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Abstract: Tetrahydrofuran (THF) is an aprotic solvent with multiple applications in diverse areas
of chemical, petrochemical, and pharmaceutical industries with an important impact in chemical
waste liquid with other solvents. In this work, 51 available VLE data, for isothermal binary mixtures
of THF(1) + Benzene(2) and THF(1) + Cyclohexane(2) at 303.15 and 333.15 K, respectively, and
isobaric THF(1) + Methanol(2) at 103 kPa and THF(1) + Ethanol(2) at 100 kPa were used in the
development of the activity coefficient models. The quality of experimental data was checked using
the Herington test. VLE binary data was correlated with models Wilson, NRTL UNIQUAC, and
UNIFAC to obtain binary parameters and activity coefficients. The best thermodynamic consistency
when conducting the Herington test for the VLE data was found for the THF(1) +Cyclohexane(2)
isothermal system and THF(1) + Ethanol(2) isobaric system. The UNIQUAC model for isothermal
systems THF(1) + Benzene(2) and THF(1) + Cyclohexane(2), the NRTL model for the isobaric system
THF(1) + Methanol(2), and the UNIQUAC model for THF(1) + Ethanol(2) perform better than the
other models.

Keywords: vapor liquid equilibrium (VLE); THF; Benzene; cyclohexane; methanol; ethanol RMSD;
thermodynamic consistency

1. Introduction

Tetrahydrofuran (THF) is a five-member cyclic ether, widely used as a chemical inter-
mediate in the production of polymers, such as polytetrahydrofuran (PolyTHF), has a great
utility for the production of elastic fabrics, synthetic leather, clothing and apparel, com-
pression garments, and household furniture [1]. While THF is used as a solvent in many
useful chemical processes, manufacturing activities and active additives in the synthesis
of pharmaceutical products, it is also found with other solvents, such as cyclohexane in
chemical waste liquids [2]. The mixture of THF and cyclohexane presents an azeotrope at
338.74 K with the composition of THF at 93% (wt %) with an almost impossible separation
by conventional distillation [3]. On the other hand, in polymerization reactions, THF is
soluble in all proportions with alcohols, phenols, and all common solvents [4]. The separa-
tion of azeotropic multicomponent mixtures, such as THF, methanol and water, provide
considerable potential for the combination of pervaporation and distillation processes for
THF recovery with reliable benefits [5].

In the study of preferential interaction of polymers in mixed solvents, the binary
mixtures of THF with aromatic hydrocarbons showed important changes at high THF
concentrations [6]. Additionally, THF was used for the selective protonation of aromatic
hydrocarbons with high selectivity in moderate to good yields [7] and in electro-reduction
mechanism of aromatic hydrocarbons [8].
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From the economical point and green chemistry viewpoint, the growing demand for
THF from emerging markets is an important factor that is expected to provide opportunities
for revenue growth for major players operating in the global THF market in the midst of
the COVID-19 crisis [9]. In developing countries, such as Colombia, the imports of THF are
around US $8,87,436 against exports of US $204,094 in the same period [10].

On the other hand, the problem of the thermodynamics of mixtures is of great interest,
as evidenced by innumerable applications, also in the industrial field, which this research
topic discusses. In mixtures where azeotropic systems are present, activity coefficients data
are of great utility for the design of efficient separation and purification processes [11]. The
objective of this work is based on the evaluation of activity coefficients and the mathematical
modeling of vapor-liquid equilibrium (VLE) binary mixtures of THF/organic mixtures
for the calculation of activity coefficients from literature data, using activity coefficient
models such as local composition models (Wilson and NRTL) and a local distribution
model (UNIQUAC).

2. Methodology

The interaction parameter’s optimization for each model calculations were developed
using the GRC resolution method software Microsoft Excel® complement.

2.1. Thermodynamic Databases

Experimental data used for this study were collected from thermodynamic databases,
Dortmund data bank (DDB) and Korea data bank (KDB), and literature. The data were
classified into two types: isothermal data at two different temperatures (303.15, 333.15) and
two isothermal data at the pressure of 103 and 100 kPa (Table 1).

Table 1. Binary Vapor-Liquid Equilibrium Data.

