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Abstract: Atomically precise noble metal nanoclusters protected by ligands are broadly
discussed in the literature as a promising new class of materials with many interesting
properties. Of those, the most prominent is the characteristic luminescence in the visible
and near-infrared light. Within the plethora of conjugates of metal nanoclusters to various
protective ligands, protein-enveloped systems present several unique features arising
from an interplay of the nanocluster photophysics and the protein chemistry along its
macromolecular dynamics. The specific properties of protein–metal nanocluster conjugates
underlie various applications of these systems, especially in bioimaging. This review,
in contrast to many already published, focuses on protein-protected gold nanoclusters
(AuNCs) from the standpoint of the proteinaceous shell which plays a crucial role in
the biocompatibility, solubility, and excellent in-solution stability of such nanohybrid
complexes. Factors such as the protein’s size, structural rigidity, amino acid composition,
electric charge, and the electron donor properties of composite amino acids are discussed.

Keywords: nanomaterials; sub-nanometer materials; metal nanoclusters; protein-protected
gold nanoclusters; bioinorganic materials

1. Introduction
Noble metal nanoclusters are composed of a few to around a hundred atoms. In

bulk metals, the electronic properties are generally described by continuous bands of
energy levels. When the size of a metal nanoparticle becomes comparable to the Fermi
wavelength of electrons, discrete energy levels due to the quantum effects start to dominate
and the overall energy band structure becomes discrete. Nanoclusters, as well as quantum
dots, nanowires, and nanocrystals, are examples of nanostructures exhibiting the quantum
confinement effect: as the size of these structures decreases, the energy levels of electrons
become quantized, leading to unique electronic and optical properties.

The critical size of the gold nanostructures for which the collective plasmon resonance
is no longer important was provided by Qian et al. and was stated to be ~200–300 Au
atoms, which is equivalent to the diameter of ~1.8–2.1 nm [1–3]. The cluster size is strongly
intertwined with its properties, as the fraction of the surface atoms and the electronic
structure are strongly dependent on the size of the nanocluster (and to a lesser degree, on
its shape at a fixed number of atoms within the cluster—e.g., [4]). An excellent example
is the possibility of tuning the emission wavelength of nanoclusters by changing their
size: Au31, Au25, Au13, Au8, and Au5 exhibit near IR, red, green, blue, and UV emission,
respectively [5,6]. Arguably, among those nanocluster forms, the most researched has
been the thiolate-stabilized Au25 (Au25(SR)18) known as “captain of the great nanocluster
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ship” [7]. Over the recent years, this has yielded a plethora of detailed data on its fascinating
photophysical and physicochemical characteristics (e.g., [8]). In particular, the seminal
work on resolving the atomic structure of the thiol-capped Au25 and correlating it with time-
dependent density functional theory (TD DFT) calculations provided key insights into the
origins of AuNC optical properties [9]. The surface ligands of metal nanoclusters are critical
in determining their shape, size, and interfacial characteristics, resulting in different optical
properties. This optical tunability, combined with good photostability and the possibility
of introducing a variety of surface modifications, makes these fluorescent structures an
exciting class of nanomaterials with possible use in biolabeling and imaging [2,10,11],
bioassays [12,13], electronic devices, sensors [14,15], and environmental analysis [16,17].

No fixed mechanism of luminescence emission is currently accepted. Many groups
suggest that there is a mixed contribution of quantum confinement of the metal core and
ligand-to-metal charge transfer, especially via Au-S bonding [18]. Xie et al. postulated that,
while the structure of the Au core is the determinant of the energy associated with the observed
luminescence, interactions between the Au surface and the capping agents are the key factor
for its quantum yield. On the other hand, this seems not to be in agreement with the work of
Liu et al., as they reported that different surface coverage of AuNC by glutathione results in
the emission of different colors of light, independent of the core size [19].

It is also important to note that the usage of gold instead of other metals is not
incidental. Gold is particularly attractive due to its superior resistance to oxidation, as
opposed to silver in fluorescent silver nanoclusters [20]. Compared to other fluorescent
nanomaterials, such as quantum dots, AuNCs do not contain toxic heavy metals. Moreover,
gold exhibits excellent antibacterial capability [21].

2. Ligands Protecting Gold Nanoclusters
In solutions, AuNCs are usually protected from aggregation into larger nanostructures

by ligands. These can include dendrimers [22–24], polymers [25–28], thiolates [29], ionic
liquids [30,31], peptides [32], proteins [33], oligonucleotides [34], and DNA [35–37]. The
variety of templates provides a wide range of possibilities of tailoring the final product
to one’s needs. The templates provide a variety of configurations and spaces, and can be
used to synthetize metal nanoclusters of well-controlled morphology (in terms of core-size
and shape). The scaffolds can also play an important role in the photophysical properties
of the hybrid nanocomplexes. Last, but not least, some templates (e.g., peptides, proteins,
and DNA) provide the nanoclusters with high biocompatibility, rendering them non-toxic
and thus allowing their use in biological and medical sciences as fluorescent probes and
sensors. The essential role of surface chemistry in establishing a stable protein corona is well
recognized also in the case of larger non-luminescent metallic nanoparticles (AuNPs—[38]).

A short compendium of examples of AuNC–ligand complexes obtained to this date
and some of their properties can be found in Table 1. Protein-protected AuNCs will be
discussed in detail in the dedicated section.

Table 1. Examples of ligands used in the synthesis of ligand-protected gold nanoclusters. PAMAM
stands for poly(amidoamine) dendrimers and the number refers to the generation of the used
dendrimer.

Ligand NC Size [*Estimated Number of Au
Atoms]

Fluorescence Excitation and
Emission Wavelengths [nm] Ref.

PAMAM dendrimer, G9 4 nm – [22]

PAMAM dendrimer, G4-OH [*Au4] 382/445 [23]

poly(N-vinyl-2-pyrrolidone) 1.3 nm – [25]
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Table 1. Cont.

