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Abstract: Perovskite solar cells with an indium tin oxide (ITO)/SnO2/CH3NH3PbI3/Spiro-OMeTAD/
2,2,2-trifluoroethanol (TFE) doped single-walled carbon nanotube (SWCNT) structure were devel-
oped by dropping TFE onto SWCNTs, which replaced the metal back electrode, and a conversion
efficiency of 14.1% was achieved. Traditionally, acidic doping of the back electrode, SWCNT, has
been challenging due to the potential damage it may cause to the perovskite layer. However, TFE
has facilitated easy doping of SWCNT as the back electrode. The sheet resistance of the SWCNTs
decreased and their ionization potential shifted to deeper levels, resulting in improved hole transport
properties with a lower barrier to carrier transport. Furthermore, the Seebeck coefficient (S) increased
from 34.5 µV/K to 73.1 µV/K when TFE was dropped instead of EtOH, indicating an enhancement
in the behavior of p-type charge carriers. It was observed that hydrophilic substances adhered less
to the SWCNT surface, and the formation of PbI2 was suppressed. These effects resulted in higher
conversion efficiency and improved solar cell performance. Furthermore, the decrease in conversion
efficiency after 260 days was suppressed, showing improved durability. The study suggests that
combining SWCNTs and TFEs improves solar cell performance and stability.
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1. Introduction

Perovskite solar cells are known for their high light absorption rates, light weight, and
flexibility. Since they were first reported in 2009, the performance of perovskite solar cells
has improved and research into their practical application has progressed significantly [1–3].
A notable feature of these solar cells is their flexibility and lightweight design, which has
been difficult to achieve with conventional silicon solar cells. Perovskite solar cells have
the unique advantage of being able to be installed in a diverse range of locations, such
as building windows and cars. This expands their potential for new application areas,
which has been a challenge for conventional solar cells. As a result, perovskite solar cells
have opened new avenues for expanding the use of renewable energy technology [4–6].
Power generation efficiencies of more than 20% have already been achieved in single cells
of perovskite solar cells [7–9]. This is very efficient and outperforms conventional solar
cells. Therefore, perovskite solar cells with higher power generation efficiency and stability
are expected to be put into practical use. A common perovskite crystal, CH3NH3PbI3
(MAPbI3), has optical absorption properties in the visible region, with a band gap of 1.6 eV.
This property effectively absorbs a portion of the solar spectrum, enabling efficient solar
power generation. Thus, perovskite solar cells can perform well in various environments
and may contribute to the widespread use of renewable energy [10–15].

Photochem 2024, 4, 319–333. https://doi.org/10.3390/photochem4030019 https://www.mdpi.com/journal/photochem

https://doi.org/10.3390/photochem4030019
https://doi.org/10.3390/photochem4030019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photochem
https://www.mdpi.com
https://orcid.org/0000-0001-9084-9670
https://doi.org/10.3390/photochem4030019
https://www.mdpi.com/journal/photochem
https://www.mdpi.com/article/10.3390/photochem4030019?type=check_update&version=1


Photochem 2024, 4 320

Perovskite solar cells using single-walled carbon nanotubes (SWCNTs) have attracted
much attention because of their potential for flexibility and low cost while maintaining
high power generation efficiency. Usually, metals such as gold, silver, and copper are used
for the backside electrodes of organic and perovskite solar cells [16–19]. However, these
metals require vacuum deposition for fabrication and they are expensive. Previous studies
have reported that these metal atoms can diffuse inside the stacks and break down the
perovskite crystals [20]. The substrate material must have high transparency and electrical
conductivity. The materials commonly used for this purpose are indium tin oxide (ITO)
and fluorine-doped tin oxide (FTO). However, ITO requires the use of indium, which is a
rare metal and increases the cost of solar cells. Moreover, these materials are not suitable
for applications that require flexible cells. Therefore, there is a need to develop flexible and
cost-effective substrate materials. SWCNTs are of interest here because of their excellent
properties, flexibility, and electrical conductivity. SWCNTs have metallic and semiconduct-
ing types, which can be confirmed by optical analysis. The optical absorption wavelengths
of the metallic and semiconducting types are observed simultaneously in SWCNT thin
films, suggesting a mixture of the two types [21]. The Seebeck coefficient (S) measures the
magnitude of the thermoelectric effect and reflects the amount of charge carriers (electrons
and holes) generated in a material due to a temperature gradient. Specifically, it is the
change in voltage (∆V) due to a temperature difference divided by the unit temperature
difference (∆T). The Seebeck coefficient is usually expressed in units of Boltzmann’s con-
stant (k) or elementary charge (e). The following is the definition of the Seebeck coefficient
(S) [22,23]:

