermometers Reveal Heterogeneous Local Thermogenesis in Living Cells. Acs Nano 2011, 5, 5067–5071. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.S.; Lovell, J.F.; Chen, J.; Zheng, G. Ablation of Hypoxic Tumors with Dose-Equivalent Photothermal, but Not Photodynamic, Therapy Using a Nanostructured Porphyrin Assembly. ACS Nano 2013, 7, 2541–2550. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Yang, G.X.; Gai, S.L.; He, F.; Lv, R.C.; Dai, Y.L.; Yang, P.P. Imaging-Guided and Light-Triggered Chemo-/Photodynamic/Photothermal Therapy Based on Gd (III) Chelated Mesoporous Silica Hybrid Spheres. ACS Biomater. Sci. Eng. 2016, 2, 2058–2071. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Zhang, H.J. Hybrid materials based on lanthanide organic complexes: A review. Chem. Soc. Rev. 2013, 42, 387–410. [Google Scholar] [CrossRef]
- Chen, Y.; Ai, K.L.; Liu, J.H.; Ren, X.Y.; Jiang, C.H.; Lu, L.H. Polydopamine-based coordination nanocomplex for T-1/T-2 dual mode magnetic resonance imaging-guided chemo-photothermal synergistic therapy. Biomaterials 2016, 77, 198–206. [Google Scholar] [CrossRef]
- Cai, W.; Gao, H.Y.; Chu, C.C.; Wang, X.Y.; Wang, J.Q.; Zhang, P.F.; Lin, G.; Li, W.G.; Liu, G.; Chen, X.Y. Engineering Phototheranostic Nanoscale Metal-Organic Frameworks for Multimodal Imaging-Guided Cancer Therapy. ACS Appl. Mater. Interfaces 2017, 9, 2040–2051. [Google Scholar] [CrossRef]
- Hyun, H.; Park, M.H.; Owens, E.A.; Wada, H.; Henary, M.; Handgraaf, H.J.M.; Vahrmeijer, A.L.; Frangioni, J.V.; Choi, H.S. Structure-inherent targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging. Nat. Med. 2015, 21, 192–197. [Google Scholar] [CrossRef] [Green Version]
- Vahrmeijer, A.L.; Hutteman, M.; van der Vorst, J.R.; van de Velde, C.J.H.; Frangioni, J.V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 2013, 10, 507–518. [Google Scholar] [CrossRef] [Green Version]
- Li, W.W.; Rong, P.F.; Yang, K.; Huang, P.; Sun, K.; Chen, X.Y. Semimetal nanomaterials of antimony as highly efficient agent for photoacoustic imaging and photothermal therapy. Biomaterials 2015, 45, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Yang, G.X.; Yang, P.P.; Lv, R.C.; Gai, S.L.; Li, C.X.; He, F.; Lin, J. Assembly of Au Plasmonic Photothermal Agent and Iron Oxide Nanoparticles on Ultrathin Black Phosphorus for Targeted Photothermal and Photodynamic Cancer Therapy. Adv. Funct. Mater. 2017, 27, 1700371. [Google Scholar] [CrossRef]
- Lu, D.; Tao, R.; Wang, Z. Carbon-based materials for photodynamic therapy: A mini-review. Front. Chem. Sci. Eng. 2019, 13, 310–323. [Google Scholar] [CrossRef]
- Pinto, A.; Pocard, M. Photodynamic therapy and photothermal therapy for the treatment of peritoneal metastasis: A systematic review. Pleura Peritoneum 2018, 3, doi. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Rai, D.B.; Jangid, A.K.; Kulhari, H. A Review of Theranostics Applications and Toxicities of Carbon Nanomaterials. Curr. Drug Metab. 2019, 20, 506–532. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.H.; Shan, Y.L.; Cong, H.L.; Shen, Y.Q.; Yu, B. Advanced Carbon-based Nanoplatforms Combining Drug Delivery and Thermal Therapy for Cancer Treatment. Curr. Pharm. Des. 2018, 24, 4060–4076. [Google Scholar] [CrossRef] [PubMed]
- Zhi, D.F.; Yang, T.; O’Hagan, J.; Zhang, S.B.; Donnelly, R.F. Photothermal therapy. J. Control. Release 2020, 325, 52–71. [Google Scholar] [CrossRef]
- Wilson, B.C.; Patterson, M.S. The physics, biophysics and technology of photodynamic therapy. Phys. Med. Biol. 2008, 53, R61–R109. [Google Scholar] [CrossRef]