Ligand NC Size [*Estimated Number of Au
Atoms]

Fluorescence Excitation and
Emission Wavelengths [nm] Ref.

poly(2-ethyl-2-oxazoline) 6.4 ± 0.2 nm 290/645 [27]

poly(1,2-butadiene) [*Au8], 1.4 nm 370/465 [38]

low density of glutathione 1.7 ± 0.2 nm 412/638 [28]

high density of glutathione 1.6 ± 0.2 nm 412/638 [28]

C5 DNA – 370/455 [33]

SS DNA 2 nm 467/725 [34]

poly-C DNA ~2 nm 245/440 [35]

histidinehydroxamic acid – 365/440 [39]

nicotinamide ~1 nm 335/380 [40]

lipoic acid – 400/740 [41]

(3-mercaptopropyl)sulfonate
1-decyl-3-methylimidazolium [*Au25] – [29]

captopril 2.3 nm 362/414 [42]

penicillamine <2 nm 400/610 [43]

4,6-diamino-2-mercaptopyrimidine ~6 nm 360/635 [44]

3. Protein-Protected Gold Nanoclusters
Biologically important proteins and peptides, as well as short custom-designed peptide

sequences, are efficient scaffolds for the nucleation and growth of AuNCs. The usage of
proteins in the template-assisted synthesis of metal nanoclusters introduced a number of
advantages such as facile preparation, mild synthesis conditions, controllable and uniform
size of obtained clusters, excellent water-solubility, and biocompatibility [31,32,45,46].

The generally applicable procedure of synthesis was first described by Xie et al. and
was based on the biomineralization of a protein, BSA—bovine serum albumin [32] and can
be summarized as pictured in Figure 1. This pioneering protocol calls for the addition of
aqueous HAuCl4 to the protein solution under vigorous stirring. Then, NaOH solution
is introduced and the mixture undergoes incubation at a slightly elevated temperature
(37 ◦C) for at least 12 h. The formation of protein-templated AuNCs is indicated by a
change in the color of the solution from light yellow to deep reddish brown. The reaction
time can be reduced by introducing microwave-assisted methods which provide uniform
heating [47–50]. Some groups have modified this procedure by using auxiliary reducing
agents, such as ascorbic acid [51]. Importantly, this protocol provides a versatile and
effective paradigm for a pathway to protein-protected nanoclusters of other metals (such
as Ag or Cu) [52].

To this date, a broad range of proteins have been used as protective corona for in situ
formed AuNCs, including BSA [3,32], lysozyme [53,54], and enzymes such as pepsin [55],
trypsin [56], horseradish peroxidase [14], and DNase [57]. A short summary of proteins
used as ligands for the synthesis of AuNCs and some of the properties of the resulting
AuNC–protein complexes can be found in Table 2. It is worth noting that the liberation of
the AuNCs from the protein scaffolds cause coalescence into bigger (and thus nonfluores-
cent) nanostructures [58]. Hence, the stability of AuNC–protein luminescence depends in
particular on the stability of a proteinaceous envelope. Should the latter be compromised in
the presence of, for example, protein-degrading enzymes, this, in principle, could become
a basis for devising assays to detect protease activity [59,60]. While there has been some
debate as to the nature of the mechanisms underlying the protease-induced quenching of
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protein–AuNC luminescence, it appears that the release of AuNCs and the subsequent
coalescence into non-luminescent plasmonic nanoparticles (rather than, for example, the
impact of environmental oxygen) is the actual culprit [61].
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Figure 1. Schematic diagram of AuNCs’ formation in the presence of BSA. Reprinted with permission
from Ref. [32]. Copyright 2009 American Chemical Society.

Table 2. Proteins used for the synthesis of gold nanoclusters.

Ligand NC Size [*Estimated Number of Au Atoms] Fluorescence Excitation/Emission
Wavelengths [nm] Ref.

horseradish peroxidase 2.7 ± 0.6 nm 365/650 [14]

bovine serum albumin [*Au25] 470/640 [32]

horse hearth myoglobin [*Au8] 495/450 [52]

bovine hearth cytochrome c [*Au8] 495/450 [52]

bovine plasma fibrinogen – – [52]

bovine milk β-lactalbumin [*Au8], [*Au25] 495/450 and 495/~650 [52]

bovine pancreas
α-chymotrypsin [*Au8], [*Au25] 495/450 and 495/~650 [52]

lysozyme 4 nm 370/650 [53]

lysozyme 3.84 ± 0.52 nm 470/650 [54]

pepsin [*Au25] 360/670 [55]

trypsin 2.7 ± 0.4 nm 520/690 [56]

DNAse I [*Au8], [*Au25] 395/460, 490/640 [57]

bovine serum albumin [*Au8], [*Au13] 330/410, 330/510 [62]

human serum albumin 2 nm 474/609 [63]

insulin 3.5 ± 0.4 nm 400/670 [64]

trypsin <3.0 nm 520/650 [65]

papain 1.2 ± 0.2 nm 470/660 [66]

transferrin <2 nm 390/695 [67]

lactoferrin <1 nm 445/650 [68]

hemoglobin <10 nm 365/450 [69]

hemoglobin 3.7 nm 314/430 [70]

hemoglobin [*Au25] 494/654 [71]

soy protein <2 nm 480/630 [72]

ovalbumin 3.8 nm 490/650 [73]



Photochem 2025, 5, 3 5 of 24

Table 2. Cont.

Ligand NC Size [*Estimated Number of Au Atoms] Fluorescence Excitation/Emission
Wavelengths [nm] Ref.

