An Experimental Investigation on the Pool Boiling Heat Transfer of R-134a on Microporous Cu-MWCNT Composite Surfaces
Abstract
:1. Introduction
2. Surface Preparation and Characterization
2.1. Materials
2.2. Two-Stage Electrodeposition
2.3. Characterization of Cu-MWCNT Composite Coatings
3. Experimental Setup and Procedure
3.1. Pool Boiling Experimental Setup
3.2. Experimental Procedure
4. Data Reduction and Uncertainty Analysis
4.1. Data Reduction
4.2. Uncertainty Analysis
5. Results and Discussion
5.1. Surface Characterization of Cu-MWCNT Composite Coatings
5.2. Analysis of Pool Boiling Curves
5.3. Comparison of the Present Work with Previous Ones
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dey, S.; Sreenivasulu, A.; Veerendra, G.T.N.; Rao, K.V.; Babu, P.S.S.A. Renewable Energy Present Status and Future Potentials in India: An Overview. Innov. Green Dev. 2022, 1, 100006. [Google Scholar] [CrossRef]
- Perkins, O.; Alexander, P.; Arneth, A.; Brown, C.; Millington, J.D.A.; Rounsevell, M. Toward Quantification of the Feasible Potential of Land-Based Carbon Dioxide Removal. One Earth 2023, 6, 1638–1651. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Petrovic, M.M.; Stevanovic, V.D. Pool Boiling Simulation with Two-Fluid and Grid Resolved Wall Boiling Model. Int. J. Multiph. Flow 2021, 144, 103806. [Google Scholar] [CrossRef]
- Liu, B.; Yang, X.; Li, Q.; Chang, H.; Qiu, Y. Enhanced Pool Boiling on Composite Microstructured Surfaces with Microcavities on Micro-Pin-Fins. Int. Commun. Heat Mass Transf. 2022, 138, 106350. [Google Scholar] [CrossRef]
- Rainey, K.; You, S.; Lee, S. Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer from Microporous, Square Pin-Finned Surfaces in FC-72. Int. J. Heat Mass Transf. 2003, 46, 23–35. [Google Scholar] [CrossRef]
- Mudhafar, M.A.H.; Zheng-hao, W. Optimization of Pool Boiling Heat Transfer on Microporous Metal Coating Surfaces with FC-72 as a Working Fluid. Heat Mass Transf. 2022, 58, 1963–1977. [Google Scholar] [CrossRef]
- Jun, S.; Kim, J.; Son, D.; Kim, H.Y.; You, S.M. Enhancement of Pool Boiling Heat Transfer in Water Using Sintered Copper Microporous Coatings. Nucl. Eng. Technol. 2016, 48, 932–940. [Google Scholar] [CrossRef]
- Anderson, T.M.; Mudawar, I. Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid. J. Heat Transf. 1989, 111, 752–759. [Google Scholar] [CrossRef]
- Bergles, A.E.; Chyu, M.C. Characteristics of Nucleate Pool Boiling from Porous Metallic Coatings. J. Heat Transf. 1982, 104, 279–285. [Google Scholar] [CrossRef]
- Memory, S.B.; Sugiyama, D.C.; Marto, P.J. Nucleate Pool Boiling of R-114 and R-114-Oil Mixtures from Smooth and Enhanced Surfaces—I. Single Tubes. Int. J. Heat Mass Transf. 1995, 38, 1347–1361. [Google Scholar] [CrossRef]
- Ahmad, S.W.; Lewis, J.S.; McGlen, R.J.; Karayiannis, T.G. Pool Boiling on Modified Surfaces Using R-123. Heat Transf. Eng. 2014, 35, 1491–1503. [Google Scholar] [CrossRef]
- Saha, B.; Das, N.S.; Chattopadhyay, K.K. Combined Effect of Oxygen Deficient Point Defects and Ni Doping in Radio Frequency Magnetron Sputtering Deposited ZnO Thin Films. Thin Solid Films 2014, 562, 37–42. [Google Scholar] [CrossRef]