S = −
(

∆V
∆T

)
(1)

For n-type thermoelectric materials, electrons generated on the high-temperature side
flow to the low-temperature side due to the diffusion force caused by the difference in
electron concentration, resulting in high potential on the high-temperature side and low
potential on the low-temperature side. As a result, the Seebeck coefficient S of n-type semi-
conductors has a negative sign. On the other hand, in p-type semiconductors, the electron
flow is in the opposite direction, and S has a positive sign. It has been experimentally con-
firmed that SWCNTs usually exhibit p-type semiconductor properties due to oxygen [24].
p-Type doping can be achieved through the use of acids like HNO3. Acid treatment has
been observed to transform the normal state of SWCNTs into a p-type semiconductor,
resulting in the removal of impurities, decreased inter-bundle junction resistance, and de-
creased sheet resistance [25]. This process offers the ability to control the Seebeck coefficient
and enhance the performance of SWCNTs used as thermoelectric materials.

In a 2017 study, we reported a conversion efficiency of 9.8% for inverted perovskite so-
lar cells with a CNT/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/
CH3NH3PbI3/phenyl-C61-butyric acid methyl ester (PCBM)/Al structure using SWCNTs
modified with HNO3 as a p-dopant [26]. Interestingly, PCBM was found to form an
electron-selective charge-selective layer on SWCNTs in that study. This discovery led to the
development of a new solar cell structure combining a CNT transparent electrode (anode)
and a CNT backside electrode (cathode) [26]. Unlike the conventional metal and metal ox-
ide electrodes, CNT electrodes provide unique properties such as flexibility and stability. In
2019, we also reported that the conductivity and work function were adjusted by applying
vapor doping with trifluoromethanesulfonic acid (TFMS), a strong acid, to SWCNTs. Solar
cells with a ITO/SnO2/formamidinium (CH5N2)CsPbI3/Spiro-OMeTAD/CNT doped
with TFMS achieved a high-power conversion efficiency of 17.6% [27]. Formamidinium
is known to be thermally more stable than methylammonium [28]. Partial doping tech-
niques have also utilized alkali metal elements such as cesium and sodium, which can
improve the crystal structure of MAPbI3 and control impurities in perovskite solar cells,
thereby improving power generation efficiency [29,30]. Researchers have noted that while
strong acids can be used as p-type dopants, human health and industrial considerations
have necessitated the search for weaker dopants; MoO3 is also used as a p-type dopant



Photochem 2024, 4 321

and has been suggested to shift the work function of SWCNTs to deeper levels [31,32].
However, MoO3 requires complicated fabrication techniques because it must be deposited
by thermal eVaporation rather than solution-coating. AuCl3 and Nafion polymeric acid
can maintain the conductivity of SWCNTs without sacrificing their transparency, allowing
their application in organic solar cells [33,34]. There are issues with relatively safe gold
chloride (AuCl) dopants that can degrade electrical performance, and with Nafion solution
containing water, perovskite crystals can easily be damaged. Thus, dopant materials have
been limited in perovskite solar cells because damage to the perovskite crystals with respect
to the p-doping of SWCNTs on back electrode must be considered.

In this study, we report a mild p-doping methodology using 2,2,2-trifluoromethanol
(TFE) which can be applied to enhance the performance of SWCNT film electrodes eVen
after transferring them onto perovskite/hole-transport layers. In devices with a structure
of ITO/SnO2/MAPbI3/Spiro-OMeTAD/TFE-doped SWCNT, fluorine atoms of TFE play
a significant role in weakening the hydrogen bonds of water molecules and enhancing
hydrophobic interactions. [35]. TFE is liquid under normal conditions, and doping can be
easily applied by spin-coating. Notably, its acidity is considerably lower than that of HNO3
and TFMS, as shown by their acid dissociation constants: TFMS (pKa = −14) > HNO3
(pKa = −1.4) > TFE (pKa = 12.4) > EtOH (pKa = 15.9). The application of TFE decreased
in the sheet resistance of SWCNTs and shift their work function to a slightly deeper level.
This improvement resulted in improved open-circuit voltage (VOC) and fill factor (FF),
and power conversion efficiency increased from 13.0% to 14.1% after TFE doping for
SWCNTs with transmittance of T550nm = 41%. When we used thicker SWCNT films with
transmittance of T550nm = 28%, the rate of decrease in conversion efficiency after 30 days
was smaller than devices using SWCNT films with T550nm = 41%, indicating that the
perovskite solar cells became more stable with TFE-doped thicker SWCNT back electrodes.
Furthermore, it was confirmed that the stability effect of TFE doping persisted eVen after
260 days. The findings of this study underscore the potential benefits of utilizing TFE in
enhancing the performance and stability of perovskite solar cells equipped with SWCNT
back electrodes.

