Thermal Properties and Behaviour of Am-Bearing Fuel in European Space Radioisotope Power Systems
Abstract
:1. Introduction
2. Experiment
2.1. Materials and Methods
2.1.1. Low Temperature Heat Capacity Measurements
2.1.2. Drop Calorimetry for Enthalpy Increment Measurements with Temperature
2.1.3. Fitting Method
2.2. Results
2.2.1. Low Temperature Heat Capacity Measurements
2.2.2. High Temperature Enthalpy Increment Measurements
2.3. Discussion
2.4. Heat Capacity Conclusion
3. Case Study: Estimating Thermal Conductivity of the Fuel and Assessing if Fuel Melting Could Occur When the ELHS Clad is at its Maximum Permitted Temperature (1973 K)
3.1. Purpose
- Develop an analytical thermal model to describe the maximum temperature of the fuel as a function of the fuel thermal conductivity, the outer surface temperature of the fuel, and the inner surface temperature of the clad. This will consider the effect of radiation-only and conduction-only between the fuel and clad to estimate an envelope of maximum fuel temperatures for a given clad temperature. Curves of the maximum fuel temperature as a function of fuel thermal conductivity will be estimated for a clad inner surface temperature, , (1) at 623 K that represents the RTG’s standard operation and (2) (i) at 1750 K, which is slightly lower than the approximate maximum temperature for which heat capacity data were determined and (ii) at 1900 K and (iii) 1973 K. Temperatures (i) and (ii) are included informatively to provide additional data for high clad temperatures.
- Compare the maximum fuel temperature determined using the long-standing University of Leicester RTG finite element thermal model to the results of the analytical thermal model to assess the confidence in the analytical thermal model. Specifically, it will be assessed if the FE thermal model that considers both radiation and conduction between the fuel and the clad provides a maximum fuel temperature solution that lies within the envelope predicted by the analytical thermal model.
- Estimate the thermal conductivity of (Am0.80U0.12Np0.06Pu0.02)O1.8 as a function of temperature using the experimental heat capacity data of this paper (Section 2), the known theoretical and relative density of the fuel (80–100% T.D.), assumptions for the thermal diffusivity of different americium/uranium oxides, and an assumption for its thermal expansion based on one of these oxides. Upper and lower limits of thermal diffusivity will be used to provide a range in thermal conductivity values. This will allow a range in potential maximum fuel temperatures for the RTG/ELHS to be seen. Lower estimates of the fuel conductivity at a given temperature will be made using the lower confidence interval data for the heat capacity values (shown in Figure 4) and the lowest thermal diffusivity data. These will be used for objectives 4–6 below.
- Estimate a range of values for the maximum fuel temperature of the RTG during its standard operation (623 K inner clad temperature) based on the thermal conductivity estimates.
- Assess the maximum fuel temperature curves generated by the analytical thermal model for 1750 K, 1900 K and 1973 K clad temperatures to estimate the maximum fuel temperature of the ELHS using the lowest thermal conductivity estimates for an 80% T.D. fuel. Specifically, it will be assessed whether fuel melting is possible (assumptions for this will be made based on the lowest melting temperature of americium/uranium oxides in the literature).
- Review the outcomes with respect to RPS safety and whether recommendations for the future fuel R&D are required.
3.2. Theory: Analytical Thermal Model for RTG/ELHS Maximum Fuel Temperature
3.2.1. The Fuel Temperature Difference, , Relationship
3.2.2. Maximum Fuel Temperature Results Comparison between Analytical Thermal Model and RTG FE Thermal Model (RTG under Standard Operation)
3.3. Thermal Conductivity Estimates
3.4. Results
3.4.1. Maximum Fuel Temperature in RTG under Standard Operation
3.4.2. Maximum Fuel Temperature in ELHS with a Clad Temperature at its Maximum Permitted Limit
4. Discussion
4.1. Maximum Fuel Temperature in RTG under Standard Operation
4.2. Maximum Fuel Temperature in ELHS with a Clad Temperature at its Maximum Permitted Limit
- The importance of establishing the melting temperature of the fuel.
- The importance of deciding whether there needs to be a requirement for the maximum fuel temperature based on a margin below its melting temperature and, if so, the need to define the size of this margin.
- The potential impact that point (2) could have on the maximum permitted clad temperature and, therefore, the need to review its current maximum temperature-imposed requirement.