Apo-α-lactoalbumin ~2 nm 365/450 and 365/660 [74]

bromelain – 350/430 [75]

BSA and bromelain 1.5 nm 495/633 [75]

avidin 5.6 ± 1.4 nm 374/449 and 374/651 [76]

herceptin 8.4 nm 488/645 [77]

gluten 2.78 nm 370/640 [78]

BSA and lysozyme 2.8 nm 500/640 [79]

L-tyrosine 1–3 nm 385/450 [80]

CD33 monoclonal antibody AuNC size < 1 nm in spherical aggregates of size ~12 nm 510/656 [81]

As can be easily noted, the sizes of nanoclusters reported in the literature vary greatly.
Interestingly, in some cases, the measurements from TEM images of AuNCs exceed the size
that is considered crucial for their fluorescent properties (the maximum of 2 nm in diameter).
The observed discrepancies can be attributed to differences in the synthesis conditions but
also to the systems which were used to obtain measurements. It is a known fact that the
focused electron beam of HR-TEM (High Resolution Transmission Electron Microscopy)
can lead to changes in the size and shape of metal nanostructures as well as changes in their
structure [82–85]. When dynamic light scattering (DLS) is used for the size estimation, one
should take notice that the average hydrodynamic diameter according to DLS in solution is
usually of a higher value than the average particle diameter as found by HR-TEM, which
was measured under an ultrahigh vacuum, especially in the case of inorganic–organic
nanocomposites like protein-protected nanoclusters. Mass spectrometry (MS) is yet another
method used to estimate the size of protein-protected AuNCs. In this indirect method, the
mass of a protein monomer is subtracted from the mass of the protein–AuNC conjugate.
However, this approach is inherently inaccurate, as the conjugates are polydisperse (Au
atoms are not confined to a single binding site within the protein molecule (they may be
distributed across various cysteine and other residues in the protein)). Furthermore, one
should take into account the possible fragmentation and partial degradation of the protein
ligand occurring prior to the measurement.

4. Protein Size and Ligand to Gold Precursor Ratio
The protocol provided by Xie et al. works well for a wide variety of protein ligands

encapsulating luminescent metal NCs. Volden et al. employed a similar protocol (protein
is dissolved in PBS buffer instead of distilled H2O with the mixed reactant samples kept at
37 ◦C for a week) to synthetize AuNC with eight proteins: bovine serum albumin (BSA),
bovine milk α-lactalbumin type I (BLA), horse heart myoglobin (Mb), chicken egg white
lysozyme (Lyz), bovine pancreas α-chymotrypsin (CTR), bovine plasma fibrinogen (Fib),
bovine milk β-lactoglobulin (BLG), and bovine heart cytochrome c (Cyt) [52]. By using the
same synthesis protocol for these eight proteins, the effects of protein size, overall protein
charge (pI), conformational flexibility, and the occurrence of specific amino acid residues on
the ability to reduce and stabilize gold nanostructures were probed. Among these proteins,
only Fib produced non-luminescent clusters. Luminescence from BLG-NC was low, but
detectable. While Fib is the heaviest of used proteins (340.0 kD), the molecular weight of
BLG (18.0 kDa) is not very different from other proteins (CTR: 25.0 kDa, Lyz: 14.2 kDa).
BSA, which produces BSA-AuNC with high quantum yield, weighs 67.0 kDa. Hence, it is
hard to point to a general and clear relationship between the weight of the protein involved
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and the quantum yield of luminescence of its conjugate to AuNCs. This is supported by
the fact that it is possible to synthesize fluorescent AuNC using short peptides [31,86].

Another lead that was being followed in the context of nanocluster synthesis concerned
the stoichiometry of protein–gold precursor mixing. When AuNCs were synthesized using
His and Trp [81], a too low ratio of ligand to gold compound resulted in non-luminescent
products. On the other hand, with the ligand excess, the fluorescence intensity increased to
a maximum value and then decreased [87,88].

5. Structural Rigidity of the Protein
Both the effect of the spatial structure of the protein on synthesized AuNCs and the

effect of synthesized AuNCs on the protein’s structure are not fully explored yet; it is often
the case that studies discussing the syntheses of fluorescent complexes lack a detailed
spectroscopic characterization of the proteinaceous envelope’s structure. It is expected
that the encapsulation of Au nanoclusters inside the protein template affects the protein
structure [89]. From the available data including our own work, we conclude that the
strongly alkaline reaction environment used in most of the syntheses results in a partial
loss of the protein’s secondary structure. Examples include the experiments by Yarramala
et al. [74], Rajamanikandan et al. [90], and Kluz et al. [91]. Although these works focus on
different proteins (apo-α-lactalbumin, ovalbumin, and bovine serum albumin, respectively),
in each case, significant differences in the circular dichroism spectra (CD) between the
native protein and its AuNC-bound form were observed. As shown in Figure 2, Kluz
et al. compared three different protein forms: unmodified, native BSA, BSA subjected to
a prolonged incubation in an alkaline environment without a gold precursor (BSA-Alk),
and BSA-AuNC. According to the spectroscopic data, the addition of NaOH required in
Xie’s protocol results in a roughly 20% decrease in the ellipticity, implying a corresponding
amount of disruption of the native α-helical structure of BSA. In BSA-AuNC, an even more
pronounced decrease in ellipticity was observed (~50%). A strongly alkaline environment
results in the unfolding of the native α-helical structure, the disappearance of tertiary
contacts, and even, in this case, the hydrolysis of disulfide bridges, as shown by Raman
spectroscopy [92].

The hydrolysis of disulfide bridges was also observed during the synthesis of
lysozyme–AuNC and it was interpreted as the main reason for the significant decrease in
helicity [93]. Interestingly, reports on bovine insulin–AuNCs show intact S-S bridges [64,94].
Nonetheless, CD spectroscopy clearly shows that the BSA bound to AuNC in the BSA-
AuNC complex is significantly disordered and retains only a fraction of the native confor-
mation. In fact, the partial denaturation of BSA under the alkaline conditions of BSA-AuNC
synthesis is not only an immediate response of the protein structure to the extremely high
pH, but it also becomes more pronounced on the time-scales of the synthesis, just as the
complex chemistry leading to the formation of AuNCs is progressing. Figure 3 shows
a time evolution of the secondary-structure-sensitive far-UV CD spectra of BSA in the
presence of NaOH and HAuCl4 (at the ratio and concentrations as required in the Xie’s
protocol) along with the accompanying changes in the near-UV region corresponding to
the tertiary contacts of aromatic residues. The plotted time-dependent changes in elliptic-
ity at 222 and 270 nm are juxtaposed to those of BSA subjected to an analogous alkaline
treatment in the absence of HAuCl4, allowing one to appreciate how detrimental to the
native fold are the basic conditions rather than the formation of AuNCs per se. It is worth
mentioning that, according to a previously reported CD-based investigation, an addition of
pre-formed larger non-fluorescent AuNPs to native BSA also results in a modest decrease in
the protein’s helical content [95]. However, the patterns of protein–Au interactions in both
these cases (i.e., the in situ formed BSA-AuNC conjugate and the electrostatic BSA-AuNP
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complex) are expected to be distinct; therefore, the mechanisms underlying the partial
unfolding are also likely to be different.