2. Experimental
2.1. Synthesis and Fabrication of Patterned SWCNTs Films

Floating catalyst chemical vapor deposition was employed for single walled carbon
nanotubes (SWCNTs) synthesis [36]. During the synthesis of SWCNTs, CH4 was utilized as
the carbon source, while ferrocene and solid sulfur were used as Fe catalyst and a reaction
promoter. Hydrogen was added to suppress CH4 polymerization. The carrier gas was
nitrogen. The synthesis process was carried out in a quartz tube with a diameter of 50 mm
at a temperature of 950 ◦C. To form a electrode-sized SWCNTs film, SWCNTs in the reaction
gas were collected by a membrane filter [37] attached with a patterned SUS mask. The
mask was inserted the downstream side of the filter to prevent the SWCNTs’ deposition on
the mask surface [38].

2.2. Fabrication of the Perovskite Solar Cells

Indium-tin oxide patterned glass substrates (15 mm × 15 mm, ~10 Ω/sq) were cleaned
in an ultrasonic bath with ethanol and acetone and dried under nitrogen gas. Then, ITO
substrates were treated with UV/O3 for 15 min. The SnO2 precursor solutions were
prepared from Tin(IV) oxide, 15% in H2O colloidal dispersion (Alfa Aesar, Ward Hill, MA,
America, 200 µL) with deionized water (600 µL) was spin-coated on the ITO substrate at
3000 rpm for 30 s, and the coated substrate was then annealed at 150 ◦C for 30 min. Then,
the substrates were transferred into a N2-filled glove box after treatment with UV/O3.

The perovskite precursor solution was prepared by dissolving CH3NH3I (Sigma-
Aldrich, St. Louis, MI, USA, 122 mg) and PbI2 (Tokyo Chemical Industries, Tokyo, Japan,
355 mg) in a mixture of DMF (Sigma-Aldrich, 490 µL) and DMSO (Sigma-Aldrich, 55 µL)
The perovskite solution was spin-coated at 4000 rpm for 20 s. A total of 120 µL of an-
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tisolvent chlorobenzene was slowly dripped onto the substrate 7 s after the start of the
spin-coating process [39]. The transparent film was subsequently annealed at 100 ◦C for
10 min. The SWCNTs were transferred onto the perovskite layer after removing the sub-
strate from the outside and spin-coating with Spiro-OMeTAD at 4000 rpm for 20 s in a
glove box. A solution of spiro-OMeTAD (Wako Pure Chemical Industries, Osaka, Japan,
45 mg) in chlorobenzene (Sigma-Aldrich, 500 µL) was mixed with a solution of lithium
bis(tri-fluoromethylsulfonyl)imide (Li-TFSI; Sigma-Aldrich, 130 mg) in acetonitrile (Sigma-
Aldrich, 250 µL). The former solution with 4-tert-butylpyridine (Sigma-Aldrich, 18 µL)
was mixed with the Li-TFSI solution (11 µL). Finally, the TFE solution was spin-coated
at 4000 rpm for 20 s onto the SWCNT electrodes. Silver (Ag) electrodes were eVapo-
rated as top electrodes using a patterning mask for the reference device. Layered struc-
tures of the prepared photovoltaic devices are denoted as ITO/SnO2/perovskite/spiro-
OMeTAD/SWCNT(TFE). The prepared perovskite photovoltaic devices were stored at
25 ◦C and ~30% humidity.