5. Conclusions
- Melting temperature using a laser flash method (details of the method can be found in [36]).
- Lattice parameter thermal expansion data by high temperature X-ray diffraction. These data can be used to estimate bulk/macroscopic volume thermal expansion as a function of temperature.
- Thermal diffusivity up to the melting temperature, which may require a standard laser flash method and a specialised laser flash method to reach temperatures above 1550 K [48].
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Debye and Einstein Function Fit to Low Temperature Heat Capacity Data
0.3 | |
1.8 | |
TD | 115 K |
TE | 479 K |
Appendix B. The Fuel Steady-State Temperature Model
Appendix C. Data Extraction and Power Law Fit of AmO2−x Thermal Diffusivity Data by Nishi et al.
References
- Summerer, L.; Stephenson, K. Nuclear power sources: A key enabling technology for planetary exploration. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 2011, 225, 129–143. [Google Scholar] [CrossRef]
- Ambrosi, R.M.; Williams, H.R.; Samara-Ratna, P.; Bannister, N.P.; Vernon, D.; Crawford, T.; Bicknell, C.; Jorden, A.; Slade, R.; Deacon, T.; et al. Development and testing of americium-241 radioisotope thermoelectric generator: Concept designs and breadboard system. In Proceedings of the Nuclear and Emerging Technologies for Space, The Woodlands, TX, USA, 21–23 March 2012. [Google Scholar]
- Williams, H.R.; Ambrosi, R.M.; Bannister, N.P.; Samara-Ratna, P.; Sykes, J. A conceptual spacecraft radioisotope thermoelectric and heating unit (RTHU). Int. J. Energy Res. 2012, 36, 1192–1200. [Google Scholar] [CrossRef]
- Ambrosi, R.M.; Williams, H.; Watkinson, E.J.; Barco, A.; Mesalam, R.; Crawford, T.; Bicknell, C.; Samara-Ratna, P.; Vernon, D.; Bannister, N.; et al. European radioisotope thermoelectric generators (RTGs) and radioisotope heater units (RHUs) for space science and exploration. Space Sci. Rev. 2019, 215, 55. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.; Campbell, C.; Carrigan, C.; Carrott, M.; Greenough, K.; Maher, C.; McLuckie, B.; Mason, C.; Gregson, C.; Griffiths, T.; et al. Americium and plutonium purification by extraction (the AMPPEX process): Development of a new method to separate 241Am from aged plutonium dioxide for use in space power systems. Prog. Nucl. Energy 2018, 106, 396–416. [Google Scholar] [CrossRef]
- Sarsfield, M.J.; Fenwick, H.; Glenville, P.; Kramer, D.P.; Watkinson, E.J.; Ambrosi, R.M.; Williams, H.R.; Barklay, C.D.; Stephenson, K.; Tinsley, T. Sintering and characterisation of cerium dioxide as a surrogate for americium-241 #6079. In Proceedings of the Nuclear and Emerging Technologies for Space (NETS), Hunstville, AL, USA, 22–25 February 2016. [Google Scholar]
- Watkinson, E.J.; Ambrosi, R.M.; Williams, H.R.; Sarsfield, M.J.; Stephenson, K.; Weston, D.P.; Marsh, N.; Haidon, C. Cerium neodymium oxide solid solution synthesis as a potential analogue for substoichiometric AmO2 for radioisotope power systems. J. Nucl. Mater. 2017, 486, 308–322. [Google Scholar] [CrossRef] [Green Version]
- Watkinson, E.J.; Ambrosi, R.M.; Kramer, D.P.; Williams, H.R.; Reece, M.J.; Chen, K.; Sarsfield, M.J.; Barklay, C.D.; Fenwick, H.; Weston, D.P.; et al. Sintering trials of analogues of americium oxides for radioisotope power systems. J. Nucl. Mater. 2017, 491, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Sarsfield, M.J.; Campbell, C.; Carrigan, C.; Carrott, M.J.; Colle, J.-Y.; Freis, D.; Gregson, C.; Griffiths, T.; Holt, J.; Lajarge, P.; et al. The separation of 241am from aged plutonium dioxide for use in radioisotope power systems #1030. In Proceedings of the European Space Power Conference, Thessaloniki, Greece, 3–7 October 2016. [Google Scholar]
- Epifano, E.; Guéneau, C.; Belin, R.C.; Vauchy, R.; Lebreton, F.; Richaud, J.-C.; Joly, A.; Valot, C.; Martin, P.M. Insight into the Am–O phase equilibria: A thermodynamic study coupling high-temperature XRD and CALPHAD modeling. Inorg. Chem. 2017, 56, 7416–7432. [Google Scholar] [CrossRef] [PubMed]
- Vigier, J.-F.; Freis, D.; Pöml, P.; Prieur, D.; Lajarge, P.; Gardeur, S.; Guiot, A.; Bouëxière, D.; Konings, R.J.M. Optimization of uranium-doped americium oxide synthesis for space application. Inorg. Chem. 2018, 57, 4317–4327. [Google Scholar] [CrossRef] [PubMed]
- University of Leicester. TN2 RTG Requirements Specification, UL-RTG-TN-001; University of Leicester: Leicester, UK, 2021. [Google Scholar]
- The PGM Database, T.P. Platinum-20.00% Rhodium. Available online: http://www.pgmdatabase.com/jmpgm/index.jsp (accessed on 17 June 2021).
