Consecutive Multicomponent Coupling-Addition Synthesis and Chromophore Characteristics of Cyclohexene-Embedded Merocyanines and Cyanines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Structure
2.2. Absorption and Emission Characteristics
2.3. Calculated Electronic Structure
3. Conclusions
4. Experimental
4.1. 5,5-Dimethyl-3-oxocyclohex-1-en-1-yl trifluoromethanesulfonate (2)
4.2. General Procedure (GP) for the Three-Component Synthesis of Merocyanines 5 and 8
4.3. (E)-5,5-Dimethyl-3-(2-morpholinovinyl)cyclohex-2-en-1-one (5a)
4.4. (E)-5,5-Dimethyl-3-[2-(pyrrolidin-1-yl)vinyl]cyclohex-2-en-1-one (5b)
4.5. (E)-5,5-Dimethyl-3-(2-morpholino-2-phenylvinyl)cyclohex-2-en-1-one (5c)
4.6. (E)-5,5-Dimethyl-3-[2-phenyl-2-(piperidin-1-yl)vinyl]cyclohex-2-en-1-one (5d)
4.7. (E)-5,5-Dimethyl-3-[2-phenyl-2-(pyrrolidin-1-yl)vinyl]cyclohex-2-en-1-one (5e)
4.8. 5,5-Dimethyl-3-[(E)-3-((E)-1,3,3-trimethylindolin-2-yliden)prop-1-en-1-yl]cyclohex-2-en-1-one (8)
4.9. General Procedure (GP) for the Pseudo Four-Component Synthesis of Cyanines 6
4.10. (E)-1-{5,5-Dimethyl-3-[2-(pyrrolidin-1-yl)vinyl]cyclohex-2-en-1-ylidene}pyrrolidin-1-ium (6b)
4.11. €-1-{5,5-Dimethyl-3-[2-phenyl-2-(pyrrolidin-1-yl)vinyl]cyclohex-2-en-1-yliden}pyrrolidin-1-ium (6c)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shindy, H. Fundamentals in the chemistry of cyanine dyes: A review. Dye. Pigment. 2017, 145, 505–513. [Google Scholar] [CrossRef]
- Panigrahi, M.; Dash, S.; Patel, S.; Mishra, B.K. Syntheses of cyanines: A review. Tetrahedron 2012, 68, 781–805. [Google Scholar] [CrossRef]
- Kulinich, A.V.; Ishchenko, A.A. Merocyanine dyes: Synthesis, structure, properties and applications. Russ. Chem. Rev. 2009, 78, 141–164. [Google Scholar] [CrossRef]
- Shirinian, V.Z.; Shimkin, A.A. Merocyanines: Synthesis and Application. Top. Heterocycl. Chem. 2008, 14, 75–105. [Google Scholar] [CrossRef]
- Mishra, A.; Behera, R.K.; Behera, P.K.; Mishra, B.K.; Behera, G.B. Cyanines during the 1990s: A Review. Chem. Rev. 2000, 100, 1973–2012. [Google Scholar] [CrossRef] [PubMed]
- Hamer, F.M. The Cyanine Dyes and Related Compounds; Interscience: New York, NY, USA; London, UK, 1964. [Google Scholar]
- Kim, T.-D.; Lee, K.-S. D-π-A Conjugated Molecules for Optoelectronic Applications. Macromol. Rapid Commun. 2015, 36, 943–958. [Google Scholar] [CrossRef]
- Castet, F.; Rodriguez, V.; Pozzo, J.-L.; Ducasse, L.; Plaquet, A.; Champagne, B. Design and Characterization of Molecular Nonlinear Optical Switches. Acc. Chem. Res. 2013, 46, 2656–2665. [Google Scholar] [CrossRef]
- Marder, S.R. Organic nonlinear optical materials: Where we have been and where we are going. Chem. Commun. 2005, 37, 131–134. [Google Scholar] [CrossRef]
- Wurthner, F.; Wortmann, R.; Meerholz, K. ChemInform Abstract: Chromophore Design for Photorefractive Organic Materials. ChemInform 2010, 33, 17–31. [Google Scholar] [CrossRef]