- Feng, G.X.; Zhang, G.Q.; Ding, D. Design of superior phototheranostic agents guided by Jablonski diagrams. Chem. Soc. Rev. 2020, 49, 8179–8234. [Google Scholar] [CrossRef]
- Ackroyd, R.; Kelty, C.; Brown, N.; Reed, M. The history of photodetection and photodynamic therapy. Photochem. Photobiol. 2001, 74, 656–669. [Google Scholar] [CrossRef]
- Triesscheijn, M.; Baas, P.; Schellens, J.H.M.; Stewart, F.A. Photodynamic therapy in oncology. Oncologist 2006, 11, 1034–1044. [Google Scholar] [CrossRef]
- Chen, H.Z.; Zhao, Y.L. Applications of Light-Responsive Systems for Cancer Theranostics. Acs Appl. Mater. Interfaces 2018, 10, 21021–21034. [Google Scholar] [CrossRef]
- Rozanova, N.; Zhang, J.Z. Photothermal ablation therapy for cancer based on metal nanostructures. Sci. China Ser. B-Chem. 2009, 52, 1559–1575. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zhan, X.L.; Xiong, J.; Peng, S.S.; Huang, W.; Joshi, R.; Cai, Y.; Liu, Y.L.; Li, R.; Yuan, K.; et al. Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Wang, H.; Cheng, Y. Strategies for efficient photothermal therapy at mild temperatures: Progresses and challenges. Chin. Chem. Lett. 2021, 7, 48–59. [Google Scholar]
- Jaffe, H.H.; Miller, A.L. Fates of electronic excitation energy. J. Chem. Educ. 1966, 43, 469. [Google Scholar] [CrossRef]
- Dias, L.D.; Mfouo-Tynga, I.S. Learning from Nature: Bioinspired Chlorin-Based Photosensitizers Immobilized on Carbon Materials for Combined Photodynamic and Photothermal Therapy. Biomimetics 2020, 5, 53. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, S.K.S.; Ghoshal, S.; Rai, A.K.; Singh, S. Carbon nanotubes as a novel drug delivery system for anticancer therapy: A review. Braz. J. Pharm. Sci. 2013, 49, 629–643. [Google Scholar] [CrossRef] [Green Version]
- Mendes, R.G.; Bachmatiuk, A.; Buchner, B.; Cuniberti, G.; Rummeli, M.H. Carbon nanostructures as multi-functional drug delivery platforms. J. Mater. Chem. B 2013, 1, 401–428. [Google Scholar] [CrossRef]
- Maiti, D.; Tong, X.M.; Mou, X.Z.; Yang, K. Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Front. Pharmacol. 2019, 9, 1401. [Google Scholar] [CrossRef]
- Francisco, W.; Ferreira, F.V.; Ferreira, E.V.; Cividanes, L.D.; Coutinho, A.D.; Thim, G.P. Functionalization of Multi-Walled Carbon Nanotube and Mechanical Property of Epoxy-Based Nanocomposite. J. Aerosp. Technol. Manag. 2015, 7, 289–293. [Google Scholar] [CrossRef]
- Dideikin, A.T.; Vul, A.Y. Graphene Oxide and Derivatives: The Place in Graphene Family. Front. Phys. 2019, 6, 105–108. [Google Scholar] [CrossRef]
- Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015, 115, 4744–4822. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.D.; Hu, T.T.; Liang, R.Z.; Wei, M. Application of Zero-Dimensional Nanomaterials in Biosensing. Front. Chem. 2020, 8, 320. [Google Scholar] [CrossRef] [PubMed]
- Schwerdtfeger, P.; Wirz, L.N.; Avery, J. The topology of fullerenes. Wiley Interdiscip. Rev.-Comput. Mol. Sci. 2015, 5, 96–145. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Davis, C.; Cai, W.B.; He, L.; Chen, X.Y.; Dai, H.J. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2008, 105, 1410–1415. [Google Scholar] [CrossRef] [Green Version]
- Jasim, D.A.; Menard-Moyon, C.; Begin, D.; Bianco, A.; Kostarelos, K. Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets. Chem. Sci. 2015, 6, 3952–3964. [Google Scholar] [CrossRef] [Green Version]