Binary System Type Reference

THF(1) + Benzene(2) isothermal [12]
THF(1) + Cyclohexane(2) Isothermal [13]

THF(1) + Methanol(2) Isobaric [14]
THF(1) + Ethanol(2) Isobaric [15]

2.2. Theoretical Bases

The activity coefficients γi were calculated by Equation (1)

yiΦiP = xiγiPsat (1)

where yi, xi, Φi, γi and P refer to the vapor phase composition, liquid phase composition,
fugacity coefficient, activity coefficient, and equilibrium pressure, respectively. Since the
pressure of the collected experimental data is less than 1, the gas phase can be assumed to
be ideal behavior, then i = 1 [16].

2.2.1. Wilson Model

For phase equilibrium calculations, activity coefficients are used to account within
a liquid solution for local compositions that, in turn, differ from the overall composition
of the mixture. In 1964, G.M. Wilson published a solution behavior model known as the
Wilson model [17].

ln(γ1) = −ln(x1 + Λ12x2) + x2

(
Λ12

x1 + Λ12x2
− Λ21

x2 + Λ21x1

)
(2)

ln(γ2) = −ln(x2 + Λ21x1) + x1

(
Λ21

x2 + Λ21x1
− Λ12

x1 + Λ12x2

)
(3)

where Λij (Λ21, Λ12) is the adjustable parameter of the Wilson model.
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2.2.2. Non-Random Two Liquids (NRTL)

The NRTL equation contains 3 parameters for the binary system [18].

lnγ1 = x2
2

[
τ21

(
G21

x1 + x2G21

)2
+

G12τ12

(x2 + x1G12)
2

]
(4)

lnγ2 = x2
1

[
τ12

(
G12

x2 + x1G12

)2
+

G21 ∗ τ21

(x1 + x2G21)
2

]
(5)

2.2.3. Universal Quasi-Chemical Model (UNIQUAC)

Even the mathematical expression of the UNIQUAC model is considered more com-
plex than that of the NRTL model, and it is more commonly used in chemical engineer-
ing [19]. One of its advantages is that it has fewer adjustable parameters, two instead of
three, which are less temperature dependent and can be applied to systems with larger
size differences.

lnγi = ln γC
i + ln γR

i (6)

lnγC
i = 1− Ji + lnJi − 5qi

(
1− Ji

Li
+ ln

Ji
Li

)
(7)

lnγR
i = qi(1− lnsi −∑

j

θjτki

sj
) (8)

τji = exp
(
−

uji − uii

RT

)
(9)

Ji =
ri

∑j rjxj
(10)

Li =
qi

∑j qjxj
(11)

si = ∑
k

θkτki (12)

θi =
xiqi

∑j qjxj
(13)

ri = ∑
k

v(i)k Rk (14)

qi = ∑
k

v(i)k Qk (15)

In these equations, ri is a parameter representing a relative molecular volume and qi is
a parameter representing a relative molecular surface area, each of which is given by the
sum of Rk and Qk parameters of functional groups comprising the component and listed
Table 2.

Table 2. Structural parameters for the UNIQUAC equation.

Component ri qi Reference

Tetrahydrofuran 2.9415 2.72 [20]
Cyclohexane 4.0464 3.24 [20]

Benzene 3.1878 2.4 [20]
Methanol 1.43 0.96 [20]
Ethanol 2.588 0.92 [20]
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2.2.4. UNIQUAC Functional-Group Activity Coefficients (UNIFAC)

In the UNIFAC activity coefficient model, the fugacity of the component i in mixtures
consists of two parts, the combined term and the residual term [21].

lnγC
i = ln

Φi
xi

+
z
2

qiln
θi
Φi

+ li −
Φi
xi

∑
j

xjlj (16)

lnγR
i = ∑

k
v(i)k (lnΓk − lnΓ(i)

k ) (17)

li =
z
2
(ri − qi)− (ri − 1) (18)

where z = 10
θi =

xiqi

∑j xjqj
(19)

Φi =
xiri

∑j xjrj
(20)

The Equations (23) and (24) correspond to the area fraction and segment fraction of
the component I (Table 3).

ri = ∑
k

v(i)k Rk (21)

qi = ∑
k

v(i)k Qk (22)

lnΓk = Qk[1− (ln(∑
m

θmΨmk)−∑
m

θmΨkm
θnΨnm

) (23)

θm =
Xm Qm

∑n XnQn
(24)

Xm =
∑j v(j)

m xj

∑n ∑j v(j)
n xj

(25)

Equations (25) and (26) correspond and are the volume and surface of the group.