- Erdmann, B.; Keller, C. The preparation of actinide (+ zirconium and hafnium)-noble metal alloy phases by coupled reductions. Inorg. Nucl. Chem. Lett. 1971, 7, 675–683. [Google Scholar] [CrossRef]
- Schulz, W.W. Chemistry of Americium; Technical Information Center Energy Research and Development Administration: Oak Ridge, TN, USA, 1976. [CrossRef] [Green Version]
- Watkinson, E.J.; Cremer, B.; Lajarge, P.; Gardeur, P.; Vigier, J.-F.; Berkmann, C.; Ernstberger, M.; Wiss, T.; Freis, D.; Crawford, T.; et al. Americium-based oxide and Pt-Rh alloys compatibility/interaction tests in the context of European space radioisotope power systems. In Proceedings of the Nuclear and Emerging Technologies for Space (NETS) 2020, Knoxville, TN, USA, 6–9 April 2020; p. 24. [Google Scholar]
- Epifano, E.; Beneš, O.; Vălu, O.S.; Zappey, J.; Lebreton, F.; Martin, P.M.; Guéneau, C.; Konings, R.J.M. High temperature heat capacity of (U, Am) O2 ± x. J. Nucl. Mater. 2017, 494, 95–102. [Google Scholar] [CrossRef]
- Vălu, O.S.; Staicu, D.; Beneš, O.; Konings, R.J.M.; Lajarge, P. Heat capacity, thermal conductivity and thermal diffusivity of uranium–americium mixed oxides. J. Alloy. Compd. 2014, 614, 144–150. [Google Scholar] [CrossRef]
- Nishi, T.; Itoh, A.; Ichise, K.; Arai, Y. Heat capacities and thermal conductivities of AmO2 and AmO1. J. Nucl. Mater. 2011, 414, 109–113. [Google Scholar] [CrossRef]
- Jossou, E.; Malakkal, L.; Ranasingh, J.; Szpunar, B.; Szpunar, J. Thermophysical properties of (UxAm1−x)O2 MOX fuel. Comput. Mater. Sci. 2020, 172, 109324. [Google Scholar] [CrossRef]
- Bromley, B.P.; Colton, A.V. Reactor physics assessment of potential feasibility of using advanced, nonconventional fuels in a pressure tube heavy water reactor to destroy Americium and Curium. Nucl. Technol. 2021, 207, 1193–1215. [Google Scholar] [CrossRef]
- Tyrpekl, V.; Holzhäuser, M.; Hein, H.; Vigier, J.-F.; Somers, J.; Svora, P. Synthesis of dense yttrium-stabilised hafnia pellets for nuclear applications by spark plasma sintering. J. Nucl. Mater. 2014, 454, 398–404. [Google Scholar] [CrossRef]
- Vălu, O.S.; Beneš, O.; Colineau, E.; Griveau, J.C.; Konings, R.J.M. The low-temperature heat capacity of (U1-yAmy)O2−x for y = 0.08 and 0. J. Nucl. Mater. 2018, 507, 126–134. [Google Scholar] [CrossRef]
- Lashley, J.C.; Hundley, M.F.; Migliori, A.; Sarrao, J.L.; Pagliuso, P.G.; Darling, T.W.; Jaime, M.; Cooley, J.C.; Hults, W.L.; Morales, L.; et al. Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system. Cryogenics 2003, 43, 369–378. [Google Scholar] [CrossRef]
- Javorský, P.; Wastin, F.; Colineau, E.; Rebizant, J.; Boulet, P.; Stewart, G. Low-temperature heat capacity measurements on encapsulated transuranium samples. J. Nucl. Mater. 2005, 344, 50–55. [Google Scholar] [CrossRef]
- Javorský, P. Low-Temperature Specific Heat Measurements on Transuranium Samples (Final Report); JRC-ITU-TN-2004/11 and JRC14988; European Commission, Joint Research Centre, Institute for Transuranium Elements: Karlsruhe, Germany, 2004. [Google Scholar]
