
Citation: Hossain, M.S.; Sultan, I.;

Phung, T.; Kumar, A. An Optimized

Artificial Neural Network Model of a

Limaçon -to-Circular Gas Expander

with an Inlet Valve. Thermo 2024, 4,

252–272. https://doi.org/10.3390/

thermo4020014

Academic Editor: Gerardo

Maria Mauro

Received: 11 March 2024

Revised: 28 May 2024

Accepted: 5 June 2024

Published: 11 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

An Optimized Artificial Neural Network Model of a
Limaçon-to-Circular Gas Expander with an Inlet Valve
Md Shazzad Hossain , Ibrahim Sultan * , Truong Phung and Apurv Kumar

Institute of Innovation, Science and Sustainability, Federation University Australia,
P.O. Box 663, Ballarat, VIC 3353, Australia; ss.hossain@federation.edu.au (M.S.H.);
t.phung@federation.edu.au (T.P.); apurv.kumar@federation.edu.au (A.K.)
* Correspondence: i.sultan@federation.edu.au; Tel.: +61-3-5327-9118

Abstract: In this work, an artificial neural network (ANN)-based model is proposed to describe the
input–output relationships in a Limaçon-To-Circular (L2C) gas expander with an inlet valve. The
L2C gas expander is a type of energy converter that has great potential to be used in organic Rankine
cycle (ORC)-based small-scale power plants. The proposed model predicts the different performance
indices of a limaçon gas expander for different input pressures, rotor velocities, and valve cutoff
angles. A network model is constructed and optimized for different model parameters to achieve the
best prediction performance compared to the classic mathematical model of the system. An overall
normalized mean square error of 0.0014, coefficient of determination (R2) of 0.98, and mean average
error of 0.0114 are reported. This implies that the surrogate model can effectively mimic the actual
model with high precision. The model performance is also compared to a linear interpolation (LI)
method. It is found that the proposed ANN model predictions are about 96.53% accurate for a given
error threshold, compared to about 91.46% accuracy of the LI method. Thus the proposed model
can effectively predict different output parameters of a limaçon gas expander such as energy, filling
factor, isentropic efficiency, and mass flow for different operating conditions. Of note, the model is
only trained by a set of input and target values; thus, the performance of the model is not affected
by the internal complex mathematical models of the overall valved-expander system. This neural
network-based approach is highly suitable for optimization, as the alternative iterative analysis of
the complex analytical model is time-consuming and requires higher computational resources. A
similar modeling approach with some modifications could also be utilized to design controllers for
these types of systems that are difficult to model mathematically.

Keywords: limaçon gas expander; artificial neural network; organic rankine cycle; energy conversion;
thermodynamic model

1. Introduction

Global warming due to CO2 gas emissions from the burning of fossil fuels is probably
the hardest problem that humanity is confronting in the modern era. According to the
latest report by the International Energy Agency (IEA), CO2 emissions rose to a new high
of 36.8 Gt in 2022 [1]. One way to reduce CO2 emissions is to utilize waste heat, which
is about 20–50% of all industrial energy input [2]. In another way, an increase in energy
conversion efficiency can contribute to a depletion in energy expenses as well as a curb
in CO2 emissions [3]. Among the various technologies that utilize low-grade and waste
heat, like economizers, regenerators, recuperators, and so on, the ORC is one of the most
commercially viable and efficient applications for small- to large-scale power plants [3].
ORC is similar to a conventional Rankine cycle. The main difference is that ORC uses
low-boiling-temperature organic fluids like refrigerants and hydrocarbons as working
fluids, unlike conventional Rankine cycles. This enables it to utilize low-grade heat sources,
including renewable sources such as solar [4–7] and bio-thermal [8–11], to name only a
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few. Thus, ORC systems find applications in Waste Heat Recovery (WHR) [12–14] and
Combined Heat and Power (CHP) [15–17] systems.

Figure 1 shows the basic architecture of an ORC. The compressed working fluid from
the pump is heated above its boiling temperature at the evaporator using low-grade heat
sources. The evaporated gaseous fluid is then allowed to expand inside the expander
chamber, where the potential energy of the fluid is converted into mechanical energy at
the rotor shaft. The depressurized fluid is then condensed back to its liquid form at the
condenser to be used for the next cycle. Gas expanders are an integral part of ORC and are
vital to realizing the potential of ORC-based small-scale power plants. The efficiency of the
gas expansion process is critical to the performance of the overall ORC cycle, as the usable
energy conversion takes place in the expander [18].

Figure 1. ORC schematic.

Gas expanders can be broadly classified into two groups, namely, turboexpanders and
volumetric expanders [19]. For small-scale power plants, turboexpanders are unsuitable,
as they require higher rotational speeds and more space due to their large inertia. In com-
parison, volumetric expanders are smaller in size and can operate at lower speeds and
working fluid temperatures. Contrary to turboexpanders’ continuous fluid flow, volumetric
expanders operate at cyclic flow with a confined expansion ratio. They are sometimes called
displacement expanders because they take in a fixed amount of fluid and discharge the
same after displacing that volume. In recent times, immense effort in the field of positive
displacement machines has been directed towards the performance improvement of exist-
ing technologies such as screw expanders [20–23]. Although screw expanders offer better
performance compared to similar machines like root blowers, their construction is much
more complex [24,25]. In contrast, limaçon machines are more suited for fluid-processing
applications such as expanders, as they offer built-in pressure characteristics as well as
simpler construction compared to root-blower and screw machines [26].