Photochem 2025, 5, x FOR PEER REVIEW 7 of 26 
 

 

 

Figure 2. (A) Luminescence emission spectrum of BSA-AuNC (λexc = 365 nm) overlaid on unstained 
TEM images of BSA-AuNC; AuNCs of a diameter below 1 nm are marked with red circles whereas 
larger non-fluorescent AuNPs are in black circles; sharp peak marked with an asterisk corresponds 
to scattered 2λexc light. Photographs of BSA-AuNC liquid sample illuminated with 365 nm UV light 
(top), and in daylight (bottom) are on the right. (B) Far-UV CD spectra of native BSA, BSA-Alk, and 
BSA-AuNC collected at the same protein concentration and pH 7; inset shows the corresponding 
near-UV CD spectra. (C) Raman spectra of native BSA and BSA-Alk (laser line 780 nm). Reprinted 
from Ref. [91]. 

The hydrolysis of disulfide bridges was also observed during the synthesis of lyso-
zyme–AuNC and it was interpreted as the main reason for the significant decrease in he-
licity [93]. Interestingly, reports on bovine insulin–AuNCs show intact S-S bridges [64,94]. 
Nonetheless, CD spectroscopy clearly shows that the BSA bound to AuNC in the BSA-
AuNC complex is significantly disordered and retains only a fraction of the native confor-
mation. In fact, the partial denaturation of BSA under the alkaline conditions of BSA-
AuNC synthesis is not only an immediate response of the protein structure to the ex-
tremely high pH, but it also becomes more pronounced on the time-scales of the synthesis, 
just as the complex chemistry leading to the formation of AuNCs is progressing. Figure 3 

Figure 2. (A) Luminescence emission spectrum of BSA-AuNC (λexc = 365 nm) overlaid on unstained
TEM images of BSA-AuNC; AuNCs of a diameter below 1 nm are marked with red circles whereas larger
non-fluorescent AuNPs are in black circles; sharp peak marked with an asterisk corresponds to scattered
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(C) Raman spectra of native BSA and BSA-Alk (laser line 780 nm). Reprinted from Ref. [91].
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Figure 3. (A) Time-lapse far-UV CD spectra of BSA under the conditions of formation of BSA-AuNC
conjugate (a protocol similar to Xie’s approach: 25 mg/mL BSA in 5 mM HAuCl4 and 0.1 M NaOH,
37 ◦C, 600 rpm agitation, other data collection details as in the work Kluz et al. [85]). In the inset, the
corresponding near-UV CD spectra are shown. (B) Plotted time-dependent ellipticity values at 222
and 270 nm for the samples in which the actual BSA-AuNC synthesis takes place compared with
control data on samples lacking HAuCl4 (BSA-Alk).

As UV absorption by residual Au compounds and already formed AuNCs, as well
as the scattering of short-wavelength UV light, can compromise quality and hamper the
interpretation of UV-range CD spectra, complimentary approaches have been used to ana-
lyze the state of protein ligands binding AuNCs. One such approach is Fourier-transform
infrared spectroscopy (FT-IR) in the secondary structure-sensitive amide I frequency range.
Examples of spectra of insulin-AuNC can be found in Figure 4. Changes in amide I peak
position, intensity, and spectral contour shape can indicate alterations in protein conforma-
tion induced by factors such as pH, temperature, or ligand binding. Cun et al. collected
FT-IR spectra of freeze-dried hemoglobin and hemoglobin–AuNC (Hb-AuNC) [71]. In
comparison to the native sample, the spectrum of Hb-AuNC showed broader peaks and a
number of features were merged together. The amide I band was shifted towards shorter
wavelengths and lost some of its initial intensity while the neighboring amide II band
was shifted towards longer wavelengths with its intensity relatively increased. Similar
changes in the position of the amide II band were observed by Guével et al. [67] and
Ghosh et al. [65]. Moreover, the spectrum of Hb-AuNC exhibited an additional band at
1430 cm−1. This was also reported previously and can be attributed to the CH2 bending of
protein’s hydrophobic residues which, due to the protein unfolding, are exposed after the
formation of protein–gold nanoclusters [88]. The corresponding second derivative spectra
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have shown that the main component of native hemoglobin is the α-helix whereas, upon
the incorporation of AuNCs, the α-helix content is significantly decreased and the content
of random coils, β-sheet, and intermolecular aggregates increased [71]. This points to the
fact that—upon the formation of nanoclusters—the secondary and tertiary structures of
proteins change. Therefore, it is interesting to probe how a more rigidified structure of
protein shell affects the properties of the protein–AuNC conjugate.
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Figure 4. (A) UV−Vis absorption spectrum and fluorescence excitation and emission spectra of
Ins-AuNCs. The inset shows the photographs of Ins-AuNCs solution in daylight and 365 nm UV
light. (B) TEM image and HR-TEM image of single AuNCs (inset). (C) FTIR spectra of Ins-AuNCs
and insulin. (D) XPS results of Ins-AuNCs. Reprinted with permission from Ref. [93]. Copyright 2023
American Chemical Society.