- Beneš, O.; Gotcu-Freis, P.; Schwörer, F.; Konings, R.J.M.; Fanghänel, T. The high temperature heat capacity of NpO. J. Chem. Thermodyn. 2011, 43, 651–655. [Google Scholar] [CrossRef]
- Beneš, O. Thermodynamics of Molten Salts for Nuclear Applications. Ph.D. Thesis, Institute of Chemical Technology, Prague, Czech Republic, 2008. [Google Scholar]
- Wilkins, S.B.; Caciuffo, R.; Detlefs, C.; Rebizant, J.; Colineau, E.; Wastin, F.; Lander, G.H. Direct observation of electric-quadrupolar order in UO2. Phys. Rev. B 2006, 73, 060406. [Google Scholar] [CrossRef] [Green Version]
- Santini, P.; Carretta, S.; Magnani, N.; Amoretti, G.; Caciuffo, R. Hidden order and low-energy excitations in NpO2. Phys. Rev. Lett. 2006, 97, 207203. [Google Scholar] [CrossRef]
- Martel, L.; Hen, A.; Tokunaga, Y.; Kinnart, F.; Magnani, N.; Colineau, E.; Griveau, J.-C.; Caciuffo, R. Magnetization, specific heat, 17O NMR, and 237Np Mössbauer study of U0.15Np0.85O2. Phys. Rev. B 2018, 98, 014410. [Google Scholar] [CrossRef]
- Fink, J.K. Thermophysical properties of uranium dioxide. J. Nucl. Mater. 2000, 279, 1–18. [Google Scholar] [CrossRef]
- Konings, R.J.M.; Beneš, O.; Kovács, A.; Manara, D.; Sedmidubský, D.; Gorokhov, L.; Iorish, V.S.; Yungman, V.; Shenyavskaya, E.; Osina, E. The thermodynamic properties of the f-elements and their compounds. Part 2 the lanthanide and actinide oxides. J. Phys. Chem. Ref. Data 2014, 43, 013101. [Google Scholar] [CrossRef] [Green Version]
- Epifano, E.; Naji, M.; Manara, D.; Scheinost, A.C.; Hennig, C.; Lechelle, J.; Konings, R.J.M.; Guéneau, C.; Prieur, D.; Vitova, T.; et al. Extreme multi-valence states in mixed actinide oxides. Commun. Chem. 2019, 2, 59. [Google Scholar] [CrossRef]
- Manikandan, G.; Murugan, G.; Raghukandan, K. Effect of grain size upon the thermal behavior of copper and diamond powders using differential scanning calorimetry (DSC). Indian J. Sci. Technol. 2016, 9, 1–4. [Google Scholar] [CrossRef]
- Epifano, E.; Prieur, D.; Martin, P.M.; Guéneau, C.; Dardenne, K.; Rothe, J.; Vitova, T.; Dieste, O.; Wiss, T.; Konings, R.J.M.; et al. Melting behaviour of uranium-americium mixed oxides under different atmospheres. J. Chem. Thermodyn. 2020, 140, 105896. [Google Scholar] [CrossRef]
- De Bruycker, F.; Boboridis, K.; Manara, D.; Pöml, P.; Rini, M.; Konings, R.J.M. Reassessing the melting temperature of PuO2. Mater. Today 2010, 13, 52–55. [Google Scholar] [CrossRef]
- Böhler, R.; Welland, M.J.; Prieur, D.; Cakir, P.; Vitova, T.; Pruessmann, T.; Pidchenko, I.; Hennig, C.; Guéneau, C.; Konings, R.J.M.; et al. Recent advances in the study of the UO2–PuO2 phase diagram at high temperatures. J. Nucl. Mater. 2014, 448, 330–339. [Google Scholar] [CrossRef]
- Kaye, G.W.C.; Laby, T.H. Tables of Physical and Chemical Constants, 14th ed.; Longman: Harlow, UK, 1973. [Google Scholar]
- The PGM Database, T.P. Notes For Emissivity Attribute of Rhodium. Available online: http://www.pgmdatabase.com/jmpgm/index.jsp (accessed on 16 June 2021).
