
Citation: Luthfi, N.; Fukushima, T.;

Wang, X.; Takisawa, K. Significance

and Optimization of Operating

Parameters in Hydrothermal

Carbonization Using RSM–CCD.

Thermo 2024, 4, 82–99. https://

doi.org/10.3390/thermo4010007

Academic Editor: Ignazio Blanco

Received: 16 January 2024

Revised: 12 February 2024

Accepted: 14 February 2024

Published: 18 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Significance and Optimization of Operating Parameters in
Hydrothermal Carbonization Using RSM–CCD
Numan Luthfi, Takashi Fukushima, Xiulun Wang and Kenji Takisawa *

Graduate School of Bioresources, Mie University, Tsu 514-8507, Japan; 521d2s3@m.mie-u.ac.jp (N.L.);
t-fuku@bio.mie-u.ac.jp (T.F.); wang@bio.mie-u.ac.jp (X.W.)
* Correspondence: takisawa-k@bio.mie-u.ac.jp

Abstract: To ascertain the significance of temperature and residence time of hydrothermal carboniza-
tion (HTC) in controlling hydrochar production, multiple regression was employed based on central
composite design (CCD) to model the responses of mass yield (MY) and higher heating value (HHV).
The hydrothermal reaction was explored at temperatures and times ranging from 150 to 250 ◦C and
0.5 to 3.5 h. Sorghum bagasse (SB) and microalgae (MA) were used to complex the reaction due to
their differences in organic constituents. Simultaneously, the operating parameters were optimized
by maximizing the response values under domain constraints in the HHV models. The results show
that at least temperature and time in the linear system played a significant role in determining the
solids recovery and the energy generation of hydrochars (p-values = 0.00), regardless of the biomass
type. Moreover, the optimum conditions of SB and MA hydrochars can be achieved by increasing
the temperature to the limit of 250 ◦C and prolonging the time to 3.5 and 3.25 h, respectively. Both
respective conditions resulted in maximum HHVs of 27.54 and 35.83 MJ kg−1.

Keywords: hydrothermal carbonization; temperature–time; fuel properties; central composite design;
significance–optimization

1. Introduction

Hydrothermal carbonization (HTC) is an artificial coalification process that converts
organic compounds into carbonaceous materials in hot pressurized water. The process
is largely governed by important operating parameters such as temperature and resi-
dence time [1]. The reaction occurs in subcritical water at a relatively low temperature of
150–250 ◦C, accompanied by an autogenous pressure elevation of about 2–6 MPa [2,3]. Vari-
ous residence times are practically used, ranging from 5 to 240 min [4], although the reaction
seems evident within the first 30 min [5]. Temperature plays a role in reducing the dielectric
properties of water. Owing to the diminishing of hydrogen bonds and the formation of
ionization products, such as hydronium (H3O+) and hydroxide ions (OH−), the dissociation
constant expands by three orders of magnitude as the critical point approaches, which
makes temperature a determinant of acid- and base-catalyzed reactions [6]. Meanwhile,
the retention time enhances the severity of the reaction at a given temperature [7].

In some cases, the effects of operating parameters cannot be observed for some
biomasses due to insignificant responses. For example, using residual corn cob and biogas
digestate, Zhang et al. [5] and Cao et al. [8] reported that the residence times of 0.5–5 h (at
250 ◦C) and 0.5–6 h (at 210 ◦C) did not cause significant changes in the heating values of the
hydrochars produced. The deviation values were shown to be less than 1.5 and 0.3 MJ kg−1,
respectively. Such circumstances may render further experimental studies intensive and
time-consuming [9]. Therefore, pre-identifying the significance of the operating parameters
becomes essential, and an appropriate experimental design will be required for assessment.

To further investigate the operating parameters, extensive studies on fuel proper-
ties such as mass yield (MY) and higher heating value (HHV) may well describe the
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conversion process. Particularly for optimization, HHV is the most important response
that displays the maximum amount of energy generation and determines the conversion
efficiency [10,11]. For example, Prins et al. [12] found that biomasses with different heating
values were recommended to approach the highest gasification efficiency under different
temperatures. Moreover, HHV has direct implications for chemical structures as it can be
approximated by proximate and ultimate characteristics [13,14]. An adiabatic calorimeter
analysis is often performed to determine HHV. However, the analysis is considered time-
consuming and expensive for a large number of runs [10]. Thereby, building an empirical
model is a key tool in analyzing and optimizing the conversion process while avoiding
time-consuming experiments.

