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Abstract: In this work, 2-F-4-OH benzoic acid was isolated in Ar matrices and conformational
changes were induced by near-IR irradiating the sample. Upon deposition, three conformers could be
observed in the matrix, denoted as A1, A2, and D1, respectively. A1 and A2 are trans carboxylic acids,
i.e., there is an intramolecular H bond between the H and the carbonyl O atoms in the COOH group,
whereas D1 is a cis carboxylic acid with an intramolecular H bond between the F atom and the H
atom in the COOH group, which otherwise has the same structure as A1. The difference between A1
and A2 is in the orientation of the carbonyl O atom with regard to the F atom, i.e., whether they are on
the opposite or on the same side of the molecule, respectively. All three conformers have their H atom
in their 4-OH group, facing the opposite direction with regard to the F atom. The stretching overtones
of the 4-OH and the carboxylic OH groups were selectively excited in the case of each conformer.
Unlike A2, which did not show any response to irradiation, A1 could be converted to the higher
energy form D1. The D1 conformer spontaneously converts back to A1 via tunneling; however, the
conversion rate could be significantly increased by selectively exciting the OH vibrational overtones
of D1. Quantum efficiencies have been determined for the ‘local’ or ‘remote’ excitations, i.e., when the
carboxylic OH or the 4-OH group is excited in order to induce the rotamerization of the carboxylic OH
group. Both ‘local’ and ‘remote’ conformational switching are induced by the same type of vibration,
which allows for a direct comparison of how much energy is lost by energy dissipation during the
two processes. The experimental findings indicate that the ‘local’ excitation is only marginally more
efficient than the ‘remote’ one.

Keywords: conformational switching; near-IR laser irradiation; intramolecular vibrational energy
relaxation (IVR); quantum efficiency; hydrogen atom tunneling; 2-fluoro-4-hydroxy benzoic acid;
matrix isolation; IR spectroscopy

1. Introduction

To fully understand chemical reactions occurring in the environment, an investigation
of the excited states of molecules and their relaxation is of the utmost importance. A
vibrationally excited molecule may emit its excess energy via intra- or intermolecular
processes. One example of the latter is when an excited molecule collides with a nearby
one, transferring its excess energy in forms of vibrational, rotational, or translational energy.
In contrast to this, during intramolecular vibrational energy transfer or intramolecular
vibrational energy relaxation (IVR), the energy flows from one excited vibrational mode to
another while the energy difference dissipates into the surroundings. This also means that
in certain cases the excitation of a vibrational mode on one side of the molecule may result
in a change in the geometry of a functional group on another, remote side of the molecule,
called remote conformational switching.

The matrix isolation (MI) technique has been successfully used to study the conforma-
tional switching of molecules isolated in inert, nearly interaction-free matrices using mostly
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solidified noble or other inert gases (such as Ne, Ar, Kr, Xe, N2, etc.) as matrix material. The
intermolecular relaxation of matrix-isolated molecules is greatly limited, thereby allowing
for the examination of the IVR processes. Furthermore, another primary advantage of
the technique is that the resulting IR spectrum contains sharp absorption peaks, meaning
that they do not overlap; thus, the different conformers can be distinguished from each
other, and the induced changes in their population can be monitored. It is important to
note, however, that in order to achieve this vibrationally induced conformational change,
selective excitation of the vibrational modes is required, which necessitates the use of
monochromatic laser irradiation sources.

The MI technique combined with near-IR laser is routinely performed to excite the
vibrational overtones of hydroxyl (–OH) functional groups, thus efficiently inducing their
rotation or even the conformational change of the whole carboxylic (–C(O)OH) group.
This has been successfully done in the case of many different carboxylic acid monomers
in Ar matrices, such as formic, [1–3] acetic, [4–6] trifluoroacetic, [7] tribromoacetic, [8]
propionic, [9] 2-chloropropionic, [10] glycolic, [11] pyruvic, [12], oxamic, [13] and various
dicarboxylic acids [14–16] as well as amino acids [17–22]. Furthermore, the OH rotamer-
ization induced by selectively exciting the OH vibrational stretching overtone of cyclic or
heterocyclic organic acid conformers has also been studied in Ar matrices for squaric, [23]
2-furoic, [24] and 2-fluorobenzoic acid [25]. It should be noted that the works above stud-
ied short-range IVR, where the rotamerization of a functional group is achieved by the
excitation of the vibrational overtone of that particular group.

Of greater interest are those cases when the excitation and the rotamerization occurs
in different parts of the molecule. Compared to its short-range counterpart, far fewer
matrix-isolation studies have been devoted to these long-range IVR processes. The first
one was cysteine, which showed the rotamerization of the thiol (–SH) group upon exciting
the νOH stretching overtone (νOH), although it occurred along with other conformational
changes in the molecule, thus rendering it not a selective method [21]. Nevertheless,
this work pointed to the feasibility of remote switching using molecular antennas. The
next step was to find a molecular system representing the first example for selective
conformational control. Accordingly, the rotamerization of the thiol group in 2-thiocytosine
was found to be reversibly carried out by pumping the amino (–NH2) group [26]. The
first remote switching using an NH group as a molecular antenna was done in the case of
6-methoxyindole, where the methoxy group could be selectively induced to rotate around
the C–O bond [27]. Another molecule that greatly exemplifies this phenomenon is kojic
acid, whose hydroxymethyl (–CH2OH) moiety goes through rotamerization upon exciting
the –OH group on the other side of the ring of the molecule [28]. The OH or NH2 groups of
3-hydroxy-2-formyl-2H-azirine and 3-amino-2-formyl-2H-azirine, respectively, also serve
as molecular antennas that facilitate conformational control over the heavy aldehyde moiety
three bonds away [29]. The current ‘record holder’ system, investigated by matrix-isolation
IR spectroscopy, is E-glutaconic acid, in which long-range IVR could act over eight covalent
bonds to successfully induce the conformational change of an OH group [30].