- Gsänger, M.; Bialas, D.; Huang, L.; Stolte, M.; Würthner, F. Organic Semiconductors based on Dyes and Color Pigments. Adv. Mater. 2016, 28, 3615–3645. [Google Scholar] [CrossRef]
- Arjona-Esteban, A.; Lenze, M.R.; Meerholz, K.; Würthner, F. Donor-Acceptor Dyes for Organic Photovoltaics. In Elementary Processes in Organic Photovoltaics; Advances in Polymer Science; Leo, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 2726, pp. 193–214. [Google Scholar]
- Würthner, F. Dipole-Dipole Interaction Driven Self-Assembly of Merocyanine Dyes: From Dimers to Nanoscale Objects and Supramolecular Materials. Accounts Chem. Res. 2016, 49, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Heyne, B. Self-assembly of organic dyes in supramolecular aggregates. Photochem. Photobiol. Sci. 2016, 15, 1103–1114. [Google Scholar] [CrossRef] [PubMed]
- Kovtun, Y. Metallochromic merocyanines of 8-hydroxyquinoline series. II. Dyes with end nuclei of low basicity. Dye. Pigment. 2004, 60, 215–221. [Google Scholar] [CrossRef]
- Kovtun, Y.; Prostota, Y.; Tolmachev, A. Metallochromic merocyanines of 8-hydroxyquinoline series. Dye. Pigment. 2003, 58, 83–91. [Google Scholar] [CrossRef]
- Yagi, S.; Maeda, K.; Nakazumi, H. Photochromic properties of cationic merocyanine dyes. Thermal stability of the spiropyran form produced by irradiation with visible light. J. Mater. Chem. 1999, 9, 2991–2997. [Google Scholar] [CrossRef]
- Levi, L.; Müller, T.J.J. Multicomponent syntheses of functional chromophores. Chem. Soc. Rev. 2016, 45, 2825–2846. [Google Scholar] [CrossRef]
- Müller, T.J.J.; Bunz, U.H.F. (Eds.) Functional Organic Materials; Wiley-VHC: Weinheim, Germany, 2007. [Google Scholar]
- Levi, L.; Müller, T.J.J. Multicomponent Syntheses of Fluorophores Initiated by Metal Catalysis. Eur. J. Org. Chem. 2016, 2016, 2902–2918. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Q.; Wang, M.-X. (Eds.) Multi-Component Reactions in Organic Synthesis; Wiley-VHC: Weinheim, Germany, 2015. [Google Scholar]
- Müller, T.J.J. Relative Reactivities of Functional Groups as the Key to Multicomponent Reactions. In Science of Synthesis Series: Multicomponent Reactions 1—General Discussion and Reactions Involving a Carbonyl Compound as Electrophilic Component; Müller, T.J.J., Ed.; Georg Thieme: Stuttgart, Germany, 2014; pp. 5–27. [Google Scholar] [CrossRef]
- D’Souza, D.M.; Müller, T.J.J. Multi-component syntheses of heterocycles by transition-metal catalysis. Chem. Soc. Rev. 2007, 36, 1095–1108. [Google Scholar] [CrossRef] [PubMed]
- Dömling, A.; Ugi, I. Multicomponent Reactions with Isocyanides. Angew. Chem. Int. Ed. 2000, 39, 3169–3210. [Google Scholar] [CrossRef]
- D’Souza, D.M.; Kiel, A.; Herten, D.-P.; Rominger, F.; Müller, T.J.J. Synthesis, Structure and Emission Properties of Spirocyclic Benzofuranones and Dihydroindolones: A Domino Insertion-Coupling-Isomerization-Diels-Alder Approach to Rigid Fluorophores. Chem. A Eur. J. 2007, 14, 529–547. [Google Scholar] [CrossRef]