- Jasim, D.A.; Boutin, H.; Fairclough, M.; Menard-Moyon, C.; Prenant, C.; Bianco, A.; Kostarelos, K. Thickness of functionalized graphene oxide sheets plays critical role in tissue accumulation and urinary excretion: A pilot PET/CT study. Appl. Mater. Today 2016, 4, 24–30. [Google Scholar] [CrossRef]
- Gao, C.J.; Dong, P.; Lin, Z.X.; Guo, X.L.; Jiang, B.P.; Ji, S.C.; Liang, H.; Shen, X.C. Near-Infrared Light Responsive Imaging-Guided Photothermal and Photodynamic Synergistic Therapy Nanoplatform Based on Carbon Nanohorns for Efficient Cancer Treatment. Chem.-A Eur. J. 2018, 24, 12827–12837. [Google Scholar] [CrossRef]
- Yang, J.X.; Hou, M.F.; Sun, W.S.; Wu, Q.H.; Xu, J.; Xiong, L.Q.; Chai, Y.M.; Liu, Y.X.; Yu, M.H.; Wang, H.L.; et al. Sequential PDT and PTT Using Dual-Modal Single-Walled Carbon Nanohorns Synergistically Promote Systemic Immune Responses against Tumor Metastasis and Relapse. Adv. Sci. 2020, 7, 2001088. [Google Scholar] [CrossRef]
- Gao, C.J.; Jian, J.; Lin, Z.X.; Yu, Y.X.; Jiang, B.P.; Chen, H.; Shen, X.C. Hypericin-Loaded Carbon Nanohorn Hybrid for Combined Photodynamic and Photothermal Therapy in Vivo. Langmuir 2019, 35, 8228–8237. [Google Scholar] [CrossRef]
- Sun, S.; Chen, J.Q.; Jiang, K.; Tang, Z.D.; Wang, Y.H.; Li, Z.J.; Liu, C.B.; Wu, A.G.; Lin, H.W. Ce6-Modified Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power. ACS Appl. Mater. Interfaces 2019, 11, 5791–5803. [Google Scholar] [CrossRef] [PubMed]
- Kalluru, P.; Vankayala, R.; Chiang, C.S.; Hwang, K.C. Nano-graphene oxide-mediated In vivo fluorescence imaging and bimodal photodynamic and photothermal destruction of tumors. Biomaterials 2016, 95, 1–10. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, M.S.C.; Gouvea, A.L.; de Moura, L.D.; Paterno, L.G.; de Souza, P.E.N.; Bastos, A.P.; Damasceno, E.A.M.; Veiga-Souza, F.H.; de Azevedo, R.B.; Bao, S.N. Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model. J. Nanobiotechnol. 2018, 16, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, J.C.; Jia, Q.Y.; Liu, W.M.; Lan, M.H.; Zhou, B.J.; Guo, L.; Zhou, H.Y.; Zhang, H.Y.; Wang, Y.; Gu, Y.; et al. Carbon Dots with Intrinsic Theranostic Properties for Bioimaging, Red-Light-Triggered Photodynamic/Photothermal Simultaneous Therapy In Vitro and In Vivo. Adv. Healthc. Mater. 2016, 5, 665–675. [Google Scholar] [CrossRef]
- Yin, Z.H.; Chen, D.P.; Zou, J.H.; Shao, J.J.; Tang, H.; Xu, H.; Si, W.L.; Dong, X.C. Tumor Microenvironment Responsive Oxygen-Self-Generating Nanoplatform for Dual-Imaging Guided Photodynamic and Photothermal Therapy. Chemistryselect 2018, 3, 4366–4373. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, W.T.; Zhou, N.L.; Yuan, P.; Su, Y.T.; Shao, M.N.; Chi, C.; Pan, F.Y. Near-infrared light triggered photo-therapy, in combination with chemotherapy using magnetofluorescent carbon quantum dots for effective cancer treating. Carbon 2017, 118, 752–764. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, W.T.; Cui, Y.J.; Chu, X.H.; Sun, B.H.; Zhou, N.L.; Shen, J. Magnetofluorescent Fe3O4/carbon quantum dots coated single-walled carbon nanotubes as dual-modal targeted imaging and chemo/photodynamic/photothermal triple-modal therapeutic agents. Chem. Eng. J. 2018, 338, 526–538. [Google Scholar] [CrossRef]
- Wang, D.Q.; Zhang, N.; Jing, X.N.; Zhang, Y.; Xu, Y.Z.; Meng, L.J. A tumor-microenvironment fully responsive nano-platform for MRI-guided photodynamic and photothermal synergistic therapy. J. Mater. Chem. B 2020, 8, 8271–8281. [Google Scholar] [CrossRef]