2.3. Characterizations

Solar simulated AM 1.5G sunlight was generated with a HAL-C100 solar simulator
(Asahi Spectra Co., Tokyo, Japan) calibrated to give 100 mWcm−2 using an ML-01 sili-
con pyranometer (Eko Instrument Co., Ltd., Tokyo, Japan) The current density–voltage
(J–V) curves were recorded with Keysight, B2900, having set the integration time (NPLC)
and measurement delay (ms) to 1 and 0.01, respectively. A metal aperture with an area
of 0.04 cm2 was applied to confine the active area and light shed from ITO side. The
incident-photon-to-current conversion efficiency (IPCE) was measured using an MLS-1510
monochromator (Asahi Spectra Co., Japan) with a model 1918-R power meter. A source
measurement unit recorded the current at each specific wavelength. A FLAME-S miniature
Spectrometer (OptoSirius Co., Tokyo, Japan) was used to measure the absorption of the
perovskite devices. The Fermi levels were measured by Riken Keiki photoelectron yield
spectroscopy AC-2. Sheet resistance of the SWCNT electrodes was measured using a four-
point probe, and a digital multimeter (DL-1060, TEXIO TECHNOLOGY Co., Kanagawa,
Japan). SEM images were obtained using field emission-scanning electron microscopy
equipped with EDS (S-4800, Hitachi High-Tech Co., Tokyo, Japan). The X-ray photoelectron
spectroscopy (XPS, ESCALAB 250Xi, Thermo Scientific, Waltam, MA, USA) was used to
analyze the chemical state of SWCNT. Raman spectra were taken using a confocal Raman
microscope system, using a 1800 l/mm grating and λex.532 nm (Renishaw, inVia reflex).
Seebeck coefficients were measured under the atmosphere using a commercial measure-
ment system (ZEM-2, Advanced Riko, Inc., Kanagawa, Japan). The crystalline structure
of CH3NH3PbI3 was characterized with an X-ray diffractometer (XRD, ATX-G, Rigaku,
Tokyo, Japan) equipped with Cu-kα (λ = 0.15456 nm) radiation. The water contact angle
measurements were conducted using the θ/2 method.

3. Results and Discussion

J–V characteristics under AM1.5 simulated sunlight (100 mW cm−2) and incident
photon-to-electron conversion efficiency spectra of the present perovskite solar cells with
SWCNT electrodes are shown in Figures 1a and 1b, respectively. The measured photovoltaic
parameters of the perovskite solar cells are summarized in Table 1. The standard cell with
Ag electrodes provided a short-circuit current density (JSC) of 24.2 mA cm−2, VOC of
0.948 V, FF of 0.711, and power conversion efficiency (η) of 16.4%. When the electrode had
SWCNT transmittance of T550nm = 41%, the cell achieved η of 13.0%, slightly lower than
the value of silver electrodes due to the light transmission; Figure S1 shows J–V curves for
cells with SWCNT transmittance of T550nm = 41% and T550nm = 28%. A slightly higher η
was observed for the 41% transmittance case, whereas a lower VOC was observed for the
28% transmittance case, likely due to charge recombination at the 28% transmittance film.
Therefore, lowering the transmittance of SWCNTs is expected to hinder electron and hole
transport within the nanotube films. VOC is increased from 0.901 V to 0.941 V by doping
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TFE to SWCNT transmittance of T550nm = 41%, improving η from 13.0% to 14.1%. The
effect of TFE doping was clearly observed from the statistical analysis of the five samples
(Figure S2). The EQE results corresponded well to the JSC values obtained from the J–V
characteristics. In Figure S3, the IQE spectrum can be calculated from the EQE results and
the light absorption efficiency [40–42]. Ignoring the reflectance, a comparison between the
Ag electrode and the TFE-doped SWCNT electrode revealed a surprising result: despite
light transmission around 400 nm for the SWCNT electrode, the IQE was 85%, which is
almost the same as the 88% of the Ag electrode. The energy gap of Spiro-OMeTAD is
2.94 eV, allowing it to absorb light within this wavelength range and significantly influence
hole transport [43,44]. Moreover, the hole capture efficiency can be determined by the
IQE [45–47]. Despite the lower light absorption efficiency at a wavelength of 400 nm, the
IQE of SWCNT was almost the same as that of Ag. This suggests that the hole capture
efficiency of SWCNT is superior.
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Figure 1. Effect of the TFE-doped SWCNT electrode on (a) J–V characteristics and (b) IPCE of the
present perovskite solar cells. The solid line represents the integrated JSC.

Table 1. Photovoltaic performance of the perovskite solar cells with SWCNTs.