In the past decades, Sultan’s elaborated work on limaçon machines [26–30] has pro-
vided crucial insights into their application as gas expanders. These studies, focused
primarily on the geometric and manufacturing features of limaçon machines, have been
able to attract renewed attention from the research and industrial communities. Later on,
most of the works on limaçon expanders have mainly concentrated on aspects like design
optimization and performance improvement. One such work by Sultan and Schaller [31]
investigated the effects of port location on the performance of limaçon expanders and pro-
vided optimized locations for the ports for improved performance using the simultaneous
perturbation stochastic approximation (SPSA) technique. Later, Sultan [32] incorporated a
cam-operated inlet control valve into his optimum limaçon expander design and reported
an improved isentropic efficiency. Phung et al. investigated the possibility of realizing
gas-expander operation using L2C configuration and provided sophisticated mathematical
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models of expander rotor profile and apex seal [33,34]. Recently, Phung and Sultan have
furthered this work by investigating the possibility of rotor profile modifications to simplify
the manufacturing process and reduce cost [35].

The state of the art described above uses complex mathematical formulations, incorpo-
rating differential equations and fluid thermodynamic and transport properties databases
like REFPROP [36] to describe the thermodynamic characteristics of the limaçon gas ex-
pander. These classical mathematical models are usually solved iteratively, which is, in
general, time-consuming, as the database is accessed at each incremental iteration for fluid
properties. Optimization sometimes requires running the model thousands of times, which
is difficult given the time required in each run. A more simplified and faster model could be
more suitable for optimization purposes. In the past, several ANN-based techniques have
been used for modeling complex electromechanical systems. For instance, Asgari et al. [37]
proposed an ANN model of a low-power single-shaft gas turbine to predict the system
performance with high accuracy. A similar study by Liu et al. [38] investigated the appli-
cation of ANN models to predict the load performance curves for a gas turbine. Other
notable works on electromechanical system modeling using ANN include the works by
Fast et al. [39], Bartolini et al. [40], Nikpey et al. [41], Park et al. [42], Ye et al. [43], and so
on. It is worth noting that, although ANN methods have been utilized to model systems
like turbines and engines in the past decades, their utility for gas expanders is still to be
explored. Therefore, there are ample opportunities to study the application of ANNs in the
field of gas expander modeling.

In this study, an ANN is used to model the input–output relationships in an L2C
gas expander equipped with an inlet control valve. The proposed ANN model will de-
scribe the relationships between the gas expander’s output performance indices and input
characteristics. For this purpose, the thermodynamic model of the limaçon expander as
proposed by Sultan [32] is used. For the inlet control valve, a stepper motor actuated valve
is proposed and integrated into the expander model. The output characteristics of a gas
expander are related to the amount of fluid flowing into the expander chamber and the
input fluid pressure. In this study, the inlet fluid pressure and expander rotor velocity are
varied. The fluid flow is also varied by setting the opening and closing of the inlet valve
at different expander rotor positions. This is carried out by varying the cutoff angle of
the valve with respect to the expander rotor angle. The ANN model is trained with the
input–output data, sourced from the mathematical model of the valved-expander system
and later on compared with a test dataset to validate the accuracy of the proposed model.
The goal of this study is to provide an ANN model of a complex system that can effectively
realize complex relationships between the input and output of the system. The proposed
ANN approach can be an effective tool for optimization purposes, as it offers the accuracy
of a sophisticated analytical model without the complexity and higher computational time.
Moreover, the proposed approach can be utilized as a control tool in the overall control
scheme. In the subsequent sections, a classical mathematical model of the valved-expander
system is presented, followed by the proposed ANN model.

2. Classic Mathematical Model

In this section, the detailed mathematical model of the valved-expander system is stip-
ulated. Figure 2 shows the outline of the limaçon expander with an inlet valve. The valve
is used to regulate the fluid flow to meet output power demand efficiently.
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Figure 2. Valved-expander system.

Figure 3 shows the operating cycle of the valve. Here, a direct-drive rotary valve
(DDRV) actuated by a stepper motor is used. The valve is configured as normally open,
allowing unrestricted flow of compressed gas into the expander; the flow is cut off at a
certain rotor crankshaft angular position, termed as θcuto f f . The valve opens again at the
start of the next half-cycle.

Figure 3. Valve operating angle in a half-cycle.