The response surface method (RSM) is an experimental design that simultaneously
allows the significance estimation and the optimization between factors and responses.
The model fitting involves not only the main and interaction effects but also the quadratic
effects. Accordingly, RSM design can provide an idea of the local shape of the response
surface [15,16]. A k-factor three-level factorial design (3k FD) is least required for detecting
pure quadratic effects in RSM, although not for their estimation. On the other hand, the 3k

FD suffers from the major drawbacks of a large number of experimental runs and a lack of
rotatability (a non-uniformity of prediction errors). Prior to a study, little or no knowledge
may be present regarding the domain that contains the optimum response. Therefore, such
an experimental design matrix may obscure the investigation in any direction. A modified
design, such as central composite design (CCD), exists to overcome these concerns. CCD
features a variance of the predicted response, which is a function of the distance from the
center point instead of a function of the direction [15,17].

Based on this overview, this study explores the operating parameters of tempera-
ture and residence time using RSM–CCD as a multivariate statistical method. Multiple
regression and analysis of variance (ANOVA) are performed for the model approach and di-
agnostic tests. Sorghum bagasse (SB) and microalgae (MA) are used to complex the biomass
types by representing lignocellulosic (LBM) and non-lignocellulosic biomass (NLBM). The
objectives of this study are (1) to estimate the significance of temperature and time in
controlling MY and HHV properties, and (2) to predict the optimum conditions that result
in maximum output from the empirical HHV models.

2. Materials and Methods
2.1. Sample Preparation

All plant parts of SB were collected from the experimental farm of Mie University,
Japan, except the roots. SB was washed, air-dried, mechanically pulverized using a high-
speed blender (YKB, AS ONE Corp., Osaka, Japan) at 28,000 rpm for 1 min, and sieved until
a uniform powder size of less than 150 µm was obtained. Meanwhile, MA (Chlorella sp.)
was purchased in powder form under the trademark of Sunlife Co. Ltd. All raw biomasses
were dried in a laboratory oven at 105 ◦C for 24 h to homogenize the moisture content. The
homogenized samples were then stored in a desiccator prior to further experiments. The
biochemical composition of the similar biomasses is reviewed in Table 1.

Table 1. Summary of the biochemical composition of SB and MA biomasses on a dry basis.

Biomass Carbohydrate (%) 1 Protein (%) Lipid (%) Fiber (%) 2 Ash (%) Reference

SB
23.09 2.05 0.90 63.93 0.11 [18]
5.20 5.40 1.85 79.10 8.45 [19]

MA
20.02 43.90 9.79 16.40 9.89 [20]
35.62 42.80 8.73 1.05 11.80 [21]

1 Carbohydrate (%) = 100% − Protein − Lipid − Fiber − Ash [22] (w/w in a dry matter basis). 2 Fiber (NDF)
consists of lignin and non-starch carbohydrates, such as cellulose and hemicellulose.
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2.2. Hydrothermal Carbonization Experiment

In each batch of HTC experiments, a mixture of 3.5 g dried biomass and 35 g deionized
water was synthesized in a 45 mL digestion vessel (Model 4744, Parr Instrument Co.,
Moline, IL, USA), followed by oven-assisted heating (OF-300V, AS ONE Corp., Osaka,
Japan) (see Figure 1a,b). The heating treatment applied temperatures and residence times
ranging from 150 ◦C to 250 ◦C and 0.5 to 3.5 h, with CCD factor levels described later in
Section 2.4. After completion, the vessel was aerated using a fan to speed the cooling to
27 ◦C. The slurry obtained was subjected to gravity filtration to separate the residual solids
from the aqueous phase (see Figure 1c). Finally, the solids were dried at 105 ◦C for 24 h to
recover the final products, referred to as hydrochars (see Figure 2).
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Figure 2. The appearance of SB (right) and MA (left) biomasses and representative hydrochars.
(a) Raw state; (b) 175 ◦C and 2.75 h (CCD dataset); (c) 250 ◦C and 2.75 h (validation dataset).

2.3. Data Analysis

Two responses of MY and HHV were evaluated as the representative fuel properties
of hydrochars produced. MY (in %) shows the amount of solids that can be recovered after
HTC. The response was calculated from the ratio between the mass of hydrochar produced,
mH (in kg), and dried biomass, mB (in kg), which is expressed as follows:

MY =
mH
mB

× 100%, (1)

Meanwhile, HHV (in MJ kg−1) was sought using an adiabatic calorimeter (OSK 150,
Ogawa Sampling Co., Ltd., Tokyo, Japan) to measure heat release, which includes the latent
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heat of the evaporation. A sample weighing 0.3 g was subjected to complete combustion
for each experiment. The bomb was installed under a pressurized oxidative environment
by injecting O2 until it reached 3 MPa. HHV was calculated based on Equation (2), which
also involves its correction factors:

HHV =
(cW∆T)(M + mW)− mPCP − ∆mRCR

106 × mS
, (2)

where mS, mW, and mP are the masses of sample, water, and wrapping paper (in kg).
The mass of water in the bucket is fixed at 1.5 kg. ∆mR is the mass loss of ignition wire
after combustion (in kg). M is the equivalent mass of water, standardized at 0.3222 kg by
combusting benzoic acid. cW is the specific heat capacity of water, which is 4200 J kg−1 ◦C−1.
CP and CR are the heat capacities of paper and wire (J kg−1). The heat capacities are
15,070 × 103 and 3035 × 103 J kg−1, respectively. ∆T is the temperature rise of water after
combustion (in ◦C).