In this work, we aimed to investigate the selective conformational switching of a
matrix-isolated 2-fluoro-4-hydroxy derivative of benzoic acid (2-F-4-OH benzoic acid in
short) achieved by narrowband near-IR laser irradiation. This molecule serves as a great
example, in which both ‘local’ and ‘remote’ switching can be done by exciting the same type
of vibration (i.e., OH overtone) selectively, and their efficiencies can be directly compared
with each other. Preliminary experiments showed that upon the excitation of the 2ν(OH)
stretching vibrational overtone in a hydroxy carboxylic acid, change in the geometry of
the COOH group in another part of the molecule can be efficiently induced [31]. In other
words, higher energy cis carboxylic acid can be generated from the more stable trans form
by remote switching (using the notation of Pettersson et al. for the two types of carboxylic
acids) [1]. Moreover, the cis isomer is assumed to slowly convert back to trans over time
via tunneling, which can also be monitored by IR spectrometry. The experiments were
supplemented by quantum-chemical computations, which made the spectral analysis easier
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by allowing for simple comparison between the simulated spectra and the experimental
ones. It is important to emphasize that effective remote switching that acts over multiple
bonds has been observed in only a handful of molecular systems. As such, in order to fully
understand its mechanism, it is necessary to find more examples of this phenomenon and
study its overall efficiency.

2. Experimental Methods
2.1. MI-IR Experiments

A commercial 2-F-4-OH benzoic acid (≤100%) sample obtained from Sigma-Aldrich
was used without further purification. The compound was inserted into a Knudsen cell
with a heatable cartridge in a small quartz sample holder directly connected to the vacuum
chamber. The adsorbed water and other volatiles had been removed the day before the
experiments by slightly heating the sample compartment to 355 K and keeping it at that
temperature for a couple of hours. A closed-cycle helium refrigeration system (Janis CCS-
350R cold head cooled by a CTI Cryogenics 22 refrigerator) was used to cool down the
CsI optical window to 13 K, which serves as the deposition temperature. The temperature
of the cold window was measured by a silicon diode sensor connected to a LakeShore
321 digital temperature controller; the base pressure in the cooled chamber is usually found
in the high 10−9 mbar region. A sample sublimation temperature of 375 ± 2 K was used
during the experiment whereupon the vapors were mixed and co-deposited in a 1:1000
ratio with Ar (Messer, 99.9999%) on the window. The orientation of the window (at a
relative angle of 45◦ with regard to the sample oven and the spectrometer beam) allows
for a simultaneous deposition and spectral collection. For the latter, a Bruker IFS 55 FT-IR
spectrometer equipped with an MCT detector cooled with liquid nitrogen was used. The
transmission mid-IR spectra were taken during and after the deposition by averaging
16 and 128 scans, respectively, in the 2000–600 cm−1 region with 1 cm−1 resolution using
KBr as a beam splitter and a low-pass filter with a cutoff wavenumber of 1830 cm−1.
In order to define the 2ν(OH) stretching overtones of each conformer necessary for the
laser irradiation experiments, preliminary near-IR spectra were collected with the same
instrument, without the cutoff filter, utilizing a W lamp and a CaF2 beam splitter in the
spectral region of the 8000–2500 cm−1 region at a resolution of 1 cm−1.

2.2. Near-IR Laser Irradiation

The deposited matrices were in situ irradiated through the outer KBr window of the
cryostat, applying a tunable narrowband laser light provided by the idler beam of an Opti-
cal Parametric Oscillator (OPO; GWU/Spectra-Physics VersaScan MB 240, fwhm ≈ 5 cm−1).
The OPO was pumped by a pulsed Nd:YAG laser (Spectra-Physics Quanta Ray Lab 150,
p ≈ 2.1–2.2 W, λ = 355 nm, f = 10 Hz, duration = 2–3 ns). The laser coming from the
OPO device is perpendicular to the beam of the IR spectrometer, whereas the CsI cold
window has a relative angle of 45◦ to both of them, allowing for an online spectral collec-
tion during laser irradiation. The wavelength of the laser beam was selected so that the
2ν(OH) modes of the conformers of the matrix-isolated molecule were selectively excited.
Accordingly, the sample was irradiated at 6952.0 cm−1, 6994.9 cm−1, 7077.1 cm−1, and at
7093.2 cm−1 for approximately 60 min in each case; the photon fluxes were measured to
be (3.1 ± 0.6) × 1017 cm−2 s−1 (6952.0 cm−1), (3.2 ± 0.1) × 1017 cm−2 s−1 (6994.9 cm−1),
(3.3 ± 0.1) × 1017 cm−2 s−1 (7077.1 cm−1), and (3.6 ± 0.1) × 1017 cm−2 s−1 (7093.2 cm−1),
respectively. Mid-IR spectra were collected online in the meantime, averaging 16 scans
(during the 6952.0 cm−1 irradiation) and 12 scans (during the rest of the irradiations),
respectively; 128 scans were taken before and after irradiation. After the irradiation exper-
iments, the sample was left in the dark overnight while continuously collecting mid-IR
spectra, averaging 128 scans every 15 min.
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2.3. Theoretical Computations

The quantum chemical geometry optimizations, as well as the harmonic and anhar-
monic frequency computations, were carried out in Gaussian 09 (Rev. D01) with Becke’s
three-parameter hybrid functional B3LYP, using the non-local and local exchange correlation
functionals as described by Lee–Yang–Parr and Vosko–Wilk–Nusair III, respectively [32–35].
Dunning’s correlation-consistent cc-pVTZ basis set was used [36]. The anharmonic frequen-
cies were used to simulate the vibrational spectra by convoluting them with Lorentzian
functions with an FWHM of 0.5 cm−1 in the Synspec software [37]. The isomerization barri-
ers were estimated from the optimized transition states (TSs) using the Berny algorithm, as
implemented in Gaussian [38]. This was followed by the computation of intrinsic reaction
paths (IRPs) in the Cartesian coordinates [39]. The tunneling rates were estimated using
the Wentzel–Kramers–Brillouin (WKB) model described in detail elsewhere [40].