BSA is known to undergo conformational changes in response to variations in pH
levels. The protein has five distinct structural monomeric forms: E (extended, under pH
2.7), F (fast migration), N (normal, between pH 4.3 and 8), B (basic, pH above 8), and A
(aged, above pH 10) [96]. Yu et al. inquired how the pH of reaction mixture affects the ability
of BSA to form BSA-AuNC. By varying the pH, both Au25NC (in pH ~11) and Au13NC
(in pH 7.4) were obtained at a constant Au–BSA ratio of 24:1. The α-helix content of the
conjugates was probed using CD spectroscopy and for BSA-Au13NC and BSA-Au25NC, the
values were subsequently 36.8% and 18.2%, respectively. Interestingly, at pH 7.4, a complex
containing a maximum of 13 gold atoms was formed, regardless of the Au–BSA ratio used
(even when the ratio of 47:1 was tested), highlighting the role of BSA conformation in
aqueous solution determining the size of AuNCs in BSA-AuNC complexes [97]. Another
brilliant example of how the conformation of protein controls the size of nanoclusters was
presented using apo-α-lactalbumin: a milk protein possessing a single binding site for
Ca2+. Apo-α-lactalbumin can also bind La3+ with a high affinity. It was found that when
the binding site is occupied with a metal ion, the protein envelope restricted the growth
of AuNCs, demonstrating the potential of controlling the size of resulting clusters. In the
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absence of La3+ ions in the solution, a core size of Au10 was observed. When the La3+ ions
were added, nanoclusters with a core size of 6 to 10 Au atoms were formed, depending
on the concentration of La3+ added. Their spectra are shown in Figure 5. The synthesis of
AuNCs protected with apo-α-lactalbumin in the presence of Ca2+ resulted in Au8NCs and
with Gd3+ a mixture of AunNC, where n = 7, 8, 9 [79].
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Figure 5. Spectra of concentration-dependent La3+-incorporated α-LA: (a) absorption spectra, (b) CD,
(c) FT-IR apo-α-LA (black), α-LA-AuNCs (red), α-LA-1.2 mM La3+-AuNCs (blue), and (d) double
derivative of FT-IR, color-coded with blue at 1654 cm−1 for random coil and pink at 1648 cm−1 for
α-helix. Reprinted with permission from Ref. [74]. Copyright 2017 American Chemical Society.

Fatty acids are known to stabilize albumin structure, causing it to be more resilient
to environmental changes such as varying temperature or different pH levels [98–100].
This inspired an interesting question on how the content of fatty acids interplays with
BSA determining the characteristics of BSA-AuNCs. Data on this subject were provided
by Andrýsková et al. [100] who used three different types of BSA: commercially available
98% BSA, 96% BSA, and 98% fatty acid-free BSA (denoted as df98BSA). These were used
as substrates in a microwave-assisted synthesis of BSA-protected AuNCs. The resulting
products were then evaluated for their alpha helix content. The increase in structural
disorder was more pronounced in df98BSA, as compared to the samples containing fatty
acids according to the data provided by calculations based on FT-IR and CD spectra.
According to fluorescence spectroscopy measurements, the presence of fatty acids in
albumin leads to an increase in the fluorescence intensity. When df98BSA was modified
with palmitic acid, both prior and after the synthesis of AuNCs, the quantum yields had
similar values (around 7%), higher than the quantum yield of unmodified, fatty acid-free
BSA-AuNC (around 5.7%). The researchers arrived at the conclusion that the fluorescence
increase stems from the rigidification of albumin structure.
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6. Amino Acid Composition
The amino acid composition can vary significantly from protein to protein; thus, it

is only natural to expect that the synthesis of protein-protected nanoclusters might yield
different products depending on the protein in question. While approaching the complex
problem of the role of individual amino acid residues in the formation and stabilization of
protein–AuNC conjugates, one has to take into account the empirical fact that distinct (in
terms of amino acid compositions, but also molecular weight and pI—see Figure 6) proteins
can give rise to conjugates with very similar (BSA and HEWL) or very different (BSA and
Cyt C) photophysical properties. Hence, the end photophysical properties of these systems
are outcomes of a complex interplay of many factors as opposed to being determined by a
single dominating protein feature, such as high content or aromatic residues.
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HEWL, and Cyt c, giving pairwise similar (BSA and HEWL) and quite distinct (Cyt c and BSA)
photophysical properties of AuNC conjugates.

BSA-AuNCs demonstrate a strong emission upon excitation with UV light with peaks
around 450 nm and 650 nm, indicating the presence of both small and large gold nanoclus-
ters. In contrast, Cyt c-AuNCs emit weaker fluorescence in blue and purple light regions.
This difference can be attributed to a low concentration of small gold nanoclusters in the
product or to aromatic amino acid side groups. Notably, Cyt c-AuNCs also exhibit a blue
shift and a weakening of the absorption band at approximately 410 nm, implying that the
formation of gold nanostructures affects the environment surrounding the heme group
in cytochrome c.

Natural amino acids possess the ability to bind to Au atoms owing to their chelating
and functional groups, such as amine, carboxyl, and thiol. According to Tan et al., the
peptide-driven formation of AuNC requires the presence of amino acids exhibiting two
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functions: a capacity to reduce the gold ions to gold atoms and a strong ability to bind to
the surface of forming gold [101].

Li et al. conducted a theoretical study in which the reactive abilities of 20 naturally
occurring amino acids were approximated by their HOMO/LUMO energy gap analysis
through DFT calculations [102]. According to this study, tryptophan, histidine, and tyrosine are
the strongest reducing agents while methionine and cysteine—both containing S atoms—allow
the strongest binding of Au by forming Au-S bonds. Further theoretical studies provided
insight into the binding affinity of amino acids to Au+. Among all the amino acids naturally
occurring as building blocks of proteins, cysteine with its deprotonated side chain (denoted as
<<Cys(-H+)>>) had the highest value of the Gibbs free energy associated with Au+ binding
with amino acids [103]. This is in agreement with the DFT study by Srivastava, in which the
intermolecular interactions between gold nanoclusters Aun (n = 8, 10, 12) with cysteine in its
neutral and ionic forms were investigated. According to the results of this study, cysteine
can form stable complexes with gold. The cationic form of cysteine interacts with gold
most strongly and the bonding energy is inversely correlated to the Au-S bond length [104].
According to another TD-DFT study, the impact of ligands on luminescence will be particularly
pronounced in the case of very tiny (Au2 and Au4) clusters [105].