- D’Souza, D.M.; Rominger, F.; Müller, T.J.J. A Domino Sequence Consisting of Insertion, Coupling, Isomerization, and Diels-Alder Steps Yields Highly Fluorescent Spirocycles. Angew. Chem. Int. Ed. 2004, 44, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Gers-Panther, C.F.; Müller, T.J.J. Multicomponent Syntheses of Heterocycles Initiated by Catalytic Generation of Ynones and Ynediones. In Advances in Heterocyclic Chemistry: Heterocyclic Chemistry in the 21st Century: A Tribute to Alan Katritzky; Scriven, E.F.V., Ramsden, C.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 120, pp. 67–98. [Google Scholar]
- Müller, T.J.J. Multi-component synthesis of fluorophores via catalytic generation of alkynoyl intermediates. Drug Discov. Today Technol. 2018, 29, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Muschelknautz, C.; Frank, W.; Müller, T.J.J. Rapid Access to Unusual Solid-State Luminescent Merocyanines by a Novel One-Pot Three-Component Synthesis. Org. Lett. 2011, 13, 2556–2559. [Google Scholar] [CrossRef]
- Papadopoulos, J.; Merkens, K.; Müller, T.J.J. Three-Component Synthesis and Photophysical Properties of Novel Coumarin-Based Merocyanines. Chem.–A Eur. J. 2017, 24, 974–983. [Google Scholar] [CrossRef]
- Pasch, P.; Papadopoulos, J.; Goralczyk, A.; Hofer, M.L.; Tabatabai, M.; Müller, T.J.J.; Hartmann, L. Highly Fluorescent Merocyanine and Cyanine PMMA Copolymers. Macromol. Rapid Commun. 2018, 39, e1800277. [Google Scholar] [CrossRef]
- Papadopoulos, J.; Müller, T.J.J. Rapid synthesis of 4-alkynyl coumarins and tunable electronic properties of emission solvatochromic fluorophores. Dye. Pigment. 2019, 166, 357–366. [Google Scholar] [CrossRef]
- Kreß, K.C.; Fischer, T.; Stumpe, J.; Frey, W.; Raith, M.; Beiraghi, O.; Eichhorn, S.H.; Tussetschläger, S.; Laschat, S. Influence of Chromophore Length and Acceptor Groups on the Optical Properties of Rigidified Merocyanine Dyes. ChemPlusChem 2013, 79, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Hoang, T.T.; Birepinte, M.; Kramer, N.J.; Dudley, G.B. Six-Step Synthesis of Alcyopterosin A, a Bioactive Illudalane Sesquiterpene with a gem-Dimethylcyclopentane Ring. Org. Lett. 2016, 18, 3470–3473. [Google Scholar] [CrossRef]
- Morrison, A.E.; Hrudka, J.J.; Dudley, G.B. Thermal Cycloisomerization of Putative Allenylpyridines for the Synthesis of Isoquinoline Derivatives. Org. Lett. 2016, 18, 4104–4107. [Google Scholar] [CrossRef]
- Deposition Number CCDC 2183900 Contains the Supplementary Crystallographic Data for This Paper. These Data are Provided Free of Charge by the Joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe. Available online: http://www.ccdc.cam.ac.uk/structures (accessed on 30 June 2022).