3. Results and Discussion
3.1. Structure and Energy of the Conformers

The conformational structure of the molecule is primarily defined by its two func-
tional groups, the 4-hydroxyl (–OH) and the carboxylic group (–COOH). The H atom on
both moieties may have two orientations (the respective torsional angles are denoted by
ϕ1 and ϕ3), whereas –COOH has two forms based on the alignment of its carbonyl (C=O)
group (ϕ2). This means 23 = 8 different conformers, which are depicted in Scheme 1, in
which the torsional angles most important to the molecular structure are also marked. The
conformers with ϕ3 close to 180◦ are named A (ϕ1 ≈ 180◦) or B (ϕ1 ≈ 0◦), respectively. The
same applies to structures C and D, which can have a ϕ3 value of 0◦ with ϕ1 ≈ 0◦ or 180◦,
respectively, whereas the labels 1 or 2 after them differentiate the ones with ϕ2 ≈ 180◦ and
0◦, respectively. This means that the following notations for the eight conformers are used
throughout the manuscript: A1, A2, B1, B2, C1, C2, D1 and D2; their optimized geometries
are listed Tables S1–S20 in the Supplementary Material.

According to the orientation of the groups discussed above, the conformers have
different stabilities. The most stable conformer is A1, which is closely followed by B1; the
only difference between them is the alignment of the 4-OH group. Apart from this, they
both have a trans-COOH carboxylic group (i.e., there is a weak intramolecular H bond
between the H atom of the OH group with the C=O oxygen atom), whereas the O atom in
the C=O group is on the opposite side with regard to the F atom. It should be noted that
the energy difference is predicted to be 0.8 kJ mol−1, which is within the accuracy of the
computational level. The next pair of conformers have slightly higher relative energies (by
ca. 3 kJ mol−1) denoted with A2 and B2. They, similarly to A1 and B1, only differ from
each other in the orientation of the 4-OH hydrogen atom as well, but, unlike A1 and B1,
their C=O oxygen atoms are on the same side as the F atom. The next four conformers
have cis-COOH groups, meaning inherently higher relative energies due to breakage of
the abovementioned intramolecular H bond, which is counterbalanced to some extent in
the case of the C1 and D1 by the formation of a less energetic H bond with the F atom.
Their relative energy (with regard to the A1 form) is approximately 8 kJ mol−1; this value
should more or less reflect on the difference of the H atom bond strength between the cases
when the H atom creates the bond with the C=O oxygen and when it bonds with the F
atom. Nevertheless, C1 and D1 only differ in the orientation of the 4-OH hydrogen atom,
whereas their C=O oxygen atoms (similarly to A1 and B1) are on the opposite side of the
molecule with regard to the F atom, thus allowing for H bonding between the carboxylic H
atom and the F atom. Lastly, C2 and D2 are unique in the sense that, due to steric effects,
their –COOH group is not in the same plane as the aromatic ring, which means that the ϕ2
torsional angle is closer to 30◦ instead of 0◦ and can be both positive and negative (i.e., the
C=O oxygen atom and the carboxylic OH group are slightly above or below the plane of the
aromatic ring). This results in the fact that both C2 and D2 are actually chiral and have two
enantiomeric forms differentiated by an asterisk in Table 1 (i.e., C2, C2*, D2, D2*), and the
only difference between C2 and D2 is the orientation of the 4-OH group. Apart from this,
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their C=O oxygen atoms, similarly to A2 and B2, is on the same side of the molecule with
regard to the F atom and have cis-COOH groups (similarly to C1 and D1). As a matter of
fact, this causes distortion of the molecule as the COOH hydrogen atom becomes relatively
close to the H atom on the C atom in position six of the ring. Due to the unfavorable effects
listed above, there is no intramolecular H bond in them, and therefore, they are much less
stable than the other conformers; their relative energy lies more than 30 kJ mol−1 above the
most stable A1 form. This also implies that their Boltzmann population at the sample inlet
temperature (375 ± 2 K) is expected to be significantly less than 1%, which prohibits their
IR detection in the deposited matrix.
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Table 1. Torsional angles (in degrees) and anharmonic zero-point energy-corrected relative energy
values (kJ mol–1) of the 2-F-4-OH-benzoic acid conformers.

Torsional Angles a/◦
∆EZPE,anharm

b
φ 1 φ 2 φ 3

A1 180.0 −180.0 180.0 0.0
A2 −180.0 0.0 −180.0 3.4
B1 0.0 180.0 180.0 0.8
B2 0.0 0.0 180.0 3.5
C1 0.0 180.0 0.0 9.1
C2 0.8 −33.6 −11.2 30.0
C2* −0.8 33.6 11.2 30.0
D1 180.0 180.0 0.0 7.4
D2 179.8 −34.6 −11.7 30.2
D2* −179.8 34.6 11.7 30.4

a The torsional angles are defined in Scheme 1; b with regard to the minimum energy of−595.396627 hartree particle−1.