- Patil, C.M.; Santhanam, K.S.V.; Kandlikar, S.G. Development of a Two-Step Electrodeposition Process for Enhancing Pool Boiling. Int. J. Heat Mass Transf. 2014, 79, 989–1001. [Google Scholar] [CrossRef]
- Karunagaran, B.; Rajendra Kumar, R.T.; Senthil Kumar, V.; Mangalaraj, D.; Narayandass, S.K.; Mohan Rao, G. Structural Characterization of DC Magnetron-Sputtered TiO2 Thin Films Using XRD and Raman Scattering Studies. Mater. Sci. Semicond. Process. 2003, 6, 547–550. [Google Scholar] [CrossRef]
- Ray, M.; Bhaumik, S. Structural Properties of Glancing Angle Deposited Nanostructured Surfaces for Enhanced Boiling Heat Transfer Using Refrigerant R-141b. Int. J. Refrig. 2018, 88, 78–90. [Google Scholar] [CrossRef]
- Ujereh, S.; Fisher, T.; Mudawar, I. Effects of Carbon Nanotube Arrays on Nucleate Pool Boiling. Int. J. Heat Mass Transf. 2007, 50, 4023–4038. [Google Scholar] [CrossRef]
- Lee, J.; Son, G. Numerical Simulation of Liquid Film Formation and Evaporation in Dip Coating. Int. Commun. Heat Mass Transf. 2015, 68, 220–227. [Google Scholar] [CrossRef]
- Katarkar, A.S.; Pingale, A.D.; Belgamwar, S.U.; Bhaumik, S. Experimental Study of Pool Boiling Enhancement Using a Two-Step Electrodeposited Cu–GNPs Nanocomposite Porous Surface with R-134a. J. Heat Transfer 2021, 143, 121601. [Google Scholar] [CrossRef]
- Rishi, A.M.; Kandlikar, S.G.; Gupta, A. Improved Wettability of Graphene Nanoplatelets (GNP)/Copper Porous Coatings for Dramatic Improvements in Pool Boiling Heat Transfer. Int. J. Heat Mass Transf. 2019, 132, 462–472. [Google Scholar] [CrossRef]
- Gheitaghy, A.M.; Saffari, H.; Zhang, G.Q. Effect of Nanostructured Microporous Surfaces on Pool Boiling Augmentation. Heat Transf. Eng. 2019, 40, 762–771. [Google Scholar] [CrossRef]
- Gupta, S.K.; Misra, R.D. Effect of Two-Step Electrodeposited Cu–TiO2 Nanocomposite Coating on Pool Boiling Heat Transfer Performance. J. Therm. Anal. Calorim. 2019, 136, 1781–1793. [Google Scholar] [CrossRef]
- Protich, Z.; Santhanam, K.S.V.; Jaikumar, A.; Kandlikar, S.G.; Wong, P. Electrochemical Deposition of Copper in Graphene Quantum Dot Bath: Pool Boiling Enhancement. J. Electrochem. Soc. 2016, 163, E166–E172. [Google Scholar] [CrossRef]
- Shakeri, H.; Moghadasi, H.; Saffari, H. Experimental Parametric Study of Hierarchical Micro/Nano Electrodeposited (Six-Step) Pattern with Respect to Volcano-Shape Morphology in Pool Boiling Performance Augmentation. Exp. Heat Transf. 2021, 36, 210–233. [Google Scholar] [CrossRef]
- Katarkar, A.S.; Pingale, A.D.; Belgamwar, S.U.; Bhaumik, S. Experimental Investigation of Pool Boiling Heat Transfer Performance of Refrigerant R-134a on Differently Roughened Copper Surfaces. Mater. Today Proc. 2021, 47, 3269–3275. [Google Scholar] [CrossRef]
- Rishi, A.M.; Kandlikar, S.G.; Gupta, A. Repetitive Pool Boiling Runs: A Controlled Process to Form Reduced Graphene Oxide Surfaces from Graphene Oxide with Tunable Surface Chemistry and Morphology. Ind. Eng. Chem. Res. 2019, 58, 7156–7165. [Google Scholar] [CrossRef]