Electrode JSC
(mA cm−2)

VOC
(V) FF η

(%)
RS

(Ω cm2)
RSh

(Ω cm2)

SWCNT (T550nm = 41%) 20.1 0.901 0.647 13.0 10.0 3446
TFE doped SWCNT (T550nm = 41%) 20.2 0.941 0.670 14.1 10.3 5723
TFE doped SWCNT (T550nm = 28%) 20.1 0.825 0.649 11.9 9.1 3980
Ag (ref.) 24.2 0.948 0.711 16.4 3.0 8041

As shown in Figure 2a, the cells with the TFE-doped SWCNT electrode exhibited
a power-law dependence of JSC on light intensity, described as JSC ∝ Pin

α, where Pin
is the light intensity and α is the power-law coefficient. The slopes of JSC versus the
logarithm of light intensity have the same values as the perovskite solar cells without
TFE doping of SWCNTs, as shown in Table 2. The larger deviation of α from 1 means
that the JSC is limited by bimolecular recombination loss; thus, all cells exhibit weak
bimolecular recombination loss [48–50]. Figure 2b shows the light intensity dependence
of VOC, described by VOC = mKT

e ln
(

JSC
J0

+ 1
)

, where K is the Boltzmann constant, T is
the temperature, and e is the elementary charge. JSC refers to the short-circuit current
density, while J0 denotes the saturation current density. As light intensity increases, the
number of photogenerated carriers rises, leading to an increase in JSC. Consequently, with
higher light intensity, VOC also increases. J0 depends on the quality of the material and its
recombination characteristics. At lower light intensities, recombination processes decrease,
and the number of photogenerated carriers decreases. This relatively amplifies the impact
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of J0, resulting in a tendency for VOC to decrease. The slope is reduced from 3.92 to 2.55
for the TFE-doped SWCNT (T550nm = 41%), indicating suppressed charge recombination.
As shown in Figure 2c, the use of TFE drops lowers the carrier trap density, suggesting
that TFE may help suppress carrier traps in the solar cell. Trap density (Dtrap) can be
calculated as Dtrap = 2εε0VTFL

eL2 , where VTFL is the trap-filled limit voltage, L is the thickness
of the perovskite layer (500 nm), ε = 32 is the perovskite relative dielectric constant, and
ε0 = 8.854 × 10−14 F cm−1 is the vacuum permittivity [51,52]. This is interpreted as a
factor contributing to the improved performance of the solar cell. Also, it was observed
that devices without TFE have a smaller carrier trap density for SWCNT transmittance
of T550nm = 41% compared with T550nm = 28%, as shown in Figure S4 and Table S2. It is
hypothesized that more Spiro-OMeTAD solution permeates through the SWCNT electrode
with T550nm = 28% than through the one with T550nm = 41% due to the greater film thickness
for the lower transmittance. This increased Spiro-OMeTAD penetration may increase the
resistance to carrier transfer. Increased film thickness tends to increase electron and hole
transfer distances, thereby increasing carrier transport resistance.
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Figure 2. Light intensity dependence of J–V characteristics of (a) JSC and (b) VOC for devices with
SWCNTs. (c) Dark current–voltage curves for the devices.

Table 2. Photovoltaic performance of the present devices.

Electrode m α

SWCNT (T550nm = 41%) 3.95 1.01
TFE doped SWCNT (T550nm = 41%) 2.55 1.01
TFE doped SWCNT (T550nm = 28%) 3.68 1.03

Observing Figure 3 reveals that TFE doping results in a shift of aby 0.04 eV toward
higher energy in the optical absorption peaks of SWCNTs. The perovskite layer primarily
absorbs light within the wavelength range of 500 nm to 800 nm. In comparison, the
SWCNTs absorb light primarily within the near-infrared range of 800 nm to 2400 nm.
Perovskite solar cells can convert visible light within their absorption range into electrical
energy. The inset shows that the band gap of MAPbI3 is 1.55 eV. Optical absorption peaks
were observed that originated from semiconducting and metallic SWCNTs. The metallic
(EM

11) and semiconducting (ES
22 and ES

11) portions of SWCNTs have different optical
properties, with the blue shift suggesting an increase in the band gap.
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Figure 3. Optical absorption spectra of the present devices. The inset shows optical absorption with
the axis of abscissa converted to energy.