Entry | Animal Lineage | Model | PDT | PTT | Main Formulation | Used Protocol | References | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PS/ Concentration | Route of Administration | Drug-Light Interval | Wavelenght (Dose-Irradiance and Time) | PS/ Concentration | Route of Administration | PS/PA-Light Interval | Wavelenght (Dose-Irradiance and Time) | ||||||
1 | Nude mice (female: 6–7 weeks) | 4T1cells into the hind legs | ICG: 25 ug/mL | In situ (intratumoral) | 4 h and 4 days | 808 nm (0.3 W/cm2) | single-walled carbon nanohorns (SWNH) | In situ (intratumoral) | 4 h and 4 days | 808 nm (0.3 W/cm2) | PBS | One irradiation after 4 h of injection and a second irradiation after 4 days. | [58] |
2 | Balb/c mice | 4T1 cells | Chlorin e6/10 mg/kgb.w | intravenous | - | 650 nm (40 mW cm2) for 10 min | SWNHs | intravenous | - | 808 nm (0.5 W cm−2 for 10 min). | PBS | PDT + PTT combination therapy was performed by treating the tumors with PDT and PTT sequentially | [59] |
3 | mice (aged 6−7 weeks, female | 4T1 cells | SWNH-hypericin | intratumorally | Four days later | 590 nm (0.5 W/cm2 for 5 min). | SWNH-hypericin | intratumorally | Four days later | 808 nm (0.5 W/cm2 for 5 min). | saline | SWNH-Hyp nanohybrid and 590/808 nm laser irradiation. | [60] |
5 | Nude mice | 4T1 subcutaneous tumor | chlorin e6/ 2 uM | tail vein | 8 h | 671 nm (500 mW/cm2 for 10 min) | amino-rich red emissive carbon dots (RCDs)/ 2 mg/mL | tail vein | 8 h | 671 nm (500 mW/cm2 for 10 min) | PBS | For the combination, use of one compound Ce6-RCDs, with one irradiation | [61] |
6 | Mice C57BL/6J male | B16F0 melanoma cells implanted subcutaneously, tumors treated with ~2 mm diameters. | GO-PEG-folate (200 mL/mice; 8 mg/kg) | intravenous injection | 24 h | 980 nm (250 mW/cm2 for 10 min) | GO-PEG-folate (200 mL/mice; 8 mg/kg) | intravenous injection | 24 h | 808 nm (250 mW/cm2 for 8 min) and 980 nm (250 mW/cm2 for 10 min) | GO-PEG-folate (200 mL/mice; 8 mg/kg) | Single treatment (GO-PEG-folate exert dual modal PDT/PTT upon 980 nm activation). | [62] |
7 | Female BALB/c mice (8 weeks old, 21–25 g) | 4T1-Luc cells (2 × 104 cells in 50 µL by subcutaneous injection), tumors treated with ~ 25 mm3 | MB (2.5 mg/kg) | Intratumorally injection | 10 min | 660 nm LED light (90.8 J/cm2 for 10 min) | NanoGO (10 mg/kg) | Intratumorally injection | 10 min | 808 nm NIR laser light (8.3 kJ/cm2 for 15 min) | NanoGO-MB (25 µL, 10 mg/kg of NanoGO and 2.5 mg/kg of MB) | PTT was performed after the PDT for combined PDT/PTT | [63] |
8 | Nude BALB/c mice | KB cells (2 × 106 mL−1) subcutaneously injected, tumors treated with ~60 mm3 | Ce6 (0.05 mg/mL) | intratumoral injection | immediately and 6 days after | laser He-Ne source, 670 nm, (2 W/cm2 for 4 min). | ND/PCM (5 mg/kg) | intratumoral injection | immediately and 6 days after | laser He-Ne source, 670 nm, (2 W/cm2 for 4 min). | Ce6/ND/PCM (0.1 mL, equivalent ND 5 mg/kg body weight) and ND/PCM (0.1 mL, equivalent ND 5 mg/kg body weight) | The laser was exposed to tumor site two times after post injection and 6 days to PDT e PTT simultaneous | [3] |
9 | nude mice | HeLa tumor, tumor treated with 20–25 mm3 | CQD (2 mg/mL, 100 μL) | intravenous injection via the tail vein | 6 h | 635 nm laser (0.1 W/cm2 for 10 min) | CQD (2 mg/mL, 100 μL) | intravenous injection via the tail vein | 6 h | 635 nm laser (2 W/cm2 for 10 min) | CQD (2 mg/mL, 100 μL) | 635 nm laser (2 W/cm2 for 10 min) by PDT/PTT simultaneous | [64] |