The relative energies of the TSs, along with their optimized geometries, are summa-
rized in Tables S21–S49 in the Supplementary Material. Based on the values listed there,
the rotation of the 4-OH group along the ϕ1 torsional angle has a barrier of approximately
20 kJ mol−1 (A1↔B1, A2↔B2, C1↔D1, C2↔D2), and the same holds true for the rota-
tion along ϕ2 in the case of A1↔A2 and B1↔B2, but not for C1↔C2 and D1↔D2 where
the barriers of the ‘rightward’ direction (C1→C2 and D1→D2, ≈30 kJ mol−1) are much
higher than those in the reverse one (C1←C2, D1←D2, <10 kJ mol−1) due to the energy
difference of the minima A1, B1 and A2, B2, respectively. Unsurprisingly, the barrier of the
rotation around ϕ3 is the highest one with values lying between 40–50 kJ mol−1 (A1↔D1,
B1↔C1), except if one of the conformers is much more stable than the other one. In these
cases (A2↔D2, B2↔C2), the barrier heights are about 50 and 20 kJ mol−1, respectively,
depending on the direction of the transition. It should be noted that all the rotations
around the three torsional angles may go either clockwise or counterclockwise, but the TSs
produced by the two different rotational directions are mirror images of each other and,
therefore, have identical energy and vibrational spectra. It is also worth mentioning that the
TSs between the enantiomers C2↔C2* and D2↔D2* have a planar structure, and their
energy is only slightly above the minima (≈5 kJ mol−1, approximately 400 in cm−1), which
allows for their rapid interconversion upon exposure to the spectrometer beam source.

3.2. Changes upon Near-IR Irradiation, Vibrational Analysis

Some selected regions of the near- and mid-IR spectra of the sample molecule de-
posited in an Ar matrix are visualized in Figures 1a, 2a, 3a and 4a. Furthermore, by having
a look at the mid-IR spectra in Figures 1b, 2c, 3c and 4c, one can see that irradiating some
2ν(OH) stretching overtone bands results in a selective conformational switch. The spectral
features can be divided into three different groups based on their general behavior upon
irradiation: (a) the ones that increase, (b) the ones that decrease, and (c) the ones that do not
change, which should belong to three different conformers or groups of conformers. One
should also bear in mind that the enantiomers C2, C2* and D2, D2* cannot be differentiated
by their IR spectrum. Furthermore, based on theoretical results, the conformers that differ
only in the orientation of their 4-OH groups have almost identical vibrational frequencies;
thus, they cannot be distinguished either (Tables S11–S20). This leads us to the conclusion
that only four band groups should be detected in the matrix belonging to the conformer
pairs (1) A1/B1, (2) A2/B2, (3) C1/D1, and (4) C2/D2 (or C2*/D2*). However, as men-
tioned above, only three groups of bands could be distinguished based on their response
to laser irradiation. As such, the conformer pairs with the highest energy (i.e., group (4))
could be excluded based on the following considerations: First, they are 30 kJ mol−1 above
the most stable members of group (1), meaning that their Boltzmann population at the
deposition temperature is expected to be 0.003%. For comparison, the values for the other
groups are 72% for group (1), 23% for group (2), and 5% for group (3). It is important
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to note that the abundance of conformer groups in the freshly deposited matrix is very
similar to these theoretically obtained ones and can be determined to be 61% for group (1),
33% for group (2), and 6% for group (3). Consequently, group (4) is not expected in the
freshly deposited matrix. Secondly, no new bands arise during any of the near-IR excitation
(only the relative intensities of the bands that are already present change), suggesting that
members of this group are not generated upon irradiation. Furthermore, it can be assumed
that only the most stable members of each of the three groups (i.e., A1, A2, and D1) are
expected to be present in the matrix, since the higher energy members can be converted to
them via tunneling. This hypothesis will be justified in Section 3.5 where an estimate on
the tunneling rates are given.
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Figure 1. (a) Near-IR spectrum of the 2-F-4-OH benzoic acid in the 7110–6920 cm−1 range after
deposition; (b) difference spectrum after laser irradiating the matrix at 6952.0 cm−1 (black trace) and
at 6994.9 cm−1 (red), respectively.

The bands belonging to A1 all decrease when its 2ν(OH) stretching overtone bands,
found at 6952.0 cm−1 and 7077.1 cm−1, are excited. This occurs with the simultaneous
increase in the bands belonging to D1, i.e., the A1→D1 conversion is induced. Similarly,
when the matrix is irradiated at 6994.9 cm−1 and at 7093.2 cm−1, the opposite can be
observed, i.e., the D1→A1 conversion; therefore these bands must belong to the 2ν(OH)
stretching overtones of the former conformer. It is important to note the findings described
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above show that no matter which OH group is actually excited (i.e., the 4-OH or the
carboxylic one), all near-IR irradiation results in the same rotamerization process, which is
the cis–trans rotamerization of the carboxylic moiety. As a consequence, the irradiation of
the carboxylic OH group (6952.0 cm−1 for A1 and 6994.9 cm−1 for D1) will be called ‘local’
excitation, whereas that of the 4-OH group (7077.1 cm−1 for A1 and 7093.2 cm−1 for D1)
will be called ‘remote’ excitation hereafter.
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Figure 2. (a) Mid-IR spectrum of the 2-F-4-OH benzoic acid in the 1800–1400 cm−1 range after
deposition; (b) simulated spectrum of conformers A1 (blue negative trace), A2 (red), and D1 (black)
based on the anharmonic computations; (c) difference spectrum obtained by subtracting the spectrum
taken after deposition from the one collected after ‘locally’ exciting A1 at 6952.0 cm−1.