As shown in Figure 4a, photoemission yield spectrometry showed a 0.04 eV decrease
in the work function of TFE-doped SWCNTs, which is consistent with the shift in the
optical absorption peak. Based on the energy diagram in Figure 4b, we can conclude
that the barriers to carrier transport between Spiro-OMeTAD and CNT has been lowered,
specifically the barrier to hole transport. Additionally, the sheet resistance of the SWCNTs
with T550nm = 41% decreased from 37.4 to 32.7 Ω/sq by doping with TFE (Table 3. The sheet
resistance of SWCNT electrode with T550nm = 28% and TFE doping was lower than that
of the SWCNT electrode with T550nm = 41% and TFE doping. Interestingly, however, the
αρ values were smaller for SWCNTs with lower transmittance. The parameter αρ reflects
SWCNT performance, with smaller values indicating improved SWCNT performance, and
it is calculated as follows [53]:

αρ = −log
(

Transmittance(%)

100

)
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Table 3. Sheet resistance of SWCNTs electrodes, along with calculated αρ and conductivity parameters.

Electrode RSheet (Ω/sq) αρ S/m

SWCNT (T550nm = 41%) 37.4 14.9 6.5 × 104

TFE doped SWCNT (T550nm = 41%) 32.7 12.7 7.4 × 104

TFE doped SWCNT (T550nm = 28%) 23.9 13.2 1.3 × 105

This equation demonstrates that as the thickness of the SWCNT thin film increases,
the transmittance decreases exponentially while the sheet resistance decreases inversely.
Here, α represents absorbance and ρ represents resistivity. Therefore, changes in optical
properties, such as the work function of the SWCNT surface due to TFE doping and the
sheet resistance, can lead to more efficient hole transport.

No significant difference was observed in the SEM images of TFE-doped SWCNTs with
T550nm = 41% and T550nm = 28%, which are shown in Figure 5a and Figure 5b, respectively.
Interestingly, cross-sectional SEM observations of the SWCNT films revealed that the CNT
film with T550nm = 41% had a thickness of approximately 414 nm, while the SWCNT film
with T550nm = 28% had a thickness of approximately 317 nm, as shown in Figure 5c,d. Each
layer was identified through elemental mapping, as shown in Figure S5. Unexpectedly, the
SWCNT film with T550nm = 28% was thinner. On the other hand, the SWCNT density in
the T550nm = 28% film was significantly higher, with individual SWCNTs being densely
packed. Consequently, the conductivity of the SWCNT was calculated from the sheet
resistance and film thickness, with the SWCNT with T550nm = 28% showing the highest
conductivity (Table 3). This result is also supported by the comparison of RS values in
Table 1, which shows that the SWCNT with T550nm = 28% has a lower RS than the SWCNT
with T550nm = 41%, indicating the validity of this outcome. Fe originating from the CNT
growth catalysts was detected by energy-dispersive X-ray spectroscopy. It is not clear
whether the performance degradation was due to Fe particles, and further investigation is
needed regarding the dispersion state, as shown in Figure S3.

X-ray photoelectron spectroscopy (XPS) images shown in Figure 6a,c clearly demon-
strate that the C–O peak was significantly smaller in glass/SWCNT/TFE, indicating the
fewer hydrophilic groups and more hydrophobic surface of the SWCNT electrode. The C
1s peaks were fitted with five peaks: sp2 (284.7 eV), sp3 (285.1 eV), C–O (286.1 eV), C=O
(288.9 eV), and π–π* shake-up feature (291.0 eV) [54–56]. The 284.7 eV band is consis-
tent with the literature on sp2 hybridized carbon–carbon bonds found in CNTs, graphite,
graphene, and reduced graphene oxide. The peak at 285.1 eV can be attributed to ei-
ther sp3 C–H bonds or graphite. Additionally, the C–O peak was significantly smaller
in glass/SWCNT/TFE, indicating the fewer hydrophilic groups and more hydrophobic
surface of the SWCNT electrode. As shown in Figure 6b,d, the O1s spectrum clearly
indicates that the oxygen-containing groups present on the CNT surface are fewer in
the glass/SWCNT/TFE sample. On the other hand, the C–F peak was detected in trace
amounts after the TFE was applied. The sensitivity to humidity and low durability in
perovskite solar cells has been a longstanding issue. For example, Spiro-OMeTAD, a
commonly used hole transport material for ordinary perovskite structures, is considered
sensitive to humidity. Specifically, the lithium salt dopant used in Spiro-OMeTAD has
high hygroscopicity, which makes it susceptible to humidity, leading to degradation of the
perovskite structure [57,58]. SWCNTs are hydrophobic and repel water. Additionally, they
lack internal diffusion, like metal electrodes. This can improve the durability of perovskite
solar cells. TFE was found to enhance hydrophobicity and reduce the impact of moisture
on the perovskite solar cell surface, as shown by XPS measurements (Table 4).
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the C1s spectra of pristine SWCNT and TFE-doped SWCNT, respectively. (b,d) show the O1s
spectra of pristine SWCNT and TFE-doped SWCNT, respectively. (e) shows the F1s spectra of
TFE-doped SWCNT.
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Table 4. Peak area ratio of each functional group of each sample eValuated by curve fitting.