Ψmk = exp
(
−amk

T

)
(26)

Table 3. Structural parameters for the UNIFAC equation.

Component r q Reference

Tetrahydrofuran 2.9415 2.72 [18]
Cyclohexane 4.0464 3.24 [18]

Benzene 3.1878 2.4 [18]
Methanol 1.43 1.432 [18]
Ethanol 2.588 2.588 [18]

In Figures 1–4, the comparation between experimental data of THF(1) + Benzene(2),
THF(1) + Cyclohexane(2), THF(1) + Methanol(2), and THF(1) + Ethanol correlated are pre-
sented.
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Figure 4. Experimental [15] and predicted T-xy diagram of THF(1) + Ethanol(2) at 100 kPa using
Wilson, NRTL, UNIFAC, and UNIQUAC as predictive models.

2.3. Thermodynamic Consistency of the Experimental Data

If a data can be predicted by different measurements and mathematical relationships,
then consistency can be claimed if the predicted and experimental values match to within
experimental uncertainty [22]. In the current study, the isobaric binary data systems THF(1)
+ Methanol(2), and THF(1) + Ethanol(2) and the isothermal binary data systems THF(1)
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+ Benzene(2) and THF(1) + Cyclohexane(2) are fitted to Wilson, NRTL, UNIQUAC and
UNIFAC models. VLE data literature was used to calculate the interaction parameters.
The quality of the experimental data was checked using the consistency the Herington
thermodynamic test [23] used in the NIST ThermoData Engine [24].

Herington’s method based on Gibbs Duhem’s theory (Equation (27)) calculates the
area under the two curves.

∫ 1

0
ln
(

γ1

γ2

)
dx1 = −

∫ PVap
1

Pvap
2

Ṽexp

RT
dP +

∫ Tsat
1

Tsat
2

Ĥexp

RT2 dT (27)

By definition, if data can be predicted by different measurements and mathematical
relationships, then consistency can be claimed if the predicted and experimental values
match to within experimental uncertainty [22].

When the VLE measurements are made under constant temperature, the Equation (27)
simplifies to: ∫ 1

0
ln
(

γ1

γ2

)
dx1 = −

∫ PVap
1

Pvap
2

Ṽexp

RT
dP (28)

where the volume change may be considered negligible for all systems. Under these
conditions, the right-hand side of Equation (28) is almost zero.

When the data is represented in the form of ln(γ1/γ2) versus x1, as shown in Figure 5,
the areas above (a) and below (b) the x1 axis must be equal.

A = 100
∣∣∣∣∫ 1

0
ln
(

γ1

γ2

)
dx1

∣∣∣∣ < 3 (29)

D = 100
[
|A|

a + |b|

]
< 10 (30)
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Figure 5. Herington test for isobaric and isothermal systems between THF(1)+ Methanol(2) at
103 kPa [12], THF(1) + Cyclohexane(2) at 333.15 K [13], THF(1) + Ethanol(2) at 100 kPa [14], and
THF(1) + Benzene(2) at 303.15 K [15].
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For isobaric VLE measurements, Equation (27) simplifies to:

∫ 1

0
ln
(

γ1

γ2

)
dx1 =

∫ Tsat
1

Tsat
2

Ĥexp

RT2 dT (31)

J = 150
Tmax − Tmin

Tmin
(32)

|D− J| < 10 (33)

where, Tmax and Tmin represent the maximum and minimum temperatures in this study [25].
On Tables 4 and 5, the values of the consistence using the Herington test for isothermal
and isobaric systems are presented.

Table 4. The results of thermodynamic consistency test using the Herington test for the isothermal
systems.

System D Consistency

THF(1) + Benzene(2) 20.62 (−)
THF(1) + cyclohexane(2) 3.32 (+)

Table 5. The results of thermodynamic consistency when using the Herington test for the isobaric sys-
tem.

System D |D−J| Consistency

THF(1) + Methanol(2) 3.440 1.6806 (+)
THF(1) + Ethanol(2) 7.6011 2.1925 (+)

2.4. Correlation of VLE Data

The binary parameters in the five coefficients equations were estimated based on the
objective function OF in terms of the calculated and experimental activity coefficient.