In contrast to the results discussed above, the bands of A2 are not affected by any of the
irradiations, even if an excitation wavelength of 6978.8 cm−1 is used, which is the frequency
of its local carboxylic 2ν(OH) stretching overtone. Accordingly, Table 2 sums up the general
response of these three conformers to the excitation of various O–H stretching overtone
bands. The different response to near-IR laser irradiation, accompanied by a comparison of
the experimental and theoretical spectra, allows for assignment of the vibrational bands;
Tables 3–5 lists their spectral assignment for part of the mid-IR spectral range.
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Figure 3. (a) Mid-IR spectrum of the 2-F-4-OH benzoic acid in the 1400–1000 cm−1 range after
deposition; (b) simulated spectrum of conformers A1 (blue negative trace), A2 (red), and D1 (black)
based on the anharmonic computations; (c) difference spectrum obtained by subtracting the spectrum
taken after deposition from the one collected after ‘locally’ exciting A1 at 6952.0 cm−1.

Table 2. General behavior of the bands of conformers A1, A2, and D1 upon near-IR laser excitation
of their O–H stretching overtone peaks.

Excitation Wavelength (cm−1) a

6952.0 (‘Local’) 6994.9 (‘Local’) 7093.2
(‘Remote’)

7077.1
(‘Remote’)

A1 − + − +
A2 0 0 0 0
D1 + − + −

+: increasing signal, −: decreasing signal, 0: no change; a ‘local’: excitation of the carboxylic OH, ‘remote’:
excitation of the 4-OH group.
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Figure 4. (a) Mid-IR spectrum of the 2-F-4-OH benzoic acid in the 1000–600 cm−1 range after deposi-
tion; (b) simulated spectrum of conformers A1 (blue negative trace), A2 (red), and D1 (black) based
on the anharmonic computations; (c) difference spectrum obtained by subtracting the spectrum taken
after deposition from the one collected after ‘locally’ exciting A1 at 6952.0 cm−1. The atmospheric
CO2 band is masked in the spectrum.

Table 3. Spectral assignment of conformer A1 for the mid-IR region of 1800–600 cm−1.

Experimental Theoretical
Mode Description b

ν (cm−1) Irel.
a ν (cm−1) I (km mol−1)

1742.5 288 1746.2 329 ν6 ν(C=O)
1625.1 80 1618.4 170 ν7 ν(CC)arom.
1600.3 58 1586.9 52 ν8 ν(CC)arom.

1517.3, 1510.5 6.6 1498.2 11 ν9
ν(CC)arom.,
β(CCH)

1466.5, 1461.8 119 1459.6 113 ν10
ν(CC)arom.,
β(CCH)

1376.9, 1373.3 11 1369.2 49 ν11
ν(C–C),

β(COH)COOH
1333.1 25 1335.4 46 ν12 ν(CC)arom.

1301.0 148 1298.8 121 ν13
ν(C–O)4-OH,
β(CCH)

1263.0 29 1246.5 11 ν14 β(CCH)
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Table 3. Cont.

Experimental Theoretical
Mode Description b

ν (cm−1) Irel.
a ν (cm−1) I (km mol−1)

1243.9 1.9 ? ?
1219.9 5.6 1217.7 21 2ν29 2δ(ring)
1204.7 36 1206.4 22 ν15 β(COH)4-OH

1184.9 128 1180.1 98 ν16
β(COH)COOH,

β(CCH)
1151.8 4.4 ? ?
1144.2 44 1146.3 38 ν17 β(CCH)

1117.4, 1114.3 224 1115.6 212 ν18 β(CCH)

1094.6 9.7 1084.7 26 ν19
ν(C–O)COOH,

ν(CF)
972.5 65 976.6 29 ν21 β(CCC)arom.

863.5, 858.0 44 872.8 29 ν22 γ(CCH)
823.5 2.8 829.1 1.8 ν23 γ(CCH)

769.7 72 775.6 37 ν24
τ(COOH),
τ(ring)

746.1 7.7 746.1 6.2 ν25 δ(ring)
735.0 9.5 731.7 7.8 ν26 β(O=C–O)

691.1, 680.9 33 698.9 17 ν27
τ(COOH),
τ(ring)

606.5 22 608.4 28 ν29 δ(ring)
a Normalized experimental band areas obtained by multiplying each integrated band area by the sum of the
theoretical infrared intensities divided by the sum of the experimental band areas; b ν: stretching, β: in-plane
bending, γ: out-of-plane bending, δ: in-plane deformation, τ: out-of-plane deformation, ?: unassigned peak.

Table 4. Spectral assignment of conformer D1 for the mid-IR region of 1800–600 cm−1.

Experimental Theoretical
Mode Description b

ν (cm−1) Irel.
a ν (cm−1) I (km mol−1)

1772.0 409 1778.2 257 ν6 ν(C=O)
1628.2sh 135 1619.1 140 ν7 ν(CC)arom.

1601.2sh,b 15 1590.5 27 ν8 ν(CC)arom.

1508.7, 1484.2 20 1499.6 16 ν9
β(CCH),

ν(CC)arom.
1458.7,

1452.1, 1449.1,
1444.1

95 1451.6 81 ν10
ν(CC)arom.,
β(CCH)

1347.8, 1340.1 465 1307.8 790 ν12 β(COH)COOH

1331.8 44 1333.1 34 ν11
ν(CC)arom.,
β(COH)

1308.1 43 ?

1297.8 219 1298.8 247 ν13
β(CCH),

ν(C–O)4-OH
1251.0 28 1248.8 26 ν14 β(CCH)
1226.9 8.3 ?
1215.9 10 ?

1196.1 31 1213.2 9.5 ν15
β(CCH),

β(COH)COOH
1179.8 15 1182.4 85 ν16 β(COH)4-OH
1136.2 64 1122.1 97 ν18 β(CCH)
1126.2 36 1139.6 10 ν17 β(CCH)

1085.0, 1081.9 15 1060.9 0.012 ν19
ν(C–O)COOH,

ν(CF)
1048.3 14 ? ?
965.6 70 968.3 18 ν21 β(CCC)arom.

854.4, 851.5 45 872.4 41 ν22 γ(CCH)
825.9 10 832.5 6.3 ν23 γ(CCH)
763.2 51 754.4 11 ν25 β(O=C–O)
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Table 4. Cont.