Samples C=C, sp2 (%)
(284.7 eV)

C–C, sp3 (%)
(285.1 eV)

C–O (%)
(286.1 eV)

COO (%)
(288.9 eV)

π-π* (%)
(291.0 eV)

glass/SWCNT/EtOH 36 12 44 2 5
glass/SWCNT/TFE 61 17 12 6 4

The Raman spectral analysis found that the carbon nanotubes’ G-band slightly shifted
from 1593.6 cm−1 to 1592.1 cm−1 after the addition of TFE, as shown in Figure 7. This
trend was consistently observed at three randomly selected points. This suggests that
the TFE solution may act as a p-dopant, extracting electrons from the CNT, causing the
G-band to shift to a lower frequency. On the other hand, the low-frequency signal is
interpreted as the radial breathing mode (RBM). It is considered an important indicator for
identifying the diameter and electronic properties of SWCNTs. The RBM appears primarily
as a band consisting of multiple peaks, which is believed to result from the presence of
multiple SWNTs with different diameters ranging from ~0.5 to 2 nm, corresponding to the
frequency range of 100 to 300 cm−1, according to the equation ωRBM (cm−1) = ~248/d (d is
the diameter of the SWCNT) [59–61]. From the peak position with the highest intensity at
140 cm−1, the diameter of the CNT was determined to be 1.76 nm.
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Figure 7. Raman spectra of the present SWCNT samples.

To measure the Seebeck coefficient of SWCNTs, we prepared a 15mm long SWCNT
thin film transferred onto a glass substrate. We then dropped TFE and EtOH separately onto
the film to prepare the samples. The Seebeck coefficients were measured to be 34.5 µV/K
for EtOH and 73.1 µV/K for TFE at 40 ◦C, revealing an enhancement towards a more p-
type semiconductor behavior. Thus, positive holes likely resulted in a decrease in electron
density on the surface of the SWCNTs, leading to a reduction in charge recombination and
a decrease in carrier trap density, as shown in Table 2.