2.1. L2C Positive Displacement Expander

Positive displacement expanders are a type of energy-conversion device that are
capable of managing a low flow rate of a two-phase working fluid (coexisting liquid
and gaseous fluid) in low-shaft-speed applications, which sets them apart from turbo-
machines [32]. As implementation of small-scale ORC systems that are dependent on
low-grade heat sources requires expanders that are capable of operating at high pressure
ratios, low flow rates, and low rotational speeds under two-phase conditions, positive
displacement expanders are more suitable for such applications [44]. Positive displacement
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expanders can be classified into the following large groups, according to their construction:
rotary, piston, and reciprocating [33]. Although a limaçon expander’s housing and rotor
profiles should usually be manufactured to limaçon curves, Sultan [29] pointed out that
they can also be circular curves to simplify the manufacturing process. Limaçon expanders
are a type of rotary positive displacement machine that consist of a machine housing with
inlet and discharge ports and a two-lobe rotor, as shown in Figure 2. The limaçon chord
pl pt of length 2l (m), with its center at m, rotates and slides about the limaçon pole o at an
angle θ. When the rotor is in motion, its center m traverses a circular path of radius r (m),
referred to as the base circle. Now, a thermodynamic model that is used to describe the
behavior of such a gas expander is provided, based on the works by Sultan [32]. It should
be noted that the model is derived considering the following assumptions:

1. A 1D flow in the working chamber is assumed;
2. The energy transfer to and from the fluid inside the chamber is adiabatic, and the

change in enthalpy that occurs inside the chamber is only due to the mass transfer
across the boundaries of the control volume;

3. The kinetic energy of the fluid is small enough to be ignored in the energy bal-
ance equation;

4. Losses due to mechanical friction are neglected in the analysis.

Now, the thermodynamic relationships in the gas expander are developed, based
on the works of Sultan in [32]. During the expansion process, the fluid mass inside the
chamber changes, resulting in a change in enthalpy. The change in fluid mass inside the
chamber can be described by the following continuity equation:

V(t)
dρ(t)

dt
=

dmi(t)
dt

− dmo(t)
dt

− ρ(t)
dV(t)

dt
f or 0 ≤ t ≤ tc (1)

where V (m3) is the volume of the working chamber at time t (s), ρ (kg/m3) is the density
of fluid inside the working chamber, mi (kg) is the mass admitted through the inlet, mo (kg)
is the mass exhausting through the outlet, and tc (s) is the time of one cycle.

Since adiabatic energy transfer inside the chamber volume is considered, the following
relationship can be employed:

dhi
dt

− dho

dt
=

dU
dt

+ P
dV
dt

=
mTdS

dt
+

hdm
dt

⇒ mT
dS
dt

= (hi − h)
dmi
dt

− (ho − h)
dmo

dt
(2)

which can be reformulated as follows:

ρ(t)V(t)T(t)
dS(t)

dt
= ∆hi(t)

dmi(t)
dt

− ∆ho(t)
dmo(t)

dt
f or 0 ≤ t ≤ tc (3)

where S is the entropy inside the chamber, T (K) is the temperature inside the chamber,
∆hi (J/kg) is the difference between the enthalpy in the inlet manifold and the enthalpy
in the chamber, ∆ho (J/kg) is the difference between the enthalpy in the chamber and the
enthalpy in the discharge manifold, and P (kPa) is the pressure inside the chamber.

The above highly nonlinear stiff differential equations are solved iteratively in a
cyclical fashion until the following condition is realized:

((ρ(tc)− ρ(0))2 + (S(tc)− S(0))2)
1
2 ≤ ϵ (4)

where ϵ is a small acceptable error. It should be noted that the inlet mass flow rate pointed
out in Equation (1) is a function of the inlet valve opening angle, Θ (◦), the pressure
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differential across the valve ∆P (kPa), and the density ρ (kg/m3) inside the chamber. This
can be expressed mathematically as follows:

dmi(t)
dt

= f (Θ(t), ∆P(t), ρ(t)) (5)

The energy, Ec (J), obtainable by expanding the compressed gas in the expander can be
calculated as follows:

Ec =
∫ tc

0
P(t)

dV(t)
dt

dt (6)

where P(t) (kPa) is the chamber pressure. Output power, Pind (kW) is readily available
from Ec as Pind = Ec

tc
. The thermal efficiency, ζ, can now be estimated by comparing the

energy obtained in one cycle with the maximum energy that can be obtained from the same
gas expander as follows:

ζ =
Ec

(hi − ho)ρiVi
(7)

where hi (J/kg) and ho (J/kg) are the enthalpies in the inlet and outlet manifolds, respec-
tively, ρi (kg/m3) is the density in the inlet manifold, and Vi (m3) is the chamber volume
when the inlet valve closes. The volumetric efficiency, defined as the filling factor Ff , can
be calculated from the ratio of total mass flowing into the expander chamber to the total
mass that could populate the whole chamber volume in one cycle as follows:

Ff =

∫ tc
0

dmi(t)
dt dt

ρiVi
(8)

2.2. Inlet DDRV

The DDRV actuated by a stepper motor, as depicted in Figure 4a, features a rotating
spool with a central orifice facilitating fluid flow.

(a) (b)

Figure 4. (a) Outline of inlet DDRV, and (b) Dynamic passage area.