- Foote, D.P. The emissivity of metals and oxides. III. The total emissivity of platinum and the relation between total emissivity and resistivity. Bull. Bur. Stand. 1915, 11, 607–612. [Google Scholar]
- Bradley, D.; Entwistle, A.G. Determination of the emissivity, for total radiation, of small diameter platinum-10% rhodium wires in the temperature range 600–1450 °C. Br. J. Appl. Phys. 1961, 12, 708–711. [Google Scholar] [CrossRef]
- Transmetra. Table of Emissivity of Various Surfaces; Transmetra: Flurlingen, Switzerland, 2012; Available online: https://www.transmetra.ch/images/transmetra_pdf/publikationen_literatur/pyrometrie-thermografie/emissivity_table.pdf (accessed on 16 June 2021).
- McElroy, D.L.; Kollie, T.G. The total hemispherical emittance of platinum, Columbium-1% Zirconium, and polished and oxidized Inor-8 in the range 100 °C to 1200 °C. In Measurement of Thermal Radiation Properties of Solids. NASA SP-31; Richmond, J.C., Ed.; National Aeronautics and Space Administration: Hampton, VA, USA, 1963; pp. 365–377. [Google Scholar]
- Phillips, D.G. Technology Development of a Biowaste Resistojet; National Aeronautics and Space Administration Langley Research Center: Hampton, VA, USA, 1972; Volume 1.
- Nishi, T.; Takano, M.; Itoh, A.; Akabori, M.; Arai, Y.; Minato, K.; Numata, M. Thermal conductivity of AmO2−x. J. Nucl. Mater. 2008, 373, 295–298. [Google Scholar] [CrossRef]
- Nishi, T.; Itoh, A.; Takano, M.; Akabori, M.; Arai, Y.; Minato, K. Thermal conductivities of minor actinide oxides for advanced fuel. In Proceedings of the ATALANTE 2008, Montpellier, France, 19–22 May 2008. [Google Scholar]
- Vlahovic, L.; Staicu, D.; Küst, A.; Konings, R.J.M. Thermal diffusivity of UO2 up to the melting point. J. Nucl. Mater. 2018, 499, 504–511. [Google Scholar] [CrossRef]
- Rohatgi, A. WebPlotDigitizer, Version: 4.4. (November 2020). Rohatgi: Pacifica, CA, USA. Available online: https://automeris.io/WebPlotDigitizer.
- Lebreton, F.; Belin, R.C.; Delahaye, T.; Blanchart, P. In-situ X-ray diffraction study of phase transformations in the Am–O system. J. Solid State Chem. 2012, 196, 217–224. [Google Scholar] [CrossRef]
- Epifano, E.; Vauchy, R.; Lebreton, F.; Joly, A.; Guéneau, C.; Valot, C.; Martin, P.M. Behaviour of (U,Am)O2 in oxidizing conditions: A high-temperature XRD study. J. Nucl. Mater. 2020, 531, 151991. [Google Scholar] [CrossRef]
- Schulz, B. Thermal conductivity of porous and highly porous materials. High Temp. High Press. 1981, 13, 649–660. [Google Scholar]
- McHenry, R.E. Melting points of curium and americium oxides. Trans. Am. Nucl. Soc. 1965, 8, 75–76. [Google Scholar]
- Gotcu-Freis, P.; Colle, J.Y.; Guéneau, C.; Dupin, N.; Sundman, B.; Konings, R.J.M. A thermodynamic study of the Pu–Am–O system. J. Nucl. Mater. 2011, 414, 408–421. [Google Scholar] [CrossRef]