- Marder, S.R.; Gorman, C.B.; Tiemann, B.G.; Perry, J.W.; Bourhill, G.; Mansour, K. Relation Between Bond-Length Alternation and Second Electronic Hyperpolarizability of Conjugated Organic Molecules. Science 1993, 261, 186–189. [Google Scholar] [CrossRef]
- Mustroph, H. Polymethine dyes. Phys. Sci. Rev. 2019, 5, 5648–5652. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Ernzerhof, M.; Perdew, J.P. Generalized gradient approximation to the angle- and system-averaged exchange hole. J. Chem. Phys. 1998, 109, 3313–3320. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.; Handy, N.C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Caricato, M.; Mennucci, B.; Tomasi, J.; Ingrosso, F.; Cammi, R.; Corni, S.; Scalmani, G. Formation and relaxation of excited states in solution: A new time dependent polarizable continuum model based on time dependent density functional theory. J. Chem. Phys. 2006, 124, 124520. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Jacquemin, D.; Zhao, Y.; Valero, R.; Adamo, C.; Ciofini, I.; Truhlar, D.G. Verdict: Time-Dependent Density Functional Theory “Not Guilty” of Large Errors for Cyanines. J. Chem. Theory Comput. 2012, 8, 1255–1259. [Google Scholar] [CrossRef]
- Bruker. Saint, Apex2, Sadabs; Bruker AXS Inc.: Madison, WI, USA, 2011. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 71, 112–122. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar]
- Brandenburg, K. DIAMOND 4.6.4, Bonn, Germany, 2018.
Entry | Base | Morpholine (4a) [Equivs] | Temperature [°C] | Reaction Time [h] | Merocyanine 5a a | Cyanine 6a b |
---|---|---|---|---|---|---|
1 | NEt3 | 1 | 100 (MW) | 1 | 35% | + |
2 | NEt3 | 2 | 100 (MW) | 1 | 21% | + |
3 | NEt3 | 1 | rt | 18 | n.d. | + |
4 | DIPEA | 1 | 100 (MW) | 1 | n.d. | n.d. |
5 | K2CO3 c | 1 | 100 (MW) | 1 | 65% | n.d. |
6 | K2CO3 c | 1 | RT | 21 | 67% | n.d. |
Entry | Bond | Bond Length [Å] |
---|---|---|
1 | N1-C1 | 1.316 |
2 | C1-C6 | 1.399 |
3 | C6-C5 | 1.380 |
4 | C5-C7 | 1.404 |
5 | C7-C8 | 1.369 |
6 | C8-N6 | 1.320 |
Entry | Compound | λmax,abs [nm] a (ε [M−1cm−1]) | λmax,em [nm] b | Stokes Shift Δ [cm−1] c |
---|---|---|---|---|
1 | 5a | 373 (71,000) | n.d. d | |
2 | 5b | 373 (71,000) | n.d. d | |
3 | 5c | 365 (19,000) | n.d. d | |
4 | 5d | 383 (22,000) | n.d. d | |