In this configuration, the valve spool is actuated by a stepper motor, which is charac-
terized as a high-torque synchronous motor that translates electric input signals into precise
incremental movements. The specific sequence of electric pulses dictates the rotation direc-
tion as well as the speed and angle of the rotation. This manuscript employs a two-phase
hybrid stepper motor model. The valve is designed to be normally open (NO) when the
motor is at its initial or idle position. This NO configuration ensures an uninterrupted
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fluid flow to the connected gas expander, avoiding potential disruptions due to unforeseen
mechanical issues. When the valve is at idle position Θ = 0, the pressurized fluid at
pressure, Pin (kPa) passes through the valve opening and enters the valve antechamber
at pressure, Pa (kPa). During the closing operation, an electromagnetic torque, τm (Nm),
generated by the motor actuates the valve and rotates the spool clockwise at an angular
velocity Ω (rad/s). The rotation continues until Θmax, the maximum step angle, where the
fluid is completely obstructed. Conversely, during the opening operation, the motor rotates
the spool in the opposite direction until the valve settles down to its initial NO position at
Θ = 0.

The voltage–current relationship in the two phases of the stepper motor, considering
it as a simple RL circuit, is given by Matsui et al. [45], as shown in Equation (9):

va = Raia +
d
dt
(Laia + ψa) (9a)

vb = Rbib +
d
dt
(Lbib + ψb) (9b)

where a and b are the two phases, v (V) and i (A) denote voltage and current, R (Ω) and
L (H) represent resistance and inductance, and the ψ (Wb) values are the mutual flux
linkages. The mutual flux linkages ψa = ψmcos(pΘ) and ψb = ψmsin(pΘ) in phase a and b,
respectively are given by Iqteit et al. [46], where p is the number of pole pairs and Θ is the
rotor angular displacement or step angle, measured in degrees. Substituting the expressions
for ψa and ψb into Equation (9) and performing the well-known D-Q transformation gives[

vd
vq

]
=

[
Rm + Lm∆ −pΩLs

pΩLm Rm + Lm∆

][
id
iq

]
+ pψmΩ

[
0
1

]
(10)

Here, the two phases are considered identical in terms of resistance, Rm, and inductance,
Lm. The electromagnetic torque, τm (Nm), provided by the motor can be derived from the
input power equation. The input electrical power, Powin (Watt) supplied to the motor is
given by

Powin = vdid + vqiq

= Rm(i2d + i2q) +
1
2

Lm
d
dt
(i2d + i2q) + pψmΩiq

= Pcu + Pmag + Pmech (11)

where Pcu (Watt) is the copper loss, Pmag (Watt) is the magnetic stored energy, and Pmech
(Watt) is the mechanical power output. Thus, generated torque is given by

τm =
Pmech

Ω
= pψmiq (12)

The mechanical subsystem of the valve can be represented as a spring–damper–mass
system, as below:

τm = JΩ̇ + BΩ + τf + τl (13)

where J (kgm2) is the total inertia of the valve, B (N m.s) is the viscous friction coefficient,
τf (Nm) is the steady-state flow torque, and τl (Nm) is the loading torque. The flow torque
is due to the axial component of the flow force acting on the valve spool during the fluid
flow through the valve orifice, given by Okhotnikov et al. [47], as shown in Equation (14):

τf = 2CdCv(Pin − Pa)A(Θ)λsinα (14)

where Cd is the discharge coefficient, Cv is the discharge velocity coefficient, A(Θ) (m2) is
the dynamic passage area for fluid, λ (m) is the radius of the rotating spool, and α◦ is the
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jet angle. A(Θ) changes with the rotation of the valve spool as shown in Figure 4b and can
be expressed as follows:

A(Θ) = DvalveDori f ice(Θmax − Θ) (15)

where Dvalve (m) and Dori f ice (m) are the diameters of the valve inlet and expander orifice,
respectively. Any change in A(Θ) is reflected in the fluid mass flow rate, as described in
Equation (5).

2.3. Iterative Simulation

The system described in Section 2 is solved iteratively to simulate the valved-expander
system. It is worth noting here that the simultaneous solution of Equations (1), (3), and (5)
requires input from the control valve model at every iteration. Moreover, these differential
equations include several working fluid properties (e.g., enthalpy, density, etc.). However,
ORC systems such as this use organic fluids, which, in most cases, are two-phased during
expansion. Although these properties can be easily found for air or ideal gases through
classic thermodynamic relationships, they are not easy to obtain for organic two-phase
fluids. Therefore, most thermodynamic studies utilize a separate computer code (such
as REFPROP [36]) that uses iterative calculations to obtain these properties. To ensure
convergence to the stiff model presented by Equations (1), (3), and (5), the time for one
cycle (360◦) is divided into infinitesimal portions, which sometimes exceed 100,000 in
number. The complexity of the procedure often results in convergence, occurring in 10 min
or even more than an hour, depending on the simulation precision. This lengthy execution
time often hinders optimization efforts undertaken to improve the performance of the
gas expander. Figure 5 shows the time taken by the classic mathematical model per cycle
simulation for an incremental number of division points of a cycle. The simulation was
carried out in MATLAB (R2022b) with the following inputs: θcuto f f = 90◦, ω = 800 rpm,
and Pi = 1000 kPa. The specifications of the computer are as follows: processor—Intel(R)
Core(TM) i5-4670K CPU @ 3.40 GHz, RAM—16 GB, and SSD—446 GB. As the simulation
precision increases, the computational time also increases considerably, leaving the model
computationally unviable to be used for optimization. The excessive simulation time is
primarily due to the huge number of REFPROP database accesses, as seen in Figure 5.