- Freis, D.; Vigier, J.; Popa, K.; Konings, R. Research in support of European Radioisotope Power System development at the European Commission’s Joint Research Centre in Karlsruh. ATW Int. J. Nucl. Power 2020, 65, 198–205. [Google Scholar]
- Pavlov, T.; Vlahovic, L.; Staicu, D.; Konings, R.J.M.; Wenman, M.R.; Grimes, R.W.; Van Uffelen, P. Experimental evaluation of the high temperature thermophysical properties of UO2. In Proceedings of the Top Fuel 2016: LWR Fuels with Enhanced Safety and Performance, Boise, ID, USA, 11–15 September 2016; pp. 1227–1235. [Google Scholar]
- Takano, M.; Akabori, M.; Arai, Y. Annealing behavior of (Pu,Cm)O2 lattice and bulk expansion from self-irradiation damage. J. Nucl. Mater. 2011, 414, 174–178. [Google Scholar] [CrossRef]
- Nishi, T.; Takano, M.; Akabori, M.; Arai, Y. Thermal conductivity of (Np0.20Pu0.50Am0.25Cm0.05)O2−x solid solutions. J. Nucl. Mater. 2013, 440, 534–538. [Google Scholar] [CrossRef]
- Smith, A.L.; Griveau, J.C.; Colineau, E.; Raison, P.E.; Wallez, G.; Konings, R.J.M. Low temperature heat capacity of Na4UO5 and Na4NpO5. J. Chem. Thermodyn. 2015, 91, 245–255. [Google Scholar] [CrossRef]
(J mol−1) | |||
---|---|---|---|
430 | 9329 | ± | 348 |
482 | 13693 | ± | 403 |
585 | 19353 | ± | 1024 |
686 | 29360 | ± | 690 |
788 | 33335 | ± | 4388 |
889 | 41078 | ± | 2752 |
990 | 44580 | ± | 1463 |
1092 | 60247 | ± | 8622 |
1193 | 69876 | ± | 10535 |
1295 | 79186 | ± | 4252 |
1397 | 92012 | ± | 1183 |
1499 | 98868 | ± | 19447 |
1601 | 125802 | ± | 13072 |
1703 | 138306 | ± | 11035 |
1785 | 131003 | ± | 11189 |
1786 | 132921 | ± | 15441 |
Parameter | Value | Uncertainty | Units |
---|---|---|---|
a | 55.1189 | 5.681 | J K−1 mol−1 |
b | 3.4621 × 10−2 | 0.8705 × 10−2 | J K−2 mol−1 |
c | −4.58312 × 105 | 1.38792 × 105 | J K mol−1 |
(Am0.80U0.12Np0.06Pu0.02)O1.8 | α Assumed Data | Thermal Conductivity Estimates (Wm−1 K−1) at: | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T (K) | T.D. (g cm−3) | Assum. Vol. Expansion% (Equation (9)) | Assum. T.D. at T (kgm−3) | Cp (Equation (5)) (J mol−1K−1) | Lower Cp Confid. Interv. (J mol−1K−1) | Mol. Mass (molg−1) | Oxide Used to Assume α | Ref. | α × 10−6 (m2s−1) | 100% T.D. | 95% T.D. | 89% T.D. | 85% T.D. | 80% T.D. |
500 | 10.67 [11] | 1.007 | 10593 | 70.596 | 269.2 [11] | UO2 | Vlahovic et al. [48] raw data at 499 K | 2.02 | 5.6 | 5.3 | 5.0 | 4.8 | 4.5 | |
620 | 1.012 | 10548 | 75.392 | Vlahovic et al. [48] Proposed relationship between 500 K and 1600 K | 1.77 | 5.2 | 5.0 | 4.7 | 4.4 | 4.2 | ||||
700 | 1.014 | 10518 | 78.419 | 1.59 | 4.9 | 4.6 | 4.3 | 4.1 | 3.9 | |||||
1000 | 1.025 | 10406 | 89.282 | 1.15 | 4.0 | 3.8 | 3.5 | 3.4 | 3.2 | |||||
1250 | 1.035 | 10313 | 98.102 | 0.936 | 3.5 | 3.3 | 3.1 | 3.0 | 2.8 | |||||
1600 | 1.047 | 10186 | 110.34 | 0.742 | 3.1 | 2.9 | 2.8 | 2.6 | 2.5 | |||||
1600 | 1.047 | 10186 | 110.33 | Vlahovic et al. 2018 raw data at ~1596 K for comparison | 0.702 | 2.9 | 2.8 | 2.6 | 2.5 | 2.3 | ||||