5 | 5e | 388 (43,000) | n.d. d | |
6 | 8 | 442 (27,000) | n.d. d | |
7 | 6b | 443 (114,000) | 459 | 800 |
8 | 6c | 459 (130,000) | 513 | 2300 |
5b | λmax,abs exp 373 nm/3.327 eV (71,000 M 1cm 1) | |||||
---|---|---|---|---|---|---|
Functional | State | λmax,abs calcd | Oscillatory | Most Dominant | ΔEcalcd—exp | |
[nm] | [eV] | Strength f | Contribution (%) | [eV] | ||
B3LYP a | S1 | 361.0 | 3.426 | 0.0077 | HOMO-1→LUMO (92%) HOMO→LUMO (2%) | |
S2 | 331.8 | 3.727 | 0.6853 | HOMO→LUMO (97%) HOMO-1→LUMO (2%) | 0.400 | |
S3 | 302.6 | 4.087 | 0.0137 | HOMO→LUMO+1 (97%) | ||
S4 | 272.3 | 4.542 | 0.002 | HOMO→LUMO+2 (91%) HOMO→LUMO+3 (5%) | ||
S5 | 264.5 | 4.676 | 0.004 | HOMO→LUMO+3 (83%) | ||
HOMO→LUMO+2 (5%) | ||||||
S6 | 257.9 | 4.796 | 0.0157 | HOMO→LUMO+4 (93%) | ||
HOMO→LUMO+3 (4%) | ||||||
B3LYP (CH2Cl2) b | S1 | 358.1 | 3.454 | 0.8517 | HOMO→LUMO (99%) | 0.127 |
S2 | 336.1 | 3.680 | 0.0094 | HOMO-1→LUMO (95%) | ||
S3 | 280.8 | 4.405 | 0.0128 | HOMO→LUMO+1 (96%) | ||
HOMO→LUMO+5 (3%) | ||||||
S4 | 261.2 | 4.736 | 0.0059 | HOMO→LUMO+2 (97%) | ||
S5 | 253.2 | 4.884 | 0.0033 | HOMO→LUMO+3 (67%) | ||
HOMO→LUMO+4 (28%) | ||||||
S6 | 247.1 | 5.006 | 0.0366 | HOMO→LUMO+4 (64%) | ||
HOMO→LUMO+3 (26%) | ||||||
B3LYP (CH2Cl2) c | S1 | 345.0 | 3.603 | 0.7163 | HOMO→LUMO (94%) HOMO-1→LUMO (5%) | 0.276 |
S2 | 334.8 | 3.694 | 0.0522 | HOMO-1→LUMO (90%) HOMO→LUMO (6%) | ||
S3 | 280.3 | 4.412 | 0.0101 | HOMO→LUMO+1 (96%) | ||
HOMO→LUMO+5 (3%) | ||||||
S4 | 261.8 | 4.723 | 0.0056 | HOMO→LUMO+2 (97%) | ||
S5 | 253.3 | 4.883 | 0.003 | HOMO→LUMO+3 (61%) | ||
HOMO→LUMO+4 (35%) | ||||||
S6 | 247.0 | 5.008 | 0.0355 | HOMO→LUMO+4 (58%) | ||
HOMO→LUMO+3 (32%) | ||||||
PBEh1PBE a | S1 | 351.1 | 3.523 | 0.0063 | HOMO-1→LUMO (91%) HOMO-1→LUMO+2 (5%) | |
S2 | 315.3 | 3.923 | 0.7332 | HOMO→LUMO (98%) HOMO-1→LUMO (2%) | ß.596 | |
S3 | 230.7 | 5.361 | 0.0137 | HOMO→LUMO+1 (97%) | ||
S4 | 222.0 | 5.570 | 0.0063 | HOMO-2→LUMO (53%) HOMO→LUMO+2 (44%) | ||
S5 | 211.4 | 5.849 | 0.0049 | HOMO-1→LUMO+2 (70%) | ||
HOMO-1→LUMO (6%) | ||||||
S6 | 211.3 | 5.854 | 0.0093 | HOMO→LUMO+4 (82%) | ||
HOMO→LUMO+3 (10%) | ||||||
PBEh1PBE (CH2Cl2) b | S1 | 351.5 | 3.518 | 0.8573 | HOMO→LUMO (99%) | 0.191 |
S2 | 326.3 | 3.791 | 0.0079 | HOMO-1→LUMO (93%) | ||