2.4. Experimental Design and Diagnostic Test

RSM was adopted to evaluate the curvature effect on the correlation between operating
parameters and fuel properties. The CCD was implemented by having a fractional factorial
with two levels (±1) from the center point (0), which was augmented with a group of axial
points spaced |α| ≥ 1.414 (domain of operability). The space design was chosen to meet
the desired properties of being balanced, orthogonal, and rotatable [15]. Temperature and
time were evaluated as operating parameters or factors, ranging from 150 ◦C to 250 ◦C and
0.5 to 3.5 h (domain of interest). The experimental design with five coded factor levels and
their actual values is shown in Table 2. The full run consisted of five center points, four
factorial points, and four axial points (α = ±2) (see Table 3 and Appendix A Figure A1).
The axial points were customized by 2, instead of the original value of 1.414, to maximize
the viability limit of uniformity of the predicted errors [17].

Table 2. Factors and levels of hydrothermal carbonization experiments with CCD.

Factor Symbol
Coded and Un-Coded Factor Level

−2 (−α) −1 0 1 2 (α)

Temperature (◦C) x1 150 175 200 225 250
Residence time (h) x2 0.50 1.25 2.00 2.75 3.50

Table 3. Full-run experimental design and obtained responses.

Factor (x)
Response (y)

RemarkMY (%) HHV (MJ kg−1)

x1 x2 SB MA SB MA

−1 −1 79.49 71.13 19.33 26.62 Factorial point
1 −1 63.88 45.78 21.87 30.23 Factorial point
−1 1 69.55 56.82 20.00 28.20 Factorial point
1 1 60.94 32.27 23.71 32.53 Factorial point
−2 0 90.23 74.71 19.09 26.15 Axial point
2 0 49.80 31.32 26.06 34.68 Axial point
0 −2 89.98 85.75 19.34 25.39 Axial point
0 2 65.37 40.34 22.27 30.55 Axial point
0 0 66.69 47.18 21.61 29.86 Center point
0 0 66.91 48.66 21.61 29.86 Center point
0 0 66.27 47.37 21.15 29.84 Center point
0 0 66.30 47.09 21.57 29.87 Center point
0 0 64.80 49.97 21.91 29.61 Center point
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The general linear model (GLM) was applied as a statistical option using IBM SPSS
28.0 software. The full quadratic regression function was then estimated as expressed by
Equation (3) [16,23]:

y = β0 + ∑k
i=1 βixi + ∑k

i=1 βiixi
2 + ∑k

1≤i≤j βijxixj + ε, (3)

where k is the number of factors. β0 is the intercept coefficient. βi, βii, and βij are the
coefficients of linear, quadratic, and interaction systems, respectively. y and xi,j are the
pertinent responses and factors, respectively. ε is the mean error or residual term (assumed
to be zero if normally distributed). Meanwhile, diagnostic tests were premised on the
fulfillment of several principles proposed by Sarstedt and Mooi [24], namely (1) model fit
(goodness of fit), (2) assumption of regression model least in a linear coefficient, (3) residual
assumptions of regression model, and (4) multicollinearity among factors. ANOVA was
used to assess the overall model and its factor systems, considering a confidence level
of 95%. The coefficient of determination (R2), the probability value (p-value) of Fischer
distribution (F-test), and the residual plots were subsequently evaluated.

2.5. Data Validation

The models were validated by assigning new datasets to see the accuracy of the
predicted data (see Appendix A Figure A2). Four new observational data were drawn
from factorial points within the domain of operability. One datum was taken from an
additional point at x1 = 2 (250 ◦C) and x2 = 1 (2.75 h), beyond the domain of operability
but still occupying the domain of interest. The relative error between the observed (yo)
and predicted responses (yp) was scored by the absolute percentage error, APE (in %).
The scoring possesses an intuitive interpretability and is scale-independent. To avoid
measurement bias, the response should be strictly positive and have no zero or near-zero
values [25,26]. APE is expressed as the following equation:

APE =

∣∣∣∣yo − yp

yo

∣∣∣∣× 100%, (4)

2.6. Optimum Conditions

The optimum condition of HTC was determined by maximizing the HHV response,
which was indicated by the critical point. The coordinate was determined through the first
derivative of the regression function being equal to zero (see Equation (5)). Such a critical
point is likely to be found in a model with maximum, minimum, or saddle profiles [16].
Supposing the coordinate of the critical point lies outside the domain of interest, the
maximum point can be found by the constraint optimization. The regression function is
thus moved in the −∇y or +∇y direction as infinite steps of x1 and x2 until the contour
hits the domain boundary [27,28]. In this study, there were two methods used: (1) single
variable (for domain of interest) and (2) Lagrange multiplier (for domain of operability).