OF =
N

∑
i=i

2

∑
j=1

(γ
exp
j − γcal

j

γ
exp
j

)2 (34)

where i represents the amount of data from 1 to N and j denotes the number of components
in the system.

The obtained interaction parameters of Wilson, NRTL, and UNIQUAC models with
the objective function (OF) are listed in Table 6.

Table 6. The results of binary parameters using OF

Model Aij (J/mol) Aji (J/mol) αij

THF(1) + Benzene(2)
Wilson 0.9699 1.2618
NRTL −938.057 386.177 0.3

UNIQUAC −8.2597 −50.7358

THF(1) + Cyclohexane(2)
Wilson 0.7778 0.7197
NRTL 954.65 628.29 0.3

UNIQUAC −99.129 174.79

THF(1) + Methanol(2)
Wilson 0.6960 0.5356

NRTLUNIQUAC 1154.3955340 1423.46–135.25 0.3

THF(1) + Ethanol(2)

0.3
Wilson 1.1022 0.4420
NRTL 767.15 933.81

UNIQUAC 579.22 −232.99
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The root-mean-square deviations (RMSD) were employed to evaluate the difference
between the experimental and calculated results. The RMSDyi and RMSDTi for the isobaric
systems and RSMDPi for isothermal systems are listed in Tables 7 and 8.

RMSDPi =

√
∑N

i=1

(Pexp
i − Pcal

i )
2

N
(35)

RMSDTi =

√
∑N

i=1

(Texp
i − Tcal

i )
2

N
(36)

RMSDyi =

√
∑N

i=1

(yexp
i − ycal

i )
2

N
(37)

Table 7. RMSD for the isothermal systems.

Model RMSDPi RMSDyi

THF(1) + Benzene(2)
Wilson 0.2335 0.0112
NRTL 0.2334 0.012

UNIQUAC 0.1854 0.0121
UNIFAC 1.807 0.0633

THF(1) + Cyclohexane(2)
Wilson 0.5227 0.0076
NRTL 0.5257 0.0077

UNIQUAC 0.2048 0.0076
UNIFAC 1.4562 0.0363

Table 8. RMSD for the isobaric system.

Model RMSDTi RMSDyi

THF(1) + Methanol(2)
Wilson 0.2739 0.0088
NRTL 0.1823 0.0077

UNIQUAC 0.2482 0.0089
UNIFAC 0.1998 0.0109

THF(1) + Ethanol(2)
Wilson 0.1011 0.005
NRTL 0.1894 0.0069

UNIQUAC 0.081 0.0053
UNIFAC 1.0637 0.0302

From Table 7, the UNIQUAC model for isothermal systems THF(1) + Benzene(2) and
THF(1) + Cyclohexane(2) performs better than NRTL, UNIFAC, and Wilson models. From
Table 8, the NRTL model for the isobaric system THF(1) + Methanol(2) and UNIQUAC
model THF(1) + Ethanol(2) fitted the experimental data better than the others.

3. Conclusions

The experimental isothermal VLE data [12,13] and the predicted data for the binary
system of THF(1) + Benzene(2) and THF(1) + Cyclohexane(2) at 303.15 and 333.15 K,
respectively, isobaric VLE Data [14,15], and the predicted THF(1) + Methanol(2) and THF(1)
+ Ethanol(2) at 103 kPa were correlated by Wilson, NRTL, UNIQUAC, and UNIFAC models.
Using the Herington test, the best thermodynamic consistency for the VLE data was found
for the THF(1) + Cyclohexane(2) isothermal system and the THF(1) + Ethanol(2) isobaric
system. The RMSDPi and RMSDyi show that the UNIQUAC model for isothermal systems
THF(1) + Benzene(2) and THF(1) + Cyclohexane(2) and the NRTL model for the isobaric
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systems THF(1) + Methanol(2) and UNIQUAC model for THF(1) + Ethanol(2) perform
better than the other models. Probably, as previously proposed, the non-equilibrium
state between phases in the VLE is focused around the variations of vapor flow quality,
entropy generation, and exergy variation [26]. The analysis of the phase equilibrium in
magnetorheological fluids could be a second research opportunity for non-equilibrium
systems [27,28].
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