- Gupta, S.K.; Misra, R.D. Experimental Study of Pool Boiling Heat Transfer on Copper Surfaces with Cu-Al2O3 Nanocomposite Coatings. Int. Commun. Heat Mass Transf. 2018, 97, 47–55. [Google Scholar] [CrossRef]
- Alshahrani, A.A.; Al-Zoubi, H.; Alotaibi, S.E.; Hassan, H.M.A.; Alsohaimi, I.H.; Alotaibi, K.M.; Alshammari, M.S.; Nghiem, L.; Panhuis, M. in het Assessment of Commercialized Nylon Membranes Integrated with Thin Layer of MWCNTs for Potential Use in Desalination Process. J. Mater. Res. Technol. 2022, 21, 872–883. [Google Scholar] [CrossRef]
- Katarkar, A.S.; Pingale, A.D.; Belgamwar, S.U.; Bhaumik, S. Fabrication of Cu@G Composite Coatings and Their Pool Boiling Performance with R-134a and R-1234yf. Adv. Mater. Process. Technol. 2022, 8, 2044–2056. [Google Scholar] [CrossRef]
- Schultz, R.R.; Cole, R. Uncertainty Analysis of Boiling Nucleation. In Proceedings of the AIChE symposium series, Los Angeles, CA, USA, 16–21 November 1997; AIChE: New York, NY, USA, 1979; Volume 75, pp. 32–38. [Google Scholar]
- Demiray, F.; Kim, J. Heat Transfer from a Single Bubble Nucleation Site during Saturated Pool Boiling of FC-72 Using an Array of 100 Micron Heaters. In Proceedings of the 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, St. Louis, MI, USA, 24–26 June 2002; American Institute of Aeronautics and Astronautics: Reston, VI, USA, 2002. [Google Scholar]
- Majumder, B.; Pingale, A.D.; Katarkar, A.S.; Belgamwar, S.U.; Bhaumik, S. Enhancement of Pool Boiling Heat Transfer Performance of R-134a on Microporous Al@GNPs Composite Coatings. Int. J. Thermophys. 2022, 43, 49. [Google Scholar] [CrossRef]
- Sezer, N.; Khan, S.A.; Koç, M. Amelioration of the Pool Boiling Heat Transfer Performance via Self-Assembling of 3D Porous Graphene/Carbon Nanotube Hybrid Film over the Heating Surface. Int. J. Heat Mass Transf. 2019, 145, 118732. [Google Scholar] [CrossRef]
- Jaikumar, A.; Kandlikar, S.G.; Gupta, A. Pool Boiling Enhancement through Graphene and Graphene Oxide Coatings. Heat Transf. Eng. 2017, 38, 1274–1284. [Google Scholar] [CrossRef]
- Pialago, E.J.T.; Kwon, O.K.; Park, C.W. Nucleate Boiling Heat Transfer of R134a on Cold Sprayed CNT–Cu Composite Coatings. Appl. Therm. Eng. 2013, 56, 112–119. [Google Scholar] [CrossRef]
- Jaikumar, A.; Santhanam, K.S.V.; Kandlikar, S.G.; Raya, I.B.P.; Raghupathi, P. Electrochemical Deposition of Copper on Graphene with High Heat Transfer Coefficient. ECS Trans. 2015, 66, 55–64. [Google Scholar] [CrossRef]
- Cao, Z.; Wu, Z.; Abbood, S.; Sundén, B. An Analysis of Pool Boiling Heat Transfer on Nanoparticle-Coated Surfaces. Energy Procedia 2019, 158, 5880–5887. [Google Scholar] [CrossRef]
- Song, G.; Davies, P.A.; Wen, J.; Xu, G.; Quan, Y. Nucleate Pool Boiling Heat Transfer of SES36 Fluid on Nanoporous Surfaces Obtained by Electrophoretic Deposition of Al2O3. Appl. Therm. Eng. 2018, 141, 143–152. [Google Scholar] [CrossRef]