The interactions between Au and S have also been discussed in the context of fluores-
cence emission mechanisms. It was proposed that the fluorescence emission of Au25-NC
originates from a Au13 core decorated with 6 staple surface motifs: -S-Au(I)-S-Au(I)-S-,
suggesting that 18 cysteine residues are required for the fluorescence [106–108]. However,
fluorescent insulin–AuNC [64,95], pepsin–AuNC [55], trypsin–AuNC [56], and myoglobin–
AuNC [52] were synthesized and these proteins contain only 6, 6, 7, and 0 cysteine residues,
respectively. This points to two possible scenarios: either amino acids other than cysteine
start to contribute to the stabilization of the emerging nanoclusters or multiple protein
molecules are involved in the synthesis process.

Liu et al. in 2011 proposed that the synthesis of insulin–AuNC differs from the mecha-
nism of BSA-AuNC, as no Au attached to the insulin was detected in mass spectrometry
after the synthesis of a fluorescent insulin–Au nanocomplex [64]. This differs from BSA, for
which clear BSA-AuNC peaks are observed [109]. The group points to the fact that insulin
has only six cysteine residues, all of which are involved in S-S linkages between chains A
and B; hence, interactions between gold and other residues such as tyrosine, lysine, aspartic
acid, arginine, and tryptophan are more likely. Such polar interactions would be weaker
than the covalent Au-S linkage and thus possibly not observable in mass spectrometry.
This is also supported by Raman spectroscopy. Namely, before and after the growth and
encapsulation of AuNCs, the S-S stretches arising from intact S-S crosslinking are visible in
the Raman spectra, as observed by both Liu et al. and Shamsipur et al. [94,110].

Xu et al. have argued that while thiol groups form chemical bonds with Au surfaces,
amine groups can form coordination bonds and can also be involved in the stabilization of
Au nanoclusters; the pI of proteins before and after the nanocluster encapsulation in the
case of trypsin and lysozyme were significantly reduced (from 7.0 and 10.5 to 5.0 and 5.5,
respectively), while the pI of BSA containing 35 cysteine residues remained unchanged
after the encapsulation [89].

In 2023, Peng et al. first proposed a machine-learning-based model designed to search
for the factors affecting the binding affinity of small Au clusters (3 atoms) and amino acids
in the gas phase and when solvated by H2O considering single-site adsorption, not an
actual solution environment [111]. According to this work, different environments result
in different interactions between gold and amino acids: in the gas phase, the most stable
complex of Cys-Au3 is the one where gold is bonded with nitrogen atoms of amino groups,
while in solution binding, through a sulfur atom is more favorable.
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The earlier work by Abdalmoneam also probed amino acids in the gas phase and in
solution, but was limited to alanine and tryptophan with Au8 and Au25 [112]. Electrostatic
potential (ESP) isosurfaces of the Au8–Trp complex are depicted in Figure 7. The results
showed that the amine N atom was energetically preferred for canonical forms of Ala and
Trp but for their zwitterions, the carboxylic O was a favored bonding site. It has been
also shown experimentally that in pepsin, the acidic amino acids rich in carboxyl groups
(such as aspartic acid) can reduce AuCl4− ions in acidic conditions [55]. However, such a
reductive process is expected to be much slower than an analogous one involving tyrosine
residues of pepsin in alkaline pH.
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Advancing the understanding of how nanoclusters interact with amino acids will
hopefully facilitate the design of target-specific bioimaging probes. In fact, such attempts
have already been made; for example, Wang et al. designed a peptide with two functional
domains. One of the domains (CCY) was responsible for the reduction of Au ions to Au
nanoclusters and the second (derived from HIV-1 TAT protein) possessed targeting ability
towards a cell nucleus [113]. Later, the same sequence of domain 1 was used by Song
et al. [114] and Yuan et al. [115]. Yuan et al. coupled the CCY sequence (core sequence,
denoted as c) to a short fibril-forming peptide KFFAK (assistant sequence, denoted as a) and
used different motif combinations for the synthesis of AuNC. Interestingly, among these
combinations, only ca and aca produced visible fluorescent complexes with AuNC when
the concentration of the gold precursor and ratio of peptide to gold ions were kept the same,
indicating the significance of motif sequences. The group speculates that the formation
of fluorescent peptide–AuNC is governed by either steric hindrance or collision rate in
solution; the heavier the sequence, the slower the peptide diffuses in solution and provides
less opportunity for collision with gold ions. The formation of nanofibrils was observed,
but the AuNCs were not well aligned with the fibrils according to TEM and AFM.

Another example of a designed sequence targeted towards the synthesis of AuNCs
was provided by Lopez-Martinez et al. This group used a series of designed consensus
tetratricopeptide repeat (CTPR) proteins to explore the effect of the coordinating protein
on the properties of originally non-emissive “naked” AuNCs. CTPR proteins consist
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of repeating 34-amino acid alpha-helical motifs. Two such proteins were constructed:
WT(C4his)4WT and WT(C4cys)4WT, where WT stands for the wild-type CTPR motif and
C4cys or C4his represents mutated CTPR motifs, where the metal coordinating residues were
introduced in the positions 2, 6, 9, and 13 of the CTPR motif based on the Protein Data
Bank crystal structure of entry 2HYZ. As a control, the CTPR-16glu protein with glutamic
acids in the coordinating positions was used. As expected, the luminescent products were
synthesized only with WT(C4his)4WT and WT(C4cys)4WT. Interestingly, as shown in Table 3,
the chemical identity of the amino acid used for the metal coordination encoded a different
emission wavelength of the resulting protein–AuNC complex upon excitation with the
same wavelength at 390 nm, despite being of similar size [116].

Table 3. Characteristics of CTPR-AuNC obtained by Lopez-Martinez et al. [116].