Experimental Theoretical
Mode Description b

ν (cm−1) Irel.
a ν (cm−1) I (km mol−1)

736.8 5.5 739.4 2.3 ν26 δ(ring)

683.5, 678.1 25 692.1 8.6 ν27
τ(COOH),
τ(ring)

625.1 24 632.5 10 ν28
τ(COOH),
τ(ring)

610.5 36 612.1 20 ν29 δ(ring)
a Normalized experimental band areas obtained by multiplying each integrated band area by the sum of the
theoretical infrared intensities divided by the sum of the experimental band areas; b ν: stretching, β: in-plane
bending, γ: out-of-plane bending, δ: in-plane deformation, τ: out-of-plane deformation, ?: unassigned peak.

Table 5. Spectral assignment of conformer A2 for the mid-IR region of 1800–600 cm−1.

Experimental Theoretical
Mode Description b

ν (cm−1) Irel.
a ν (cm−1) I (km mol−1)

1763.8, 1757.3 378 1769.2 196 ν6 ν(C=O)
1607.9 4.8 1616.9 89 ν7 ν(CC)arom.
1572.7 2.2 1587.0 98 ν8 ν(CC)arom.

1515.1 13 1498.0 27 ν9
β(CCH),

ν(CC)arom.

1468.4sh 11 1455.3 18 ν10
ν(CC)arom.,
β(CCH)

1357.5 16 1351.2 26 ν11
ν(CC)arom.,

β(COH)COOH

1301.2sh 53 1298.8 162 ν13
ν(C–O)4-OH,
β(COH)COOH

1239.0 8.3 1245.5 57 ν27 + ν31
τ(ring, COOH) +
γ(CCH)COOH

1177.0 31 1173.0 97 ν16
β(COH)COOH,

ν(C–C)
1154.5 1.9 1157.0 20 ν17 β(CCH)

1128.6, 1122.0 123 1125.1 327 ν18 β(CCH)
1097.2 2.8 ? ?
1063.0,

1059.6, 1057.7 58 1048.8 96 ν19 ν(C–O)COOH

859.4sh 14 875.1 33 ν22 γ(CCH), τ(ring)

820.3 1.1 825.9 2.5 ν23
γ(CCH),
τ(COOH)

770.8sh 26 775.5 22 ν24
τ(COOH),
γ(CCH)

743.5 3.0 747.1 3.2 ν25 δ(ring)

689.1 10 702.2 35 ν27
τ(ring),

τ(COOH)
a Normalized experimental band areas obtained by multiplying each integrated band area by the sum of the
theoretical infrared intensities divided by the sum of the experimental band areas; b ν: stretching, β: in-plane
bending, γ: out-of-plane bending, δ: in-plane deformation, τ: out-of-plane deformation, ?: unassigned peak.

3.3. Kinetics of the Near-IR Induced Rotamerization, Quantum Efficiencies

The temporal evolution of the spectrum can be monitored throughout the near-IR
irradiation, which provides us with a quantitative means of obtaining the conversion
rate. The kinetic curves are plotted in Figure 5 for the 1742.5 and 1628.2 cm−1 bands for
conformers A1 and D1, respectively. A single exponential function was used to fit the
decay profiles:
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At(X, ṽ) = At=0(X, ṽ)e−kt + At=∞(X, ṽ) (1)

where At(X, ṽ) is the integrated area (in cm−1) of the band of conformer X with a vibrational
frequency of ṽ (X = A1 or D1; ṽ = 1742.5 cm−1 if X = A1 and ṽ = 1628.2 cm−1 if X = D1), t is
time passed since the beginning of the irradiation (in sec), and k is the pseudo-first order
rate constant (in s−1).
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Figure 5. Kinetic curves of the 1742.5 cm−1 (a–d) and 1628.2 cm−1 (e–h) bands upon near-IR
irradiations of 6952.0 cm−1 (a,e), 6994.9 cm−1 (b,f), 7093.2 cm−1 (c,g), and 7077.1 cm−1 (d,h).

The following equation could be used to fit the growth profiles:

At(X, ṽ) = At=∞(X, ṽ)(1-e−kt) (2)

Moreover, the quantum efficiencies can be estimated using the formula given below [3,6,41]
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φ(i) = k(ṽ)/σi(ṽ)I(ṽ) (3)

where φ(i) is the quantum yield of the process when exciting the ith vibrational mode at
the overtone wavenumber ṽ; k(ṽ) is the rotamerization rate in s−1, whereas σi(ṽ) is the
absorption cross-section of that particular vibrational mode in cm2; and I(ṽ) is the average
photon intensity of the laser beam at that wavelength in cm2 s−1. We can obtain σi(ṽ) in cm2

when the absorbance of the excited overtone band (A, dimensionless value) is divided by
the calculated column density of the decaying conformer at the beginning of irradiation
(N, in cm−2). Furthermore, the latter can be deduced from the integrated peak area of one
absorption band of the conformer (Aint, in cm) and by knowing the absorption coefficient
(α, in cm) and the area of irradiation (S = 1 cm2), respectively:

N = ln(10) Aint/αS (4)

Even though α is not known for our system, a rough estimate can be given based on
the computed anharmonic IR intensities (Tables 3 and 4). In order to determine N, the
strong and well-resolved ν(C=O) stretching vibrational modes were used. Moreover, I(ṽ)
can be obtained if the output power of the produced near-IR laser light (P, in W) is divided
by the photon energy (Ephoton, in J) times the surface area S. It should be noted that P was
measured without the KBr window in the beam path; thus, P and I(ṽ) both represent an
upper estimate, which also means that the quantum efficiencies deduced here are lower
estimates. Table 6 lists all the derived values.