1785 | 1.054 | 10120 | 116.77 | Est. from Vlahovic et al. [48] Figure 4 at ~1800 K. | 0.620 | 2.7 | 2.6 | 2.4 | 2.3 | 2.2 | ||||
500 | 10.67 [11] | 1.007 | 10593 | 70.596 | 269.2 [11] | AmO2−x | Power Law fit of Nishi et al. [46] data (Equation (A38) in Appendix C) | 0.602 | 1.67 | 1.55 | 1.40 | 1.31 | 1.20 | |
500 | 1.007 | 10593 | 68.518 | 0.602 | 1.62 | 1.50 | 1.36 | 1.27 | 1.16 | |||||
620 | 1.012 | 10548 | 75.392 | 0.539 | 1.59 | 1.47 | 1.34 | 1.25 | 1.14 | |||||
620 | 1.012 | 10548 | 73.188 | 0.539 | 1.55 | 1.43 | 1.30 | 1.21 | 1.11 | |||||
1000 | 1.025 | 10406 | 89.282 | 0.421 | 1.45 | 1.35 | 1.22 | 1.14 | 1.04 | |||||
1000 | 1.025 | 10406 | 84.999 | 0.421 | 1.38 | 1.28 | 1.16 | 1.09 | 0.99 | |||||
1250 | 1.035 | 10313 | 91.892 | 0.376 | 1.32 | 1.22 | 1.11 | 1.04 | 0.95 | |||||
1460 | 1.042 | 10237 | 105.45 | 0.347 | 1.39 | 1.29 | 1.17 | 1.09 | 1.00 | |||||
1460 | 1.042 | 10237 | 97.528 | 0.347 | 1.29 | 1.19 | 1.08 | 1.01 | 0.92 | |||||
1785 | 1.054 | 10120 | 116.77 | 0.313 | 1.37 | 1.27 | 1.15 | 1.08 | 0.98 | |||||
1785 | 1.054 | 10120 | 106.13 | 0.313 | 1.25 | 1.16 | 1.05 | 0.98 | 0.89 |
Oxide | Comment | Melting Temperature (K) | Reference |
---|---|---|---|
AmO2 | The O/M after melting was not determined. Unlikely to be stoichiometric [53,54] | 2386–2406 | [10,36,53,55] |
Am oxide with O/M ≤1.8 | This is the oxygen to metal ratio of the oxide prior to a liquid phase [36]. | 2260 | [10,36,54] |
U0.33Am0.67±0.02O1.9 | The O/M ratio after melting was not determined. | 2608 ± 52 | [36] |
UO2 | N/A | 3118 ± 28 | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watkinson, E.J.; Mesalam, R.; Vigier, J.-F.; Beneš, O.; Griveau, J.-C.; Colineau, E.; Sierig, M.; Freis, D.; Ambrosi, R.M.; Staicu, D.; et al. Thermal Properties and Behaviour of Am-Bearing Fuel in European Space Radioisotope Power Systems. Thermo 2021, 1, 297-331. https://doi.org/10.3390/thermo1030020
Watkinson EJ, Mesalam R, Vigier J-F, Beneš O, Griveau J-C, Colineau E, Sierig M, Freis D, Ambrosi RM, Staicu D, et al. Thermal Properties and Behaviour of Am-Bearing Fuel in European Space Radioisotope Power Systems. Thermo. 2021; 1(3):297-331. https://doi.org/10.3390/thermo1030020
Chicago/Turabian StyleWatkinson, Emily Jane, Ramy Mesalam, Jean-François Vigier, Ondřej Beneš, Jean-Christophe Griveau, Eric Colineau, Mark Sierig, Daniel Freis, Richard M. Ambrosi, Dragos Staicu, and et al. 2021. "Thermal Properties and Behaviour of Am-Bearing Fuel in European Space Radioisotope Power Systems" Thermo 1, no. 3: 297-331. https://doi.org/10.3390/thermo1030020
APA StyleWatkinson, E. J., Mesalam, R., Vigier, J. -F., Beneš, O., Griveau, J. -C., Colineau, E., Sierig, M., Freis, D., Ambrosi, R. M., Staicu, D., & Konings, R. J. M. (2021). Thermal Properties and Behaviour of Am-Bearing Fuel in European Space Radioisotope Power Systems. Thermo, 1(3), 297-331. https://doi.org/10.3390/thermo1030020