∂y
∂x1

= 0,
∂y
∂x2

= 0, (5)

For the domain of interest, the constant functions of the square-shaped boundary and
the highest and lowest domain ranges were simply substituted into the regression function
as coordinate pairs (see Equations (6) and (7) and Figure 3). The highest response among all
the boundary sides was determined as the maximum point. Occasionally, if the substitution
of the constant function generates a quadratic form, the other coordinate pair is sought
from its first derivative, which is equal to zero, as seen in Equation (8).

g(x1) = x2 = c, g(x2) = x1 = c, (6)

Di = {(x1, x2)|−2 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 2}, (7)
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∂y(x1, c)
∂x1

= 0,
∂y(c, x2)

∂x2
= 0, (8)
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On the other hand, for the domain of operability, the Lagrange multiplier solved the
boundary function (g) that has the same input variables as the regression function (y(x1,x2))
and can be expressed as g(x1,x2) = c. The equation is proposed from the tangency between
the regression function and the boundary function, whose gradients are parallel to each
other, as follows [28]:

∇y(x1, x2) = λ∇g(x1, x2), (9)

where λ is the proportionality constant, called the Lagrangian. The boundary function in
circular shape is defined in Equation (10) (see Figure 3). To specify, the domain radius was
assigned as the original axial point (|α|), which is 1.414 (see Equation (11)).

g(x1, x2) = x1
2 + x2

2 = 1.4142, (10)

Do =
{
(x1, x2)

∣∣∣x1
2 + x2

2 ≤ 1.4142
}

, (11)

3. Results and Discussion
3.1. Regression Model Diagnosis

The goodness of fit and the regression significance of the overall models were assessed
by the ANOVA global test, as shown in Table 4. Based on the R2 results, approximately
95.0–99.5% of the variance in all response models could be explained by the temperature
and residence time of HTC, regardless of biomass type. The adequacy was confirmed
by the corresponding F-ratios of much greater than 1. Concerning the null hypothesis
(βi = βij = βii = 0) versus the alternative hypothesis (at least one β is non-zero), all p-values
of the response models provided evidence of 0.00, meaning that the null hypothesis was
rejected. These findings suggest that all regression models fitted the data points significantly
and had at least one non-zero estimated coefficient [24,29]. In addition, the least coefficients



Thermo 2024, 4 88

were evidenced to meet the assumption of being specified in a linear way by having
significant p-values of 0.00 for all linear systems (see Table 5) [24].

Table 4. Summary of the regression models from ANOVA.

Source Response (y)
F-Ratio p-Value R2

SB MA SB MA SB MA

Model
MY 26.49 59.78 0.00 * 0.00 * 0.950 0.977

HHV 70.22 261.73 0.00 * 0.00 * 0.980 0.995

* shows statistical significance at p-value < 0.05 (confidence level of 95%).

Table 5. Coefficients and collinearities for each factor system of the response models.

Response (y) Factor System
Coefficient (β) p-Value Collinearity (VIF)

SB MA SB MA SB MA

MY

Intercept β0: 65.76 47.63 0.00 * 0.00 *
x1: Temperature β1: −8.76 −11.39 0.00 * 0.00 * 1.00 1.00

x2: Time β2: −5.18 −9.89 0.00 * 0.00 * 1.00 1.00
x12 β11: 0.93 1.21 0.22 0.11 1.09 1.09
x22 β22: 2.84 3.72 0.00 * 0.00 * 1.09 1.09

x1x2 β12: 1.75 0.20 0.32 0.90 1.00 1.00

HHV

Intercept 21.46 29.78 0.00 * 0.00 *
x1: Temperature 1.68 2.08 0.00 * 0.00 * 1.00 1.00

x2: Time 0.70 1.18 0.00 * 0.00 * 1.00 1.00
x12 0.24 0.15 0.01 * 0.02 * 1.09 1.09
x22 −0.20 −0.46 0.03 * 0.00 * 1.09 1.09

x1x2 0.29 0.18 0.14 0.18 1.00 1.00

* shows statistical significance at p-value < 0.05 (confidence level of 95%).