Table 6. Rotamerization rates (kX, in sec−1, where X = A1 or D1, respectively) of the conformers
upon near-IR irradiation. Positive values show growth, whereas negative ones indicate decay.
Computed quantum yields for the rotamerization of the carboxylic OH group when exciting the OH
stretching overtones.

Near-IR Irradiation (cm−1) a

6952.0 (Local) 6994.9 (Local) 7093.2 (Remote) 7077.1 (Remote)

kA1 −(9.9 ± 0.2) × 10−4 (8.6 ± 0.2) × 10−4 −(5.0 ± 0.1) × 10−4 (3.2 ± 0.1) × 10−4

kD1 (9.3 ± 0.3) × 10−4 −(8.1 ± 0.1) × 10−4 (5.2 ± 0.5) × 10−4 −(3.8 ± 0.5) × 10−4

Aint (cm) 1.896 1.039 1.782 1.126
α (cm) 5.5 × 10−17 4.3 × 10−17 5.5 × 10−17 4.3 × 10−17

N (cm−2) 8.0 × 1016 5.6 × 1016 7.5 × 1016 6.0 × 1016

A 0.0020 0.0008 0.0012 0.0006
σi(ṽ) (cm2) 2.5 × 10−20 1.4 × 10−20 1.6 × 10−20 1.0 × 10−20

P (W) 0.044 ± 0.008 0.045 ± 0.001 0.046 ± 0.001 0.050 ± 0.001
Ephoton (J) 1.4 × 10−19 1.4 × 10−19 1.4 × 10−19 1.4 × 10−19

I(ṽ) (cm−2 s−1) (3.1 ± 0.6) × 1017 (3.2 ± 0.1) × 1017 (3.3 ± 0.1) × 1017 (3.6 ± 0.1) × 1017

φ(i) (E3) 1.2 × 10−1 1.9 × 10−1 9.7 × 10−2 9.7 × 10−2

Niso (s−1) 7.7 × 1013 4.7 × 1013 3.8 × 1013 2.1 × 1013

Nabs (s−1) 1.4 × 1015 5.9 × 1014 9.1 × 1014 5.0 × 1014

φ(i) (E5) 5.5 × 10−2 8.0 × 10−2 4.2 × 10−1 4.2 × 10−2

φ(i)average (9 ± 3) × 10−2 (1.4 ± 0.5) × 10−1 (7 ± 3) × 10−2 (7 ± 3) × 10−2

a ‘local’: excitation of the carboxylic OH, ‘remote’: excitation of the 4-OH group.

As an alternative approach, φ(i) can also be estimated as follows:

φ(i) = Niso/Nabs (5)

where Niso denotes the number of molecules converted, and Nabs is equal to the number of
photons absorbed per time unit (both in s−1).

Niso = k(ṽ)NS (6)

Nabs = (1 − 10 − A)I(ṽ)S (7)
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The averaged value φ(i)average varies between 1.4× 10−1 and 7× 10−2 (Table 6), which
agree well with, for instance, those of the formic acid (1.7 × 10−1, 7 × 10−2) [3], acetic acid
(2.2 × 10−2) [6], and propionic acid (1.4 × 10−2) [41], respectively, but they are significantly
higher than those of amino acids, such as glycine (8 × 10−4) [18] and alanine (5 × 10−4 and
1 × 10−3), respectively [19]. It is also worth noting that the relative uncertainty of φ(i)average
is found to be around 30–40%, which is also in agreement with previous findings [6,41].
By having a look at the φ(i)average values belonging to the different excitation frequencies,
it can be deduced that those of the ‘local’ processes do not differ significantly from each
other. Furthermore, the φ(i)average values of the ‘remote’ processes are comparable to the
‘local’ ones, which is somewhat unexpected, since it would be straightforward to think that
energy dissipation is not negligible when exciting a distant functional group that results in
lower efficiencies for the ‘remote’ excitations. Nevertheless, this does not necessarily hold
true because, for instance, thioacetamide, which also shows a remote molecular switching
property upon near-IR irradiation, has φ(i)average values of 3.7 × 10−2 to 7.2 × 10−2 [42];
these are not significantly lower than the quantum efficiencies listed above. It has to
be kept in mind, however, that the IVR process in thioacetamide acts through only four
bonds instead of the eight in 2-F-4-OH benzoic acid, thus the current findings might still
be surprising. A possible explanation for the minor difference between the quantum
efficiencies of the ‘local’ and ‘remote’ excitations might be the rapid redistribution of the
vibrational energy within the molecule, which has a much higher rate than that of the
energy dissipation into the surrounding matrix. In this case, the latter would be the one
that determines the overall efficiency, i.e., it would matter less which vibrational mode of
the molecule is actually excited.

3.4. Tunneling Decay Kinetics

After the irradiation experiments, the matrix was irradiated once more with the
6952.0 cm−1 laser light to bleach conformer A1 and generate as much D1 as possible. Then,
the sample was left in the dark overnight while continuously collecting the mid-IR spec-
tra. Furthermore, it is important to recall that a low-pass filter with a cutoff wavelength
of 1830 cm−1 was installed between the spectrometer and the sample during the experi-
ment. This was done in order to prevent the processes induced by the broadband IR light
originating from the spectrometer beam source, which is known to facilitate unwanted
rotamerization processes [43–45]. It should be noted that the photon energy at the filter
cutoff wavelength is 21.9 kJ mol−1, which is significantly below the A1←D1 rotamerization
barrier (36.7 kJ mol−1, Table S49). However, this cutoff energy is comparable to, or even
higher than, the barrier of processes involving the change of other torsional angles. For
instance, the 4-OH group almost rotates freely around, and the rotation of the carboxylic
group should also be made possible upon exposure to the IR beam. It is also important to
note that the 36.7 kJ mol−1 barrier (which equals 3068 cm−1) should be easily overcome
without the presence of the filter by exciting the vibrational modes above this threshold,
such as the O–H stretching vibrations; this finding justifies the use of the filter.