- Ray, M.; Bhaumik, S. Nucleate Pool Boiling Heat Transfer of Hydro-Fluorocarbon Refrigerant R134a on TiO2 Nanoparticle Coated Copper Heating Surfaces. Heat Transf. Eng. 2019, 40, 997–1006. [Google Scholar] [CrossRef]
- Dewangan, A.K.; Kumar, A.; Kumar, R. Experimental Study of Nucleate Pool Boiling of R-134a and R-410a on a Porous Surface. Heat Transf. Eng. 2019, 40, 1249–1258. [Google Scholar] [CrossRef]
Process Parameters | Range |
---|---|
pH | 2 |
Bath Temperature | 25 °C, 30 °C, 35 °C, 40 °C, |
Ultrasonic treatment | 20 kHz, 500 W for 45 min |
Magnetic stirring | 300 rpm |
Electrodeposition time | 60 s (1st stage); 30 min (2nd stage) |
Current density | 0.2 A/cm2 (1st stage); 0.05 A/cm2 (2nd stage) |
Coating | Porosity (%) | Surface Roughness (µm) | Thickness (µm) |
---|---|---|---|
Cu-MWCNTs (25 °C) | 32 ± 4 | 0.18 ± 0.04 | 14 ± 4 |
Cu-MWCNTs (30 °C) | 38 ± 5 | 0.25 ± 0.04 | 18 ± 4 |
Cu-MWCNTs (35 °C) | 44 ± 5 | 0.29 ± 0.05 | 23 ± 3 |
Cu-MWCNTs (40 °C) | 49 ± 4 | 0.36 ± 0.06 | 27 ± 4 |
Coating | Base Material | Working Fluid | Coating Method | Remark | Ref. |
---|---|---|---|---|---|
Cu-MWCNTs | Cu | R-134a | Two-step electrodeposition | HTC increased by 122% | Present work |
Al@GNPs | Al | R-134a | Mechanical milling, screen printing, and sintering | HTC increased by 143% | [32] |
Graphene/CNT | Cu | DI water | Self-assembling | HTC increased by 100% | [33] |
Cu-GNPs | Cu | R-134a | Two-step electrodeposition | HTC increased by 97% | [19] |
GO | Cu | DI water | Dip coating | HTC increased by 47% | [34] |
CNT-Cu | Cu | R-134a | Mechanical alloying and cold spray | HTC increased by 74% | [35] |
Cu and graphene | Cu | DI water | Electrodeposition and dip coating | HTC increased by 82% | [36] |
Cu-Zinc | Cu | HFE-7200 | Electrophoretic deposition | HTC increased by 100% | [37] |
Al2O3 | Cu | SES36 | Electrophoretic deposition | HTC increased by 76.9% | [38] |
TiO2 | Cu | R134a | Electron beam evaporation | HTC increased by 87.5% | [39] |
Cu particles | Cu | R-134a | Powder flame spraying | HTC increased by 100% | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pingale, A.D.; Katarkar, A.S.; Madgule, M.; Bhaumik, S.; Belgamwar, S.U. An Experimental Investigation on the Pool Boiling Heat Transfer of R-134a on Microporous Cu-MWCNT Composite Surfaces. Thermo 2024, 4, 16-28. https://doi.org/10.3390/thermo4010002
Pingale AD, Katarkar AS, Madgule M, Bhaumik S, Belgamwar SU. An Experimental Investigation on the Pool Boiling Heat Transfer of R-134a on Microporous Cu-MWCNT Composite Surfaces. Thermo. 2024; 4(1):16-28. https://doi.org/10.3390/thermo4010002
Chicago/Turabian StylePingale, Ajay D., Anil S. Katarkar, Mahadev Madgule, Swapan Bhaumik, and Sachin U. Belgamwar. 2024. "An Experimental Investigation on the Pool Boiling Heat Transfer of R-134a on Microporous Cu-MWCNT Composite Surfaces" Thermo 4, no. 1: 16-28. https://doi.org/10.3390/thermo4010002
APA StylePingale, A. D., Katarkar, A. S., Madgule, M., Bhaumik, S., & Belgamwar, S. U. (2024). An Experimental Investigation on the Pool Boiling Heat Transfer of R-134a on Microporous Cu-MWCNT Composite Surfaces. Thermo, 4(1), 16-28. https://doi.org/10.3390/thermo4010002