Graphical residual analysis was conducted to detect any potential issues in the re-
gression assumptions, as exemplified in Figure 4. The HHV response of SB hydrochars
was used as a representative for diagnosis (see Appendix A Figures A3–A5 for the other
MY and HHV responses). The histogram in Figure 4a demonstrates a more or less bell-
shaped distribution, confirming the normal distribution of random errors and a strong
deterministic relationship. Thus, the mean error term (ε) was assumed to be zero, albeit not
perfect. The histogram result corresponded to the reasonably clear linear pattern on the
normal Q-Q plot without severe skewness and tail (see Figure 4b) [15,24]. Meanwhile, the
run sequence plot in Figure 4c indicates no violation of the independent error assumption
(having no auto-correlation), which is characterized by the points of standardized residu-
als overlapping the zero line repeatedly across the randomized runs. Consequently, the
response model can avoid misleading due to over-optimistic predictions [30]. The scatter
plot in Figure 4d shows the points of the standardized residuals against the predicted
responses, which spread randomly around the zero line and form an unsystematic pattern.
The result agrees with the assumption of homoscedasticity that the model had constant
error variance and sufficient constituent factors [15,30]. Additionally, no red warning flags
of outliers were found beyond the conservative cutoff of standardized residuals by ±2 [31],
as illustrated in Figure 4c,d. The satisfaction for outliers reflects the absence of issues
due to measurement variability or experimental error. Overall, since the other response
models had relatively similar graphical tendencies and complied with the three residual as-
sumptions, the factor coefficients in each model are sufficient to explain responses without
causing appreciable residuals.
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In detecting multicollinearity among the factor sets, variance inflation factors (VIFs)
were assigned and found to converge around 1 (see Table 4), which were much smaller
than the rule of thumb of 10, indicating the absence of multicollinearity [29]. This implies
that the temperature and residence time did not determine each other (uncorrelated), and
the effects of their factor systems were not confounded. Hence, all response models are
reliable in terms of further interpretability concerning the significance masking [24,29].

3.2. Data Validation

The new datasets for validation are listed in Table 6. Data points, which were dis-
tributed in different domains, give insight into the extent to which the models can be safely
interpreted and optimized. The accuracy rating for the mean absolute percentage error
(MAPE) was compared equivalently to the resulting APE scores, whose categories are
divided into highly accurate (<10%), good (10–20%), reasonable (20–50%), and inaccurate
(>50%), as proposed by Lewis [32]. In this study, an error percentage greater than 10%
was designated as a red flag for the corresponding domain to be considered unsafe for
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interpretation and optimization. Figure 5 exhibits that almost all APEs were categorized as
having high accuracy in the domain of operability, indicating that the domain is safe for
interpreting the MY and HHV surface plots and optimizing the HTC operating parameters
therein. The APE gave errors between 0.05 and 7.97% for MY (except one point belonging
to MA; 13.17%) and 0.30 and 3.27% for HHV, regardless of biomass type. On the other
hand, the domain of interest is indicated to be only reliable for interpreting and optimizing
the HHV response, which also suggests that the optimization by HHV can be applied in all
experimental domains. This was supported by the APEs of HHV, which showed 4.00% (SB)
and 2.65% (MA) and were categorized as high accuracy, unlike those of the MY response,
scoring above the threshold at 16.21% and 18.08%.

Table 6. Observed and predicted results based on new datasets for validation.

Sample
Factor (x) MY (%) HHV (MJ kg−1)

Remark
x1 x2 Observation Prediction Observation Prediction

SB

−1 −1 78.93 85.22 19.75 19.41

Operability−1 1 70.44 71.36 20.44 20.23
1 −1 64.17 64.20 21.62 22.19
1 1 60.75 57.34 23.40 24.17

2 1 45.71 53.12 27.98 26.86 Interest

MA

−1 −1 71.51 74.04 26.73 26.39

Operability−1 1 56.60 53.86 27.96 28.39
1 −1 44.94 50.86 30.28 30.19
1 1 31.12 31.48 32.41 32.91

2 1 29.20 23.92 36.59 35.62 Interest
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recoverable solids of both hydrochars were observed to decrease as the temperature and 
time of HTC increased. The trends conformed to the significant antagonistic effects of all 
linear systems that had p-values of 0.00 and negatively signed coefficients (−β1 and −β2) 
(see Table 5). Such changes affirm the clear contribution of hydrous degradation through 
promoting ionic reactions and lowering water viscosity, particularly by temperature, since 
reactions due to residence time alone remain unclear [33,34]. In proportion to the coeffi-
cient magnitude, MA hydrochars presented lower yields of about 20–80% compared to SB 
at 40–88% in the domain of operability. This implies that fewer solids can be further uti-
lized from MA as a fuel feedstock. Reasonably, proteins and lipids, which are abundant 
in NLBM, were reported to depend on other contents in reconstituting the solids, as op-
posed to holocellulose and lignin in LBM [35,36]. The amorphous structure of NLBM 
might also favor the susceptibility of MA to thermal degradation [37]. 
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3.3. Interpretation of MY Model