(a) (b)

Figure 5. (a) Computational times and (b) number of REFPROP accesses for the classic mathematical
model under different precision values.

3. ANN Model

This section introduces the ANN-based model for the above valve expander system.
The ANN model has the following inputs: input fluid pressure, Pin (kPa), rotor angular
velocity, ω (rpm), and valve cutoff angle, θcuto f f (°), with respect to the expander crankshaft



Thermo 2024, 4 260

or rotor angular position at which the valve needs to close and cut off flow to the expander.
The ANN model has the following output characteristics as predicted targets: energy, Ec
(J), filling factor, Ff , isentropic efficiency, ζ, and mass flow, mi (kg/min) per cycle.

The proposed ANN model is realized using a neural network model similar to the
network of Figure 6. A typical neural network consists of an input layer, one or several
hidden layers, and an output layer. The input layer takes in the input data and interfaces
the data to the network. The present work uses a feedforward neural network or multilayer
perceptron to solve a regression problem. The network is comprised of several layers
of neurons, where each neuron carries out a weighted summation of its inputs and then
applies an activation function. The weighted sum of the inputs for a particular layer is
calculated using Equation (16):

z = ∑(w × x) + b (16)

where z is the weighted sum, w is the weight vector, x is the input vector, and b is the bias.
The weighted sum is then processed by an activation function, a, such as sigmoid, rectified
linear unit (RelU), hyperbolic tangent (tanh), or Softmax to introduce network nonlinearity
to map the output, y = a(z).

Figure 6. ANN architecture.

3.1. Dataset Preparation and Preprocessing

For our study, a comprehensive dataset is prepared, comprising a total 936 data
points. Each point contains three features (cutoff angle of valve, θ°

cuto f f , expander rotor
velicity, ω (rpm), and input fluid pressure, Pin (kPa)) and four targets (energy, Ec (J),
filling factor, Ff , isentropic efficiency, ζ, and mass flow, mi (kg/min)). The data points are
obtained through simulation of the valved-expander system as described in Section 2 for
different input features within its operational range and calculation of output performance
indices. The design parameters for the valve and expander are stipulated in Tables 1 and 2,
respectively. Figure 7 resembles a matrix plot of the distribution of the total dataset.
The variations in outputs are depicted for each input variable. The total data are split into
training and testing sets, where the training dataset is assigned randomly to 70% of the
data and the remaining 30% are kept aside for testing and validation. The datasets are
processed and scaled using a normalization technique to obtain uniform and pertinent
data that are suitable for subsequent training and prediction phases. At this stage of the
study, it is suitable to note that the preparation of this dataset requires simulation of the
classic model by iterations equal to the size of the dataset. Although this is somewhat
time-consuming, once the dataset is prepared, it can be utilized to produce an accurate and
fast model of the system.
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Table 1. Valve design parameters.

Parameter Value

Number of phases 2
Phase voltages (va and vb) 20 V

Step angle 10◦

Winding self inductance (Ls) 1 mH
Winding resistance (Rs) 1.2 Ω

Maximum flux linkage (ψm) 0.04 V s
Viscous friction coefficient (B) 1 × 10−3 Nm s

Total moment of inertia (J) 5.47 × 10−6 kgm2

Supply pressure (Pin) 1000 kPa
Supply temperature (Tin) 120 ◦ C

Valve ante-chamber pressure (Pa) 600 kPa
Expander speed 800 rpm

Diameter of orifice (Dori f ice) 25 mm
Diameter of valve shaft (Dvalve) 15 mm

Discharge velocity coefficient (Cv) 0.98
Discharge coefficient (Cd) 0.65

Jet angle (α) 69◦

Cutoff angle (θcuto f f ) 90◦

Pass angle (θpass) 180◦

Table 2. L2C expander design parameters.

Parameter Value

Half of rotor chord length (l) 46.4 mm
Base circle radius (r) 7.98 mm

Limaçon aspect ratio (b = r
l ) 0.171

Housing rotor clearance (C) 0.71 mm
Clearance ratio (Cl =

C
l ) 0.0153

Design coefficient (a) 1.73
Depth of rotor housing (H) 60.38 mm

Fluid type R245fa
Outlet pressure (Pout) 100 kPa
Inlet port start angle −24.9◦

Inlet port end angle −5.9◦

Inlet port length 13.35 mm
Outlet port start angle 140◦

Outlet port end angle 175◦

Outlet port length 21.47 mm

3.2. Training of ANN Model

The selection of a suitable training algorithm in a neural network is crucial for achiev-
ing efficient and accurate learning and for securing optimal network performance. It affects
the convergence speed, learning accuracy, treatment of nonlinearities, generalization capa-
bility, scalability, and adaptability to network architectures. Figure 8 depicts the flowchart
of the training and prediction process of the ANN model. The crucial stage of this process
is the model architecture and parameter optimization. An ANN model has different model
parameters that define the structure and behavior of the model and have definitive impacts
on the performance and efficiency of the model in the training and prediction phases. A few
key parameters are the training function, activation function, hidden layer size, number
of layers, learning rate, and number of epochs. All these parameters can be optimized to
harness the best-fitting model for the incoming features and targets. In this study, the effect
of different learning rates is observed first to find the optimal learning rate for the network.
Learning rate is a crucial hyperparameter, which refers to the rate at which weights and
biases are updated while training.
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Figure 7. The dataset used for training and testing.