Protein Size [nm] Excitation/Emission Wavelengths [nm]

WT(C4his)4WT 1.7 ± 0.5 390/515

WT(C4cys)4WT 1.7 ± 0.3 390/675

The group argues that, according to the mass spectrometry data, the blue-emissive
histidine-coordinated AuNCs are only slightly larger than the red-light-emitting cysteine-
coordinated AuNCs, so the prominent change in their luminescent properties is rather
related to the capping ligands. When AuNCs were conjugated to cysteine and histidine
using the same protocol and stoichiometry as for the CTPR protein conjugates, the resulting
products were non-luminescent, which seems to support the idea that the protein’s surface
is of critical importance in the context of the optical properties of the bound AuNCs [116].

7. Charge and Electron Density of the Ligand
The polar amino and carboxylic groups have been reported as the favored anchoring

sites for AuNCs both experimentally and theoretically, as widely discussed in the previous
section. A number of studies have shown that the strength of interactions between amino
acids and gold is related to the polarity of amino acids and its size [105,111,112,117,118].

Most protocols for the synthesis of protein-protected AuNCs call for a highly basic
reaction environment. When the solution pH is above the pI value, the protein’s net charge
becomes negative. The exact value of the charge will depend on the protein’s specific amino
acid composition. The surface ligands impact not only the net charge but also the polarity
of protected AuNCs. To our best knowledge, the extent to which the fluorescence from
protein-protected nanoclusters is governed by the charges within the protein scaffold has
not been thoroughly investigated to this date. Moreover, as discussed earlier in the text, the
mechanism of fluorescence emission of AuNCs remains unclear.

Prieto and co-workers synthesized so-called naked gold nanoclusters: non-luminescent
water-dispersible AuNCs without organic ligands. Those AuNCs require subsequent
coating with ligands such as cysteines or adenosine monophosphate in order to become
luminescent and emit in different spectral regions [119]. This clearly shows that conjugating
the AuNCs to a ligand is a necessary step to obtain luminescent properties.

Wu and Jin proposed three routes of increasing the fluorescence of AuNCs: (i) increas-
ing the ligands’ capability to donate charges, (ii) increasing the electropositivity or oxidation
state of the metal core, and (iii) employing ligands possessing more electron-rich atoms
and groups [107]. Those ideas were widely discussed, especially in the context of thiol-
protected AuNCs. However, Xu et al. replaced glutathione with short, custom tripeptides,
Lys-Cys-Gly (KGG), Glu-Cys-Lys (ECK), and Glu-Ala-Gly (EAG), and observed that the
fluorescence intensity of AuNCs protected with those tripeptides parallels their capacity to
donate electrons to the metal core through Au-S bonding [28]. Both Xu et al. and Zhu et al.
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agree that the use of ligands which contain more electron-rich atoms or groups (such as N
or -NH2) is an efficient strategy to enhance the luminescence of AuNC by strengthening the
charge transfer between the ligands and Au core [28,120]. Similar experiments with amino
acids were conducted by Wang et al. [121]. This group replaced BSA by conjugating the
AuNC via a thiolatepoly(ethyleneglycol) linker with amino acids. The amino acids chosen
for this task were divided into two groups: ones that contained neutral groups and ones
containing electron-rich groups. Although the fluorescence intensity of such prepared hy-
brid nanocomplexes was weaker than that of BSA-protected ones, no significant difference
was observed between ligands bearing neutral and electron-rich groups.

8. Applications of Protein-Protected Gold Nanoclusters
The use of AuNCs protected by biomolecules in medicine and bioimaging is widely

discussed in the literature. Research points to several factors that speak in favor of us-
ing AuNCs over conventional fluorophores in certain fields. The main ones being their
unique optical properties in the second near-infrared window (NIR-II corresponding to the
1000–3000 nm wavelength range) which, due to reduced photon absorption and scattering,
allow for high-resolution imaging of internal organs, blood vessels, and tumors [122–125].
It should be stressed that there are some highly developed strategies to link preformed NIR-
II emitting AuNCs to biocompatibility-providing proteins. Some of them purposely avoid
direct metal–protein bonding interactions (e.g., by being mediated through host–guest
interactions between β-cyclodextrin immobilized on the AuNC surface and adamantane
bonded to BSA molecules, as is the case in the study by Song et al. [126]). As a consequence,
the significant spatial separation between the nanocluster and the proteinaceous envelope
may limit the scale of perturbation of the native structure. It has been demonstrated that
the NIR-II luminescence of thiol-decorated Au25 nanoclusters may be tuned by functional-
ization with proteins [127]. It should be also stressed that there are some highly developed
strategies to link preformed NIR-II emitting AuNCs to biocompatibility-providing pro-
teins. Some of them purposely avoid direct metal–protein bonding interactions (e.g., by
being mediated through host–guest interactions between β-cyclodextrin immobilized on
the AuNC surface and adamantane bonded to BSA molecules, as is the case in the study
by Song et al. [126]). As a consequence, the significant spatial separation between the
nanocluster and the proteinaceous envelope may limit the scale of perturbation of the
native structure. It has been demonstrated that the NIR-II luminescence of thiol-decorated
Au25 nanoclusters may be tuned by functionalization with proteins [127]. It should be also
stressed that the pharmacokinetics of AuNCs is also very favorable: the AuNC–conjugates
show short distribution half-time, minimal accumulation in the reticuloendothelial system,
and exhibit efficient renal clearance [128,129]. Au25NCs were distributed within 1 min after
injection, the transport from liver to bladder occurred after 10 min, and no significant signal
in the bladder was observed after 24 h [130]. Another study provides neuroelectrophysio-
logical monitoring data, according to which no permanent damage or toxic responses were
revealed, irrespective of the Au25NCs dosage [131]. Recently, Guo et al. have conducted
a comprehensive study on the impact of various small ligands on the NIR-II bioimaging
properties of small AuNCs containing 8 or 7 Au atoms [132].