Two- and three-dimensional surface plots of MY are depicted for SB and MA hy-
drochars in Figure 6. Both plots were proposed according to Equations (12) and (13). The
recoverable solids of both hydrochars were observed to decrease as the temperature and
time of HTC increased. The trends conformed to the significant antagonistic effects of all
linear systems that had p-values of 0.00 and negatively signed coefficients (−β1 and −β2)
(see Table 5). Such changes affirm the clear contribution of hydrous degradation through
promoting ionic reactions and lowering water viscosity, particularly by temperature, since
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reactions due to residence time alone remain unclear [33,34]. In proportion to the coefficient
magnitude, MA hydrochars presented lower yields of about 20–80% compared to SB at
40–88% in the domain of operability. This implies that fewer solids can be further utilized
from MA as a fuel feedstock. Reasonably, proteins and lipids, which are abundant in
NLBM, were reported to depend on other contents in reconstituting the solids, as opposed
to holocellulose and lignin in LBM [35,36]. The amorphous structure of NLBM might also
favor the susceptibility of MA to thermal degradation [37].
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Figure 6. Descending-valley contour of MY: (a) 3D and (b) 2D plots of SB hydrochars; (c) 3D and (d) 
2D plots of MA hydrochars. 

The local minima of SB and MA hydrochars appeared around a residence time of 2.75 
h in the domain of operability from the concave-up curvatures, as depicted by the red 
dashed lines. The states were associated with the significant synergistic effects of the time-
related quadratic systems (p-values of β22 = 0.00). Thereby, more solids survived above this 
time period at a given temperature. This phenomenon could be explained by the ongoing 
polymerization of soluble compounds in the aqueous phase, eventually leading to the 
precipitation of insoluble solids [34]. The highest increment was predicted to be 8% (SB) 
and 5% (MA) when the data were extended beyond the domain of operability. 

Although not clearly visible due to the insignificance, the residence time of local min-
ima decreased as the temperature increased. The time shift from 2.75 to 2.50 h was slightly 
more prominent in the SB plot when the temperature ranged between 175 °C and 225 °C, 
compared to the MA, which was steady at around 2.75 h. This tendency agrees with the 
smaller p-value of the SB interaction system (p-values of β12 = 0.32, 0.90), rendering the SB 
plot slightly twisted. The saturation of free radicals probably affected the condensation–
polymerization of SB-soluble fragments at low temperatures, thus requiring a longer re-
action time to precipitate [34]. 

21
2

2
2

121 75.184.293.018.576.876.65 xxxxxxMYSB  , (12)

Figure 6. Descending-valley contour of MY: (a) 3D and (b) 2D plots of SB hydrochars; (c) 3D and
(d) 2D plots of MA hydrochars.

The local minima of SB and MA hydrochars appeared around a residence time of
2.75 h in the domain of operability from the concave-up curvatures, as depicted by the
red dashed lines. The states were associated with the significant synergistic effects of the
time-related quadratic systems (p-values of β22 = 0.00). Thereby, more solids survived
above this time period at a given temperature. This phenomenon could be explained by the
ongoing polymerization of soluble compounds in the aqueous phase, eventually leading
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to the precipitation of insoluble solids [34]. The highest increment was predicted to be 8%
(SB) and 5% (MA) when the data were extended beyond the domain of operability.

Although not clearly visible due to the insignificance, the residence time of local
minima decreased as the temperature increased. The time shift from 2.75 to 2.50 h was
slightly more prominent in the SB plot when the temperature ranged between 175 ◦C
and 225 ◦C, compared to the MA, which was steady at around 2.75 h. This tendency
agrees with the smaller p-value of the SB interaction system (p-values of β12 = 0.32, 0.90),
rendering the SB plot slightly twisted. The saturation of free radicals probably affected the
condensation–polymerization of SB-soluble fragments at low temperatures, thus requiring
a longer reaction time to precipitate [34].