10 | Nude mice | subcutaneously injecting HeLa cells | Free Ce6 | intrevenous | 24 h | 660 nm, (1 W/cm2 for 10 min) | Carbon nanotubes (CNTs), | intravenous | 24 h | 808 nm, (1.0 W/cm2 for 10 min) | PBS | Each treatment was made separetely and the combination was made with a molecue Ce6-MnO2/ CNTs (CMCs) following the iiradiation with both wavelenght | [65] |
11 | female nude mice | 1 × 106 human liver cancer cells (HeLa) implanted subcutaneously in the left and right axillaries of nude mice. Tumors treated with 100–120 mm3 | Rf | tail vein injection | 8 h | 671 nm laser (2 W/cm2 for 8 min) | FeN@CQD | tail vein injection | 8 h | 671 nm laser (2 W/cm2 for 8 min) | GP-Rf-FA-FeN@CQDs (1 mg/mL) and GP-Rf-FA-FeN@CQDs-DOX (1 mg/mL) | PDT and PTT simultaneous | [66] |
12 | Nude mice | Hela cells | SWCNTs-PEG-Fe3O4@CQDs: 100 μg/mL, 100 μL | Intravenous via tail vein | - | 808 nm (0.5 W/cm2 for 5 min) | SWCNTs-PEGFe3O4@ CQDs/DOX-Apt: 100 μg/mL, 100 μL | Intravenous via tail vein | - | 808 nm (2 W/cm2 for 5 min) | PBS | They treated with only PDT, only CT, PDT and CT and irradiation with both laser power (0.5 W/cm2 and 2 W/cm2) for trimode therapy. | [67] |
13 | Female Kunming mice | subcutaneously injecting U14 cells in the left axilla, tumor treated with diameter ∼6−10 mm | GSC (0.1 mL, 1000 μg/mL) | intravenous injection | 1 h | 650 nm laser irradiation (0.5 W/cm2 for 10 min) | DOX-GSCCP (0.1 mL, 1000 μg/mL) | intravenous injection | 1 h | 980 nm laser irradiation (0.5 W/cm2 for 10 min) | DOX-GSCCP (0.1 mL, 1000 μg/mL) | 650 and 980 nm laser irradiation | [24] |
14 | Balb/c nude mice | HeLa cells | Chlorin e6/5 mg/kg | intravenous | 0, 4 and 8 days | 660 nm (100 mW/cm2) for 5 min | Carbon nanotubes | intravenous | 0, 4 and 8 days | 808 nm (1 W cm−2) for 5 min | Saline | The tumors were irradiated with 660 nm (100 mW·cm−2) and/or 808 nm (1 W·cm−2) NIR laser for 5 min each 24 h after every injection | [68] |
15 | male C57BL/6 mice | subcutaneous HeLa tumor by injecting of 1×106 HeLa cells (200 µL), treated with 100 mm3 | GP-PGA-Fe3O4-CDs@BPQDs (50 μg/mL) | intratumoral injection | 2.5 h | laser-irradiated at 660 nm (0.5 W/cm2 for 15 min) | GP-PGA-Fe3O4-CDs@BPQDs (50 μg/mL) | intratumoral injection | 2 h | laser-irradiated at 808 nm (1 W/cm2 for 5 min) | GP-PGA-Fe3O4-CDs@BPQDs (50 μg/mL) | PTT was permormed 2 h after the injection while PDT was performed 2.5 h | [10] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, L.D.; Buzzá, H.H.; Stringasci, M.D.; Bagnato, V.S. Recent Advances in Combined Photothermal and Photodynamic Therapies against Cancer Using Carbon Nanomaterial Platforms for In Vivo Studies. Photochem 2021, 1, 434-447. https://doi.org/10.3390/photochem1030026
Dias LD, Buzzá HH, Stringasci MD, Bagnato VS. Recent Advances in Combined Photothermal and Photodynamic Therapies against Cancer Using Carbon Nanomaterial Platforms for In Vivo Studies. Photochem. 2021; 1(3):434-447. https://doi.org/10.3390/photochem1030026
Chicago/Turabian StyleDias, Lucas D., Hilde H. Buzzá, Mirian D. Stringasci, and Vanderlei S. Bagnato. 2021. "Recent Advances in Combined Photothermal and Photodynamic Therapies against Cancer Using Carbon Nanomaterial Platforms for In Vivo Studies" Photochem 1, no. 3: 434-447. https://doi.org/10.3390/photochem1030026
APA StyleDias, L. D., Buzzá, H. H., Stringasci, M. D., & Bagnato, V. S. (2021). Recent Advances in Combined Photothermal and Photodynamic Therapies against Cancer Using Carbon Nanomaterial Platforms for In Vivo Studies. Photochem, 1(3), 434-447. https://doi.org/10.3390/photochem1030026