Then, an optimal training function is selected among the various training and op-
timization functions available. In this study, five different training functions are tested:
(1) Scaled conjugate gradient algorithm (Trainscg), (2) Levenberg–Marquardt backpropa-
gation algorithm (Trainlm), (3) Resilient backpropagation algorithm (Trainrp), (4) BFGS
(Broyden–Fletcher–Goldfarb–Shanno) quasi-Newton algorithm (Trainbfg), and (4) Bayesian
regularization algorithm (Trainbr). ‘Trainscg’ is a powerful training algorithm that is best
suited for complex networks with large parameter densities. It adopts adaptive learning
rates and momentum to converge to a good solution efficiently and quickly. Therefore,
‘Trainscg’ is hugely popular in training large networks, as it reduces computational and
memory loads. However, it lacks inherent regularization techniques and may result in
overfitting. Techniques like dropout or weight decay can be used in conjunction with
‘Trainscg’ to achieve better fitness and generalization to the dataset. The next training
function in our list is ‘Trainlm’, which employs the Levenberg–Marquardt algorithm and is
particularly suited for training small- to medium-scale networks. It offers good convergence
and optimization performance, as it utilizes the gradient descent technique in combination
with Gauss–Newton methods. However, ‘Trainlm’ suffers from overfitting problems and
requires added computational resources, particularly when dealing with large networks.
Another adaptive training algorithm is called ‘Trainrp’, which uses a resilient backpropaga-
tion method. It is a fast convergent algorithm like ‘Trainscg’, as it adopts different learning
rates for individual parameters according to the sign of their gradient. Like ‘Trainscg’, it
also lacks inherent regularization techniques. The fourth training function tested in this
study is ‘Trainbfg’, which utilizes the BFGS algorithm to efficiently train and optimize
moderate networks. It uses Hessian matrix approximation to update weights, resulting in
fast convergence. Similar to earlier functions in our list, it requires external regularization
tools to prevent overfitting. All the training functions described so far are particularly
equipped to effectively handle non-convex error surfaces, unlike ‘Trainbr’, which is the last
function in our list. However, ‘Trainbr’ has an inherent Bayesian regularization technique,
which can efficiently avoid overfitting and provide better generalization. Although it
has a slower but effective convergence rate compared to earlier functions, its ability to
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handle noisy and limited datasets makes it an optimum training algorithm for small- to
medium-scale networks.

The ANN is trained with the training data using the five training functions/algorithms
to find the optimal training function. The fitness of the training process is validated by
examining different performance indices like mean squared error (MSE), coefficient of
determination or R squared (R2), and mean average error (MAE). These performance
metrics only deal with a certain portion of the entire dataset that had been split into
training and testing datasets earlier, rather than the total dataset. To obtain a more reliable
estimate of the model’s performance across all datasets and an assessment of the model’s
generalization ability, a k-fold cross-validation (CV) analysis is performed. The k-fold CV
analysis is carried out by splitting the total dataset into k number of folds and using 1 fold
for testing and k − 1 folds for training. The process is iterated by moving over to the next
fold, assigning it for testing and the remaining folds for training in a loop. In each iteration,
the performance metrics (MSE, MAE, and R2) are measured, and average performance is
measured at the end, as per Equation (17):

CVscore =
1
k

k

∑
i=1

Per f ormance(i) (17)

Here, the Per f ormance refers to either MSE, MAE, or R2, given by Equation (18). The value
of k is usually 5 or 10, but any other value can also be assigned.

Figure 8. Flowchart of the training and prediction process.
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After the selection of an optimal training function, the number of hidden layers and
number of neurons are optimized. Different hidden layer sizes are tested for performance
and the best performer is selected.

Another important hyperparameter is the activation function, which computes the
output of individual neurons and aids in making complex nonlinear predictions. The fol-
lowing activation functions are tested: Sigmoid transfer functions (logsig, tansig, elliotsig),
Competitive transfer function (compet), Hard-limit transfer functions (hardlim, hardlims),
Linear transfer functions (poslin, purelin, satlin, satlins), Radial-basis transfer functions
(radbas, radbasn), and Triangular-basis transfer function (tribas).

An optimal epoch size is selected afterward. An epoch in ANN is the event of passing
the entire training dataset to the model during the training process. In that sense, the epoch
size is the total number of epochs utilized in the whole training process. An optimal epoch
size refers to an epoch size that reduces computational costs without hampering the model’s
performance. The model is subsequently tested with the optimized parameters over the
test dataset and prediction error is measured. The network model could be optimized
further if the prediction accuracy is not satisfactory.