S3 | 268.0 | 4.616 | 0.0139 | HOMO→LUMO+1 (95%) HOMO→LUMO+5 (4%) | ||
S4 | 247.4 | 4.998 | 0.0103 | HOMO→LUMO+2 (93%) | ||
S5 | 243.3 | 5.084 | 0.0044 | HOMO→LUMO+3 (76%) | ||
HOMO→LUMO+4 (18%) | ||||||
S6 | 237.7 | 5.204 | 0.0374 | HOMO→LUMO+4 (72%) | ||
HOMO→LUMO+3 (16%) | ||||||
CAM-B3LYP a | S1 | 318.4 | 3.884 | 0.0261 | HOMO-1→LUMO (78%) HOMO-1→LUMO+2 (6%) | |
S2 | 301.5 | 4.102 | 0.6999 | HOMO→LUMO (93%) HOMO-1→LUMO (5%) | 0.775 | |
S3 | 212.3 | 5.825 | 0.0179 | HOMO→LUMO+1 (86%) | ||
HOMO→LUMO+6 (7%) | ||||||
S4 | 204.2 | 6.058 | 0.0063 | HOMO→LUMO+4 (69%) HOMO→LUMO+2 (11%) | ||
S5 | 198.7 | 6.225 | 0.1157 | HOMO-2→LUMO (86%) | ||
HOMO→LUMO+4 (6%) | ||||||
S6 | 197.9 | 6.250 | 0.0379 | HOMO→LUMO+2 (55%) | ||
HOMO→LUMO+3 (19%) | ||||||
CAM-B3LYP (CH2Cl2) b | S1 | 343.2 | 3.604 | 0.8438 | HOMO→LUMO (98%) | 0.277 |
S2 | 298.1 | 4.149 | 0.0024 | HOMO-1→LUMO (80%) HOMO-1→LUMO+8 (4%) | ||
S3 | 256.5 | 4.822 | 0.016 | HOMO→LUMO+1 (77%) | ||
HOMO→LUMO+5 (12%) | ||||||
S4 | 234.1 | 5.282 | 0.0084 | HOMO→LUMO+3 (77%) HOMO→LUMO+9 (8%) | ||
S5 | 229.0 | 5.401 | 0.0358 | HOMO→LUMO+2 (48%) | ||
HOMO→LUMO+4 (21%) | ||||||
S6 | 224.9 | 5.498 | 0.0206 | HOMO→LUMO+4 (56%) | ||
HOMO→LUMO+2 (26%) |
6b | λmax,abs exp 443 nm/2.801 eV (114,000 M 1cm 1) | |||||
---|---|---|---|---|---|---|
Functional | State | λmax,abs calcd | Oscillatory | Most Dominant | ΔEcalcd—exp | |
[nm] | [eV] | Strength f | Contribution (%) | [eV] | ||
B3LYP a | S1 | 362.2 | 3.415 | 0.9478 | HOMO→LUMO (100%) | 0.614 |
S2 | 250.8 | 4.931 | 0.1102 | HOMO-1→LUMO (76%) HOMO→LUMO+1 (22%) | ||
S3 | 224.7 | 5.503 | 0.0268 | HOMO-3→LUMO (55%) | ||
HOMO-2→LUMO (28%) | ||||||
S4 | 223.1 | 5.543 | 0.0803 | HOMO→LUMO+1 (45%) | ||
HOMO-2→LUMO (34%) | ||||||
S5 | 219.6 | 5.632 | 0.0075 | HOMO→LUMO+2 (88%) | ||
HOMO→LUMO+4 (4%) | ||||||
S6 | 215.7 | 5.734 | 0.0184 | HOMO-4→LUMO (77%) | ||
HOMO-2→LUMO (12%) | ||||||
B3LYP (CH2Cl2) b | S1 | 386.1 | 3.203 | 1.0034 | HOMO→LUMO (100%) | 0.402 |
S2 | 261.3 | 4.734 | 0.0031 | HOMO→LUMO+1 (95%) | ||
S3 | 254.3 | 4.864 | 0.1198 | HOMO-1→LUMO (61%) | ||
HOMO→LUMO+2 (35%) | ||||||
S4 | 244.4 | 5.061 | 0.0263 | HOMO→LUMO+3 (63%) | ||
HOMO→LUMO+2 (27%) | ||||||
S5 | 239.2 | 5.171 | 0.036 | HOMO→LUMO+4 64%) | ||
HOMO→LUMO+2 (12%) | ||||||