Figure 6 shows the kinetic growth/decay of conformers A1 and D1, respectively, when
the already irradiated matrix was left in the dark overnight. To fit the experimental data,
the same single exponential functions defined by equations E1 and E2 were used as in
Section 3.3. The k values, as expected, are significantly (by roughly 2 orders of magnitude)
lower than those obtained for the vibrationally induced processes and have a fair agreement
with each other. The half-life of D1 was found to be around 115,000 ± 4000 s, which is
some 32 h. It is interesting to note, however, that the second-order exponentials could
also be fitted on these data providing a somewhat improved fit. The same holds true for
the irradiation-induced processes, in most cases. This finding implies that there may be
matrix sites with different vibrationally induced rotamerization and tunneling rates; thus,
they can be classified as ‘slow’ and ‘fast’, which is a phenomenon that has been previously
described [10,23,46].
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6952.0 cm−1 near-IR irradiations when the matrix is left in the dark overnight.

3.5. Estimating the Tunneling Half-Life

The tunneling rates of the various feasible pathways can be estimated based on
computational considerations, which can be used to interpret the experimental findings.
The intrinsic reaction paths can be obtained after running IRC computations in Gaussian,
which allows for estimation of the width and the height of the barriers that fundamentally
determine the tunneling half-lives of the processes. Figures S1–S4 show the computed IRC
profiles between the isomers, which also contain the barrier heights and widths used in the
calculations. The WKB method mentioned in Section 2.3 was used to predict the tunneling
rates using the equation below:

P(E) = e−π2w
√

2m(V0−E)/h (8)

where P(E) is the probability of the tunneling process, m stands for the particle mass
(1.68 × 10–27 kg for H), V0 is the barrier height, E is the particle energy (both in J), h is
Planck’s constant, and w is the barrier width (in m). The tunneling rate k (in s–1) can
be obtained by multiplying P(E) by the frequency of attempts (n, in s–1), which in the
latter can be estimated using the anharmonic frequency of the vibrational mode that takes
place in the process (ṽ, in m–1) by means of the formula ν = ṽc, where c is the speed
of light (299,792,458 m s–1). The half-life t1/2 (in s–1) can be derived from k using the
equation t1/2 = ln2/k. It is important to note that, due to the inherent uncertainty of the
computational results, it is not extraordinary to have a difference of orders of magnitude
between the computational and experimental values. What really matters is how the
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calculated values compare to each other, and this is why the theoretically obtained values
can be scaled up with a uniform factor, so that they will be equal to their experimental
counterparts [47]. Here, only the D1→A1 process that can be observed, so the theoretical
value was multiplied by a scaling factor of 10,500, and the same was done for all of the
other processes as well. Scheme 2 visualizes the tunneling rates of all possible processes,
including the rotation of the 4-OH group, the OH group in the COOH moiety, and that of
the whole COOH group.
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What can be deduced from Scheme 2 is that all of the higher energy conformers (C1,
C2, D1, D2), even if they are in the sample in detectable amounts, quickly convert to lower
energy ones, such as A2, B2, or D1. For instance, if there is any C1 in the matrix at the
beginning, most of it should be converted to D1 by the end of the deposition, and the other
processes are even faster than that one. B2 converts to A2 in less than a minute, whereas
D1 is shown to slowly transform into A1. It is important to note that neither A2 nor B2
may convert to their counterparts A1 or B1 via tunneling over a reasonable timescale and
that the conversion rate of D2→A2 is some seven orders of magnitude faster than that of
D1→A1, which may explain why the former process cannot be observed experimentally.
Most importantly, the scheme also nicely shows why only three forms may be expected to
be present in the matrix after deposition, namely A1, A2, and D1, which is in accordance
with the experimental results.

4. Conclusions

In this study, 2-F-4-OH benzoic acid was isolated in Ar matrices at low temperatures
while collecting its mid-IR spectra. The molecule has eight different conformers based
on the position of three fundamental torsional angles, which are the orientation of the
H atom in the 4-OH group and that of the O and H atoms in the –COOH group at the
other end of the aromatic ring. The spectral assignment can be made by comparing
the experimental spectrum with the theoretically predicted spectra of the conformers.
Based on the vibrational analysis, only the three most stable conformers (A1, A2, and D1)
are expected to be present in the matrix after deposition, which are supported by their
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calculated Boltzmann populations at the deposition temperature. When exciting the 2ν(OH)
stretching overtones of the conformers, it can be deduced that A1 converts to D1 and vice
versa, meaning that rotation of the H atom on the COOH group is induced. In contrast
to this, no similar effect could be observed for conformer A2. The response of A1 or D1
depends only marginally on whether the irradiation occurred ‘locally’ (i.e., by the excitation
of the OH of the COOH group) or ‘remotely’ (by the excitation of the 4-OH moiety). The
behavior of the bands upon excitation further confirms the vibrational assignment. The
kinetic rates of the rotamerization, as well as the quantum efficiencies of the ‘local’ and
‘remote’ excitations, were also determined. According to this, the efficiency is similar in
all cases independently on the excitation wavelength. The spontaneous conversion of the
higher energy conformer D1 to the more stable A1 via tunneling was also examined, and,
as such, its rate was determined and found to be roughly two orders of magnitude slower
than that of the vibrationally induced one.

This molecule represents a great example, where both the local and remote switching
could be studied simultaneously, thus allowing for their direct comparison. Therefore,
the molecular system presented here further extends our understanding of intramolecular
vibrational energy transfer processes.

Supplementary Materials: The following supporting information can be downloaded at: https:
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