3.3. Evaluation of ANN Model

The performance of the ANN model is evaluated using three different metrics, namely,
MSE, MAE, and R2. The first one is MSE, which is one of the most widely used metrics
for the evaluation of ANN models. It is a measure of the average squared differences
between the actual and predicted values of the target variable in the test dataset, as given
by Equation (18a). Similar to MSE, MAE is another convenient and popular performance
metric that provides the mean absolute difference between the actual and predicted target
values, as shown in Equation (18b). Both of these metrics reflect the accuracy of the
prediction, where lower values indicate better accuracy. However, they do not offer any
insights into the fitness of the model to the target dataset. R2 comes in to address this
issue, assessing how well the overall model fits the assigned dataset. The value of R2

ranges between 0 to 1 and can be calculated using Equation (18c), where a value closer to 1
resembles a better fit.

MSE =
1

mn

m

∑
j=1

n

∑
i=1

[Ytest(j, i)− Ypred(j, i)]2 (18a)

MAE =
1

mn

m

∑
j=1

n

∑
i=1

|Ytest(j, i)− Ypred(j, i)| (18b)

R2 = 1 −
∑m

j=1 ∑n
i=1[Ytest(j, i)− Ypred(j, i)]2

∑m
j=1 ∑n

i=1[Ytest(j, i)− Ytest(j)]2
(18c)

where Ytest and Ypred are the actual and predicted values of the outputs in the test dataset,
respectively, n is the number of data points in the testing dataset, and m is the number
of outputs. These three performance metrics are usually combined to obtain an overall
outlook on the performance and reliability of the ANN model. To be noted, in the following
sections, figures depicting the values of R2 have the vertical axis zoomed in for better
understanding, as the difference between the various R2 values is small.

4. Optimization of Model Parameters

The ANN model parameters are first optimized under various learning rates, training
functions, hidden layer sizes, activation functions, and epoch sizes. For this purpose,
the combined MSE, MAE, and R2 for all predicted outputs for the test data are calculated
at each optimization stage. Figure 9 shows the performance of the ANN model against
the test dataset under different learning rates. The learning rate is varied from 0.05 to 0.5
with a step size of 0.05, and the performance metrics are calculated. It can be realized that
the variation of learning rate has some minor impact on the performance, as MSE is quite
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small throughout the variation range. This indicates a high prediction accuracy of the ANN
model. However, at a learning rate of 0.4, both MSE and MAE are low, at 0.001 and 0.01,
respectively, as seen in Figure 9a,b. The R2 value at a learning rate of 0.4 is highest at 0.978,
as seen in Figure 9c, which reflects its validity as a better performer.

(a) (b) (c)

Figure 9. Effects of learning rate on (a) MSE, (b) MAE, and (c) R2.

ANN models utilize different training algorithms, according to the applications and the
nature of the data. In this section, five different training functions, comprising ‘Trainscg’,
‘Trainlm’, ‘Trainrp’, ‘Trainbfg’, and ’Trainbr’, are tested to evaluate individual training
performances. The performance metrics of the ANN model for different training functions
against the test dataset are shown in Figure 10. It can be seen that, among the different
training functions, ‘Trainbr’ has the best performance in dealing with this dataset, which is
reflected in its low MSE of 0.002, low MAE of 0.01, and high R2 of 0.971.

(a) (b) (c)

Figure 10. Effects of training function on (a) MSE, (b) MAE, and (c) R2.

A 5-fold CV analysis is also conducted to ensure the validity of the training algorithm
throughout the scope of the dataset. The total dataset is split into five equal portions, and
performance metrics are calculated. The average of the performance metrics throughout
the 5 folds gives the CV scores, as depicted in Figure 11. It is seen that CV scores are in
agreement with the performance metrics calculated earlier. ‘Trainbr’ outperforms other
training functions, with CV scores of MSE = 0.0001, MAE = 0.003, and R2 = 0.981. All other
training functions perform reasonably well in CV analysis.

The ANN model is then optimized for hidden layer sizes. The single and double hid-
den layers are tested with different numbers of neurons, chosen arbitrarily. Figure 12 shows
the effect of hidden layer sizes on the performance of the ANN model. As seen, hidden
layer size does not have a significant effect on the performance. Therefore, a moderate
double hidden layer, with 10 and 30 neurons, is selected, which produces an MSE of 0.006,
MAE of 0.013, and R2 of 0.94. A higher number of layers and neurons could also be tried,
but may result in higher computational costs.
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(a) (b) (c)

Figure 11. Cross-validation score for different training functions: (a) MSE, (b) MAE, and (c) R2.

(a) (b) (c)

Figure 12. Effects of hidden layer size on (a) MSE, (b) MAE, and (c) R2.

Finally, the effect of activation function and epoch size on ANN model performance
is analyzed. Figure 13 shows the effect of different activation functions on the perfor-
mance metrics of the ANN model. It can be seen that Elliott sigmoid (‘elliotsig’), positive
linear transfer function (‘poslin’), saturating linear transfer function (‘satlin’), and normal-
ized radial-basis function (‘radbasn’) are the most prominent activation functions for this
model. However, ‘radbasn’ is selected as the activation function for the final model due
to its inherent ability to address nonlinearities, whose performance metrics are as follows:
MSE = 0.001, MAE = 0.01, and R2 = 0.98. The effect of epoch sizes is also studied, as shown
in Figure 14. It is seen that the performance metrics have stable characteristics initially,
but oscillate at higher epoch sizes. Therefore, an epoch size of 200 is selected to ensure
the best training performance. The performance metrics at that epoch size are as follows:
MSE = 0.0029, MAE = 0.013, and R2 = 0.968.