MYSB = 65.76 − 8.76x1 − 5.18x2 + 0.93x1
2 + 2.84x2

2 + 1.75x1x2, (12)

MYMA = 47.63 − 11.39x1 − 9.89x2 + 1.21x1
2 + 3.72x2

2 + 0.20x1x2, (13)

3.4. Interpretation of HHV Model

Two- and three-dimensional surface plots of HHV are shown in Figure 7 for SB and MA
hydrochars, respectively. The regression functions are expressed in Equations (14) and (15).
The heating values of both hydrochars showed monotonic trends that increased along
with temperature and residence time. The trends were a consequence of the significant
synergistic effects of the linear systems (p-values of β1 and β2 = 0.00) (see Table 5). Carbon
enrichment widely explained the increase in HHV through deoxygenation reactions such
as dehydration and decarboxylation [38,39]. Consistent with the resulting coefficient
magnitude, MA hydrochars exhibited heating values about 30% greater than SB. The HHV
ranged from 24 to 36 (MA) and 18 to 27 MJ kg−1 (SB) within the domain of interest. The
higher heat that could be released by MA hydrochars indicates a potential for broader fuel
applications. The difference in HHV between the two hydrochars could be also partly
caused by the chemical structures of the hydrocarbons formed. The open-chain structures,
carbon chain length, carbon saturation, and amorphicity were reported to facilitate higher
heat release, as compared to their counterpart structures [40–42].

Thermo 2024, 4 92 
 

 

21
2

2
2

121 20.072.321.189.939.1163.47 xxxxxxMYMA  , (13)

3.4. Interpretation of HHV Model 
Two- and three-dimensional surface plots of HHV are shown in Figure 7 for SB and 

MA hydrochars, respectively. The regression functions are expressed in Equations (14) 
and (15). The heating values of both hydrochars showed monotonic trends that increased 
along with temperature and residence time. The trends were a consequence of the signif-
icant synergistic effects of the linear systems (p-values of β1 and β2 = 0.00) (see Table 5). 
Carbon enrichment widely explained the increase in HHV through deoxygenation reac-
tions such as dehydration and decarboxylation [38,39]. Consistent with the resulting coef-
ficient magnitude, MA hydrochars exhibited heating values about 30% greater than SB. 
The HHV ranged from 24 to 36 (MA) and 18 to 27 MJ kg−1 (SB) within the domain of inter-
est. The higher heat that could be released by MA hydrochars indicates a potential for 
broader fuel applications. The difference in HHV between the two hydrochars could be 
also partly caused by the chemical structures of the hydrocarbons formed. The open-chain 
structures, carbon chain length, carbon saturation, and amorphicity were reported to fa-
cilitate higher heat release, as compared to their counterpart structures [40–42]. 

  
(a) (b) 

  
(c) (d) 

Figure 7. Raising-ridge contour of HHV: (a) 3D and (b) 2D plots of SB hydrochars; (c) 3D and (d) 2D 
plots of MA hydrochars. 

Figure 7. Cont.



Thermo 2024, 4 93

Thermo 2024, 4 92 
 

 

21
2

2
2

121 20.072.321.189.939.1163.47 xxxxxxMYMA  , (13)

3.4. Interpretation of HHV Model 
Two- and three-dimensional surface plots of HHV are shown in Figure 7 for SB and 

MA hydrochars, respectively. The regression functions are expressed in Equations (14) 
and (15). The heating values of both hydrochars showed monotonic trends that increased 
along with temperature and residence time. The trends were a consequence of the signif-
icant synergistic effects of the linear systems (p-values of β1 and β2 = 0.00) (see Table 5). 
Carbon enrichment widely explained the increase in HHV through deoxygenation reac-
tions such as dehydration and decarboxylation [38,39]. Consistent with the resulting coef-
ficient magnitude, MA hydrochars exhibited heating values about 30% greater than SB. 
The HHV ranged from 24 to 36 (MA) and 18 to 27 MJ kg−1 (SB) within the domain of inter-
est. The higher heat that could be released by MA hydrochars indicates a potential for 
broader fuel applications. The difference in HHV between the two hydrochars could be 
also partly caused by the chemical structures of the hydrocarbons formed. The open-chain 
structures, carbon chain length, carbon saturation, and amorphicity were reported to fa-
cilitate higher heat release, as compared to their counterpart structures [40–42]. 

  
(a) (b) 

  
(c) (d) 

Figure 7. Raising-ridge contour of HHV: (a) 3D and (b) 2D plots of SB hydrochars; (c) 3D and (d) 2D 
plots of MA hydrochars. 
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plots of MA hydrochars.

Noticeably, the quadratic systems in the HHV responses showed significant syner-
gistic and antagonistic effects in relation to temperature and residence time (p-values of
β11 = 0.01 (SB), 0.02 (MA); p-values of −β22 = 0.03, 0.00), respectively. Although the turning
points of the concave-down curvatures were faint for both hydrochars, the local maxima
appeared around 2.75 h, as depicted by the red dashed lines. Retention with longer times
resulted in a slight decrease in HHV of less than 1 MJ kg−1. Nevertheless, the attenuation
of HHV disappeared progressively with carbon enrichment above 200 ◦C. The decrease in
heating value might be owing to the deposition of oxygenated functional groups during
partial hydrolysis at lower temperatures and higher residence times [13,43].