XRD data showed the stability of perovskite crystals stored under atmospheric condi-
tions (Figure 8a). The perovskite structure investigated here was found to be tetragonal [62].
Usually, MAPbI3 has a tetragonal structure at room temperature. However, when sub-
stances such as HI and CH3NH2 are released from the perovskite crystal, the structure
transforms into PbI2 crystals [63]. A comparison of cells over 30 days suggested that the
formation of PbI2 is suppressed when drops of TFE are applied (red arrow). This indicates
that the use of TFE improved the durability of the perovskite structure; it was noted earlier
that TFE provides hydrophobicity, which may have the effect of reducing the effects of
external factors such as humidity, making the perovskite structure more stable. In a stabil-
ity eValuation, the conversion efficiency decreased by 57% from the initial efficiency after
30 days for SWCNTs with T550nm = 41% but by 34% for SWCNTs with T550nm = 41% and
TFE doping, as shown in Figure 8b. It is worth mentioning that SWCNTs with T550nm = 28%
exhibited the smallest decrease, by 24%. The permeability decreased with increasing film
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thickness; thus, the potential for TFE to penetrate and remain in the SWCNT thin film
increased. This TFE residue would have contributed to the improved stability of the con-
version efficiency. The boiling point of TFE is 73.6 ◦C, so it may gradually volatilize from
the SWCNT surface due to thermal effects. Considering this property, TFE was applied to
the cell again after 30 days, and the conversion efficiency was investigated (Figure S7a and
Table S3). The FF increased slightly, and the conversion efficiency improved by 1%. The
re-addition of TFE probably allowed TFE to penetrate the SWCNT thin film, enhancing
its surface hydrophobicity and stability. Furthermore, Figure S7b indicates that the effect
might persist eVen after 260 days. When TFE was reapplied, a slight increase in conversion
efficiency was observed. Figure S7c clearly shows that the perovskite crystals around the
Ag electrode have turned yellow and degraded, whereas the SWCNT electrode effectively
inhibited this degradation. To verify the hydrophobicity of the SWCNT surface treated with
TFE, three samples were prepared: glass/SWCNT/EtOH, glass/SWCNT/spiro-OMeTAD,
and glass/SWCNT/spiro-OMeTAD/TFE. As shown in Figure S8, the contact angle sig-
nificantly decreased for Spiro-OMeTAD, indicating sufficient water absorption. Upon the
application of TFE, the contact angle slightly increased from 63.1 degrees to 67.9 degrees,
indicating a slight hydrophobic effect, suggesting the potential to maintain the original hy-
drophobicity of the SWCNT. Similarly, as eVidenced by the XPS results, TFE likely removed
impurities from the SWCNT surface and acted as a surface-protective layer, preventing
oxygen penetration. Suppose TFE remains at the interface between the perovskite crystals
and the SWCNT. In that case, its fluoroalkyl groups may form hydrogen bonds with the
molecules of SWCNT and MAPbI3, potentially enhancing interface stability. Consequently,
this might have inhibited the degradation of the perovskite crystals [64,65]. A comparison
table with previous studies employing SWCNTs is shown in Table S4. As this study uses
CH3NH3PbI3, it is expected that the conversion efficiency could be further improved by
incorporating formamidinium or bromine.
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Figure 8. Stability data for the device. (a) XRD patterns after 30 days and (b) changes in conversion
efficiency of the present perovskite solar cells.

4. Conclusions

The study examined the impact of adding TFE as a dopant in perovskite solar cells
when using SWCNTs instead of traditional metal electrodes. TFE was applied to the
SWCNT electrodes, resulting in a power conversion efficiency of 14.1% using a SWCNT film
electrode with transmittance of 41%. By comparing perovskite solar cells using SWCNTs
with transmittances of 41% and 28%, it was revealed that the conversion efficiency is
superior when employing a transmittance of 41%. At the interface between Spiro-OMeTAD
and SWCNT, the ionization potential of the SWCNT thin film was shown to shift to a
slightly deeper level, which reduced the barrier to carrier transport. The Seebeck coefficient
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indicated that after the deposition of TFE, the surface of SWCNTs became enriched with
positive holes, resulting in a slight reduction in carrier trap density and an improvement
in conductivity of the SWCNTs. Because of hydrophobicity of TFE, the decomposition of
the perovskite crystals was inhibited over 260 days, contributing to stability. Although
the boiling point of TFE was lower than that of TFMS, the doping effect was kept at least
for 260 days. A significant advantage was that TFE can be doped directly onto SWCNT
electrodes without concentration adjustment without damaging the perovskite crystals,
and it is safe due to its low acidity. Therefore, TFE could serve as a p-dopant for SWCNT
top electrodes in advancing perovskite solar cells.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/photochem4030019/s1, Figure S1: J–V characteristics of the present
perovskite solar cells; Figure S2: Device performance. (a)–(f) Statistics deviation of the photovoltaic
parameters of the perovskite solar cells with TFE-doped CNT. The statistical data was collected
from five cells; Figure S3: (a) IQE spectra calculated by EQE results and light absorption efficiency.
(b) Transmittance spectra of the perovskite solar cells; Figure S4: Light intensity dependence of J–V
characteristics of (a) VOC and (b) JSC for devices with SWCNTs. (c) Dark current–voltage curves
for the devices without TFE; Figure S5: Elemental mapping images of In L, Sn L, Si K, C L, N
K, I L, and Pb M lines; Figure S6: SEM image and EDX data of the SWCNT (T550nm = 41%) film;
Figure S7: Time-dependent eValuation. J–V characteristics of the cells after (a) after 30 days and
(b) after 260 days. (c) Photograph of the backside of the present perovskite solar cells after 260 days;
Table S1: Photovoltaic performance of the cells with SWCNTs; Table S2: Photovoltaic performance of
the cells with SWCNTs non-doped TFE; Table S3: Photovoltaic performance of the cells with SWCNTs
after 30 days and 260 days; Table S4 Comparison of carbon nanotubes as hole transport materials in
perovskite solar cells [66–75].
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