S6 | 233.7 | 5.292 | 0.1408 | HOMO→LUMO+4 (26%) | ||
HOMO→LUMO+3 (22%) | ||||||
B3LYP (CH2Cl2) c | S1 | 369.0 | 3.357 | 0.8976 | HOMO→LUMO (100%) | 0.556 |
S2 | 261.2 | 4.735 | 0.0025 | HOMO→LUMO+1 (95%) | ||
S3 | 253.5 | 4.879 | 0.1085 | HOMO-1→LUMO (57%) | ||
HOMO→LUMO+2 (39%) | ||||||
S4 | 244.2 | 5.065 | 0.0193 | HOMO→LUMO+3 (68%) HOMO→LUMO+2 (24%) | ||
S5 | 239.2 | 5.170 | 0.0135 | HOMO→LUMO+4 (76%) | ||
HOMO→LUMO+2 (6%) | ||||||
S6 | 231.8 | 5.335 | 0.0975 | HOMO→LUMO+2 (20%) | ||
HOMO→LUMO+3 (20%) | ||||||
PBEh1PBE a | S1 | 357.5 | 3.460 | 0.9557 | HOMO→LUMO (100%) | 0.659 |
S2 | 242.7 | 5.096 | 0.1278 | HOMO-1→LUMO (81%) HOMO→LUMO+1 (18%) | ||
S3 | 219.4 | 5.638 | 0.0861 | HOMO→LUMO+1 (45%) HOMO-3→LUMO (39%) | ||
S4 | 218.0 | 5.673 | 0.0435 | HOMO-2→LUMO (47%) HOMO→LUMO+1 (26%) | ||
S5 | 210.5 | 5.875 | 0.0024 | HOMO→LUMO+2 (88%) | ||
HOMO→LUMO+4 (5%) | ||||||
S6 | 209.6 | 5.902 | 0.0174 | HOMO-4→LUMO (79%) | ||
HOMO-2→LUMO (14%) | ||||||
PBEh1PBE (CH2Cl2) b | S1 | 380.4 | 3.252 | 1.0153 | HOMO→LUMO (99%) | 0.451 |
S2 | 250.2 | 4.944 | 0.0056 | HOMO→LUMO+1 (93%) | ||
S3 | 245.6 | 5.036 | 0.1362 | HOMO-1→LUMO (66%) HOMO→LUMO+2 (30%) | ||
S4 | 233.5 | 5.297 | 0.0846 | HOMO→LUMO+2 (53%) HOMO→LUMO+3 (26%) | ||
S5 | 230.7 | 5.360 | 0.0853 | HOMO→LUMO+3 (49%) | ||
HOMO→LUMO+4 (23%) | ||||||
S6 | 226.5 | 5.461 | 0.0575 | HOMO→LUMO+4 (65%) | ||
HOMO→LUMO+3 (18%) | ||||||
CAM-B3LYP a | S1 | 354.7 | 3.487 | 0.9695 | HOMO→LUMO (98%) | 0.686 |
S2 | 220.5 | 5.610 | 0.2421 | HOMO-1→LUMO (94%) | ||
S3 | 209.1 | 5.914 | 0.0763 | HOMO→LUMO+1 (96%) | ||
S4 | 202.9 | 6.096 | 0.003 | HOMO→LUMO+2 (73%) HOMO→LUMO+4 (14%) | ||
S5 | 201.0 | 6.152 | 0.0013 | HOMO-3→LUMO (49%) | ||
HOMO-2→LUMO (35%) | ||||||
S6 | 189.3 | 6.535 | 0.0022 | HOMO-4→LUMO (83%) | ||
HOMO-3→LUMO (3%) | ||||||
CAM-B3LYP (CH2Cl2) b | S1 | 377.4 | 3.277 | 1.0218 | HOMO→LUMO (98%) HOMO→LUMO+1 (78%) | 0.476 |
S2 | 239.9 | 5.155 | 0.0013 | HOMO→LUMO+5 (7%) | ||
S3 | 226.3 | 5.465 | 0.2191 | HOMO-1→LUMO (30%) HOMO→LUMO+4 (17%) | ||
S4 | 221.5 | 5.584 | 0.1968 | HOMO-1→LUMO (64%) HOMO→LUMO+4 (9%) | ||
S5 | 219.7 | 5.630 | 0.0256 | HOMO→LUMO+3 (45%) | ||
HOMO→LUMO+2 (25%) | ||||||
S6 | 213.9 | 5.781 | 0.0197 | HOMO→LUMO+2 (38%) | ||
HOMO→LUMO+3 (16%) |