Unfortunately, the interaction effects of temperature and time on the local maxima
could not be further observed regarding the insignificant p-values of 0.14 (SB) and 0.18 (MA)
and the disappearance of the local peaks at higher temperatures. This infers that the car-
bonization reaction, which was particularly induced by temperature, prevailed in compen-
sating for the adverse effects of oxygen deposition on HHV.

HHVSB = 21.46 + 1.68x1 + 0.70x2 + 0.24x1
2 − 0.20x2

2 + 0.29x1x2, (14)

HHVMA = 29.78 + 2.08x1 + 1.18x2 + 0.15x1
2 − 0.46x2

2 + 0.18x1x2 (15)

3.5. Optimum Operating Parameters

Based on visual inspection of Figure 7, the HHV surface plots of the SB and MA
hydrochars display a rising-ridge surface, implying that the global maxima or minima were
beyond the domain of interest (–2 ≤ x1,2 ≤ 2) [15,16]. They were evidenced by the critical
coordinates of the first derivative, which were located at (–3.17, –0.55) and (–6.89, –0.07),
respectively. The negative coordinates corresponding to the global minima also did not
satisfy the optimization requirement of maximum output. Therefore, the HHV was then
maximized and governed locally in the domain of operability and interest.

By implementing the Lagrange multiplier method, the optimum operating parameters
in the domain of operability were found to be almost the same for SB and MA hydrochars,
which were around 233 ◦C for 2.4 h (see Table 7). They were predicted to possess maximum
HHVs of 24.61 and 33.39 MJ kg−1, as denoted by the red dots inside the circular boundary
in Figure 7. The optimum conditions were observed to vary when the optimization was
extended to the domain of interest. Using the single-variable method, the maximum
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HHVs of SB and MA hydrochars were predicted to be 27.54 and 35.83 MJ kg−1, as shown
by the red dots between the square and circular boundaries. Both were achieved at the
most severe temperature of 250 ◦C, while their residence times were different at 3.50 and
3.25 h, respectively.

Table 7. Optimum conditions for each domain based on the maximized HHV.

Factor and Response
Domain of Operability Domain of Interest

SB MA SB MA

Temperature (◦C) 233.24 (1.33)
1 233.10 (1.32) 250.00 (2.00) 250.00 (2.00)

Residence time (h) 2.36 (0.48) 2.37 (0.50) 3.50 (2.00) 3.25 (1.67)
HHV (MJ kg−1) 24.61 33.39 27.54 35.83

1 Values in the subscript parentheses are coded temperatures and times.

4. Conclusions

The significance and optimization of temperature and residence time were successfully
investigated for the HTC of SB and MA. The MY and HHV responses of hydrochars were
modeled using the RSM–CCD method. Diagnosis of the regression models revealed a
good fulfillment of the goodness of fit, regression assumptions, and multicollinearity.
Temperature and time were estimated to significantly control the hydrothermal process
(p-values = 0.00–0.03), particularly in their linear and quadratic systems. Both operating
parameters showed antagonistic and synergistic relationships with the MY and HHV,
respectively. Holistically, under the whole experimental domain, the optimum operating
parameters for HTC of SB and MA were reliably achieved at the most severe temperature of
250 ◦C, with different residence times of 3.5 and 3.25 h. The respective HHV was predicted
to be maximized at 27.54 and 35.83 MJ kg−1.
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Figure A1. A visual depiction of the two-factor CCD model for determination of total runs, with the 
least 5 center replications. 

Figure A1. A visual depiction of the two-factor CCD model for determination of total runs, with the
least 5 center replications.
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Figure A2. Diagram of determining the new datasets, cross-referenced with Fakkaew et al. [44]. 
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Figure A2. Diagram of determining the new datasets, cross-referenced with Fakkaew et al. [44].
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Figure A3. Graphical residual analysis for the MY response of SB hydrochars. (a) Histogram; (b) 
Normal Q-Q plot; (c) Run sequence plot; (d) ScaĴer plot. 
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Figure A4. Graphical residual analysis for the MY response of MA hydrochars. (a) Histogram; (b) 
Normal Q-Q plot; (c) Run sequence plot; (d) ScaĴer plot. 
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Figure A4. Graphical residual analysis for the MY response of MA hydrochars. (a) Histogram; (b) 
Normal Q-Q plot; (c) Run sequence plot; (d) ScaĴer plot. 
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Figure A5. Graphical residual analysis for the HHV response of MA hydrochars. (a) Histogram; (b) 
Normal Q-Q plot; (c) Run sequence plot; (d) ScaĴer plot. 
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