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Abstract: The paper revisits the formulation of the second law in continuum physics and investigates
new methods of exploitation. Both the entropy flux and the entropy production are taken to be
expressed by constitutive equations. In three-dimensional settings, vectors and tensors are in order
and they occur through inner products in the inequality representing the second law; a representation
formula, which is quite uncommon in the literature, produces the general solution whenever the
sought equations are considered in rate-type forms. Next, the occurrence of the entropy production as
a constitutive function is shown to produce a wider set of physically admissible models. Furthermore
the constitutive property of the entropy production results in an additional, essential term in the
evolution equation of rate-type materials, as is the case for Duhem-like hysteretic models. This feature
of thermodynamically consistent hysteretic materials is exemplified for elastic–plastic materials.
The representation formula is shown to allow more general non-local properties while the constitutive
entropy production proves essential for the modeling of hysteresis.

Keywords: thermodynamic consistency; second law; exploitation of inequalities; rate equations; hysteresis

1. Introduction

Understanding of the thermodynamics of continuous media has made decisive progress
in the twentieth century where the general scheme has been established in terms of balance
laws and constitutive relations. The list of balance laws identifies the theory of physics
under consideration, e.g., mechanics, electrodynamics, theory of mixtures. The constitutive
relations characterize the nature of the continuum, e.g., solid, fluid, gas, hysteretic material.
The view that the balance of entropy eventually results in requirements on the physically
admissible constitutive relations is due to a well-known paper by Coleman and Noll [1].
The associated postulate is the content of the corresponding second law of thermodynamics
and it initiated far-reaching research on the exploitation of the second law for the con-
stitutive relations. It is the purpose of this paper to show some new approaches to the
exploitation of the second law. For this, we revisit the various formulations of the second
law in Section 3.

It is a common feature of the various statements of the second law that the admissible
constitutive relations are subject to the requirement that the entropy production be non-
negative. The exploitation of this requirement depends on the form of the constitutive
relations (functions, functionals, rate equations). Furthermore, we need to know the proper
mathematical expression of the second law and, in particular, to know the expression of the
entropy production. Indeed, we regard the entropy production as a constitutive property
per se, in addition to being related to other constitutive properties.

The purpose of this paper is to emphasize new aspects associated with the formulation
and the exploitation of the second law in continuum physics. Following Müller [2,3],
we let the entropy flux, say j, be a constitutive function and not merely the heat flux q
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divided by the absolute temperature θ. Furthermore, we let the entropy production be a
constitutive function.

Three main points have to emerge from this paper. First, the occurrence of a nonzero
difference j − q/θ proves essential whenever we look for non-local terms involving higher-
order gradients of temperature and deformation. Second, in three-dimensional settings,
vectors and tensors are in order and they occur through inner products in the inequality
representing the second law. A representation formula, quite uncommon in the literature,
produces the general solution whenever the sought equations are expressed in rate-type
forms. Third, the occurrence of the entropy production as a constitutive function is essential
in the thermodynamically consistent modeling of hysteretic materials.

The entropy production allows the completion of rate-type hysteretic equations, as
with Duhem-like models. This feature is exemplified in this paper for elastic–plastic mate-
rials, though the analogue can be performed for magnetic or electric hysteresis [4]