(a) (b) (c)

Figure 13. Effects of activation function on (a) MSE, (b) MAE, and (c) R2.
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(a) (b) (c)

Figure 14. Effects of epoch size on (a) MSE, (b) MAE, and (c) R2.

5. Optimized ANN Model

As per the above analysis, the final model parameters are shown in Table 3.

Table 3. Final model parameters.

Hyperparameters Value

Learning rate 0.4
Training function ‘Trainbr’

No. of hidden layers 2
No. of neurons in layer 1 10
No. of neurons in layer 2 30

Activation function ‘radbasn’
Epoch size 200

The ANN model is then trained with these optimized parameters. The performance
of the optimized model is compared against the performance of a linear interpolation
(LI) method. As this study deals with three-dimensional scattered input data to map
four scattered output variables, a Delaunay triangulation-based [48] linear interpolation is
utilized as a basis for this comparison. The interpolants are constructed for each output
based on the training dataset and the mean average error for the test dataset is used as the
baseline. The combined performance metrics for all four target variables are MSE = 0.0014,
MAE = 0.0114, and R2 = 0.9803. This high overall R2 score reflects the efficiency of the
model in fitting the assigned input and target data. Figures 15–18 shows the prediction
performance of the four outputs: energy, filling factor, isentropic efficiency, and mass flow,
respectively. As seen in Figure 15, the predicted values of energy closely resemble those
of the actual values, and the error is centered around 0. The prediction error distribution
is mostly below the mean average error of LI. Similarly, the prediction of the rest of the
target variables has errors close to the zero-value mark. Although there are some outliers
in the predictions of all four targets, the accuracy is still high—over 90% within the error
thresholds, as seen in Table 4. The prediction accuracy of the ANN model for all outputs is
less than that of the LI method, which gives a clear indication of the performance of the
proposed model.
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(a) (b) (c)

Figure 15. Energy (a) prediction, (b) error histogram, and (c) error distribution.

(a) (b) (c)

Figure 16. Filling factor (a) prediction, (b) error histogram, and (c) error distribution.

(a) (b) (c)

Figure 17. Isentropic efficiency (a) prediction, (b) error histogram, and (c) error distribution.

(a) (b) (c)

Figure 18. Mass flow (a) prediction, (b) error histogram, and (c) error distribution.
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Table 4. Prediction accuracy.

Target Error Threshold Prediction Accuracy (%)
ANN LI

Energy 5 J 93.95 89.68
Filling factor 5 94.31 92.53

Isentropic efficiency 5% 98.58 91.10
Mass flow 0.005 kg/min 99.29 92.53

Average accuracy 96.53 91.46

Figure 19 shows the error histogram for the overall prediction. It is seen that most of
the predicted normalized data points are within the error range of ±0.25 and are distributed
around zero error. About 1105 data points are within this range, which are about 98.3%
of the total test data points of 1124. However, with the LI method, the number of data
points within the same range is 1035, which is just 92.08%. In addition to the accuracy,
the proposed model is also quite fast compared to the classical model. Table 5 shows
a comparison of the run-times between the classic and proposed ANN model for five
randomly selected inputs. It is seen that the run-times for the classic model are much
higher and vary with inputs. However, the ANN model run-times are fast and consistent
throughout input variations. While the classical model takes about 253.93 s on average to
simulate the input–output relationships of the expander, the proposed model takes just
a fraction of a second (around 0.0143 s) for the same inputs with the same computer and
simulation software. This is a tremendous improvement, considering its application in
optimization and control.

Table 5. Run-time comparison.

Run Input Run-Time (s)
θ◦cutof f ω (rpm) Pi (kPa) Classic Model ANN Model

1 90 800 1000 363.78 0.0374
2 90 1000 1000 375.63 0.0109
3 150 800 1300 118.79 0.0073
4 79 900 1200 53.10 0.0077
5 120 800 1000 358.36 0.0083

Average time: 253.93 0.0143

Figure 19. Overall normalized prediction error histogram.



Thermo 2024, 4 270

6. Conclusions

In this study, an ANN-based model is proposed for a limaçon expander system. It
has been demonstrated that an ANN model can be used effectively as an alternative to the
complex mathematical model. Several model hyperparameters have been tuned, and an
optimized network is proposed for this particular application. The proposed surrogate
model achieves an overall mean square error of just 0.0014 and a mean average error
of 0.0114 compared to the actual mathematical model. With an impressive coefficient
of determination of 0.98, the proposed model can avoid the overfitting problem. The
proposed model is also about 5.07% more accurate than a conventional LI approach. In
addition to the accuracy, the model is faster than the classic mathematical model. This
network model can be utilized as an alternative to the complex and bulky computational
mathematical model for optimization purposes. It can also be used as a control tool to
control the valved-expander system. The proposed model can, thus, be effectively utilized
to study small-scale power plants comprising limaçon gas expander-based ORC systems.
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