Entry | Alkyne 3 | Amine 4 or Fischer’s Base (7) | Yield of Merocyanines 5 and 8 |
---|---|---|---|
1 a | 140 μL (1.00 mmol) of 3a | 90 μL (1.0 mmol) of 4a | 135 mg (65%) of 5a |
2 b | 140 μL (1.00 mmol) of 3a | 90 μL (1.0 mmol) of 4a | 82 mg (35%) of 5a |
3 a | 140 μL (1.00 mmol) of 3a | 85 μL (1.0 mmol) of 4c | 71 mg (53%) of 5b |
4 a | 110 μL (1.00 mmol) of 3d | 90 μL (1.0 mmol) of 4a | 171 mg (55%) of 5c |
5 b | 110 μL (1.00 mmol) of 3d | 90 μL (1.0 mmol) of 4a | 212 mg (68%) of 5c |
6 a | 110 μL (1.00 mmol) of 3d | 100 μL (1.00 mmol) of 4b | 191 mg (62%) of 5d |
7 b | 110 μL (1.00 mmol) of 3d | 100 μL (1.00 mmol) of 4b | 62 mg (20%) of 5d |
8 a | 110 μL (1.00 mmol) of 3d | 85 μL (1.0 mmol) of 4c | 118 mg (40%) of 5e |
9 b | 140 µL (1.00 mmol) of 3a | 180 µL (1.00 mmol) of 1,3,3-trimethyl-2-methylenindoline (7) | 21 mg (7%) of 8 |
Entry | Alkyne 7 | Amine 9c | Yield a |
---|---|---|---|
1 | 140 µL (0.98 mmol) of 7a | 85 µL (1.00 mmol) of 9c | 209 mg (99%) of 6b |
2 | 110 µL (1.00 mmol) of 7d | 85 µL (1.00 mmol) of 9c | 214 mg (86%) of 6c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulos, J.; Gerlach, T.; Reiss, G.J.; Mayer, B.; Müller, T.J.J. Consecutive Multicomponent Coupling-Addition Synthesis and Chromophore Characteristics of Cyclohexene-Embedded Merocyanines and Cyanines. Photochem 2022, 2, 672-693. https://doi.org/10.3390/photochem2030044
Papadopoulos J, Gerlach T, Reiss GJ, Mayer B, Müller TJJ. Consecutive Multicomponent Coupling-Addition Synthesis and Chromophore Characteristics of Cyclohexene-Embedded Merocyanines and Cyanines. Photochem. 2022; 2(3):672-693. https://doi.org/10.3390/photochem2030044
Chicago/Turabian StylePapadopoulos, Julian, Tabea Gerlach, Guido J. Reiss, Bernhard Mayer, and Thomas J. J. Müller. 2022. "Consecutive Multicomponent Coupling-Addition Synthesis and Chromophore Characteristics of Cyclohexene-Embedded Merocyanines and Cyanines" Photochem 2, no. 3: 672-693. https://doi.org/10.3390/photochem2030044
APA StylePapadopoulos, J., Gerlach, T., Reiss, G. J., Mayer, B., & Müller, T. J. J. (2022). Consecutive Multicomponent Coupling-Addition Synthesis and Chromophore Characteristics of Cyclohexene-Embedded Merocyanines and Cyanines. Photochem, 2(3), 672-693. https://doi.org/10.3390/photochem2030044