Luminescent AuNCs attract a lot of attention because of their good photostability and
high Stokes shifts. Therefore, AuNCs were explored as optical probes for bioimaging and
in fluorescence sensing and biological detection [133]. Zeng et al. developed an application
of lysozyme-protected gold nanoclusters (Lys-AuNCs) as dual-emission probes for the
ratiometric sensing of cyanide by fluorescence resonance energy transfer (FRET). Varying
the cyanide concentration in the range of 3 to 100 µM linearly changed the fluorescence
intensity of Lys-AuNCs (R2 = 0.9957). The reproducibility for the quantitative analysis of



Photochem 2025, 5, 3 16 of 24

cyanide was excellent. Another example of ratiometric sensing is provided by Gao et al.,
who synthetized aprotinin-encapsulated gold nanoclusters (Ap-AuNCs) as a probe for
proteases and heavy metals. As shown in Figure 8, Ap-AuNCs mixed with proteinases
were found to exhibit decreased fluorescence intensity; the decrease was most significant
for trypsin and the detection limit for trypsin was calculated to be 10.18 µm/mL [134].
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Figure 8. (a) Digital photographs of aqueous Ap-AuNC solutions in the presence of different proteases
under UV illumination (from 1 to 9: blank, papain, pepsin, pectinase, lysozyme, glusulase, proteinase
K, bromelain, and trypsin). (b) Relative fluorescence intensity of Ap-Au NCs (I/I0, where I and I0 are
the fluorescence intensity of AuNCs in the presence and absence of trypsin at 640 nm, respectively)
in the presence and absence of various proteases (λex = 550 nm, λem = 640 nm). Reprinted with
permission from Ref. [134]. Copyright 2018 American Chemical Society.

The first group to show that BSA-AuNC can be used as a sensor for Hg2+ was Xie
et al. [135]. Ap-AuNCs were also investigated as a probe for heavy metal. Among 12 common
cations, the addition of Hg2+ and Cu2+ resulted in an obvious decrease in fluorescence
intensity [134]. These results are in good agreement with other previously published
data [136,137]. Similarly, β-lactoglobulin-AuNCs also were reported to exhibit high sen-
sitivity and selectivity for the detection of Hg2+ in aqueous media and were used as
fluorescence sensors to determine the concentration of Hg2+ with high sensitivity in urine,
beverages, and serum samples [138].

Ligand-protected AuNCs reveal great potential in the field of oncology—including
their use in tumor photodynamic therapy, photothermal therapy, and combination
therapy—due to the fact that they exhibit well-proven tumor penetration and accumula-
tion ability. Raju et al. used PSP001 (a polysaccharide isolated from pomegranate peel)
coupled with L-cysteine (Y) as the ligand for AuNCs synthesis. PSP001 exhibits anticancer,
antioxidant, and antimetastatic activity. The resultant PSP-Y-AuNCs exhibited pH-sensitive
fluorescence emission and could be used for real-time fluorescence imaging of cancer
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tissues [139]. Dutta et al. employed methylene blue as a photosensitizer, incorporating
it onto AuNCs stabilized by a glycoprotein, mucin, which enabled the complex to cross
complex barriers and enhanced its biocompatibility and ability for tissue penetration and
delivery. This facilitated the effective absorption and accumulation of this complex within
HeLa cells. Upon exposure to 640 nm light, the apoptosis of HeLa cells was induced [140].
The resulting confocal microscopy images are shown in Figure 9.
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AuNCs can also directly participate in photodynamic therapy as photosensitizers. The
Au25 nanoclusters exhibit a long lifetime of electronically excited states, which enables
the Au25NCs to efficiently generate singlet oxygen under irradiation at appropriate wave-
lengths. When Poderys at al. irradiated human breast cancer cells MCF-7 and MDA-MB-231
containing BSA-AuNCs with ultraviolet light, their survival rates decreased to 13% and
50%, respectively [141].

Here, we have presented only a few examples of various biomedical applications of
protein-protected AuNCs. The evidence presented thus far supports the idea that their
applications are very exciting and worth exploring in the future. More examples can be
found in excellent reviews published to this date [142–144].

9. Conclusions
This concise paper summarizes the current state of mechanistic and applied studies

(as well as challenges) on using proteins and peptides as templates for the synthesis of
luminescent gold nanoclusters.

Following the original discovery of the one-pot synthetic pathway to albumin-
protected BSA-AuNCs by Xie et al., numerous studies have highlighted the importance
of particular chemical and macromolecular features of the proteinaceous co-substrates.
The picture emerging from these works is both fascinating and intricate: a serendipitously
fruitful interplay of reducing, electron-donating, Au-binding, nanoparticle-protecting, and
biocompatibility-promoting properties of these proteins make them excellent reagents and
building blocks of the eventual product—a stable luminescent protein–AuNC nanocluster
conjugate with many potential biomedical applications. With our deepening understanding
of the roles played in this process by local (e.g., chemistry of individual amino acid side
chains) and global (protein molecule structure, size, and dynamics) factors, it is tempting
to anticipate even more intelligently designed application-focused protein–AuNC hybrid
systems. While one of the benefits of using BSA for the synthesis of these conjugates is
the low cost of the protein component, the genetic or chemical manipulation of the amino
acid sequence will facilitate the fine-tuning of the optical properties and biocompatibility
of these conjugates.
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It is also crucial to gather more information about the changes in the structure of
proteins resulting from the incorporation of nanoclusters. One should note that the protein
unfolding could in fact impact the accessibility of the clusters embedded within it, as well
as the accessibility of certain amino acid residues.

The protein-protected nanoclusters are extremely challenging systems to study and
there remain several mechanistic and application-related challenges that need to be ad-
dressed in the coming years [145]. For example, one must consider the existence of the
mixture of Au oxidation states, multiple binding sites, and resulting conformational changes
in the protein, differences in the local environment of luminescent centers, and the size
distribution of AuNCs. Therefore, further investigation and the independent repetition of
the experiments are essential to establish a clearer understanding of the protein’s role within
these systems and to standardize approaches for studying protein-protected nanoclusters
across varied conditions. The unification of the information provided in the literature will
be essential for formulating further research questions in this field. The fascinating range
of potential applications of protein–AuNCs systems are well worth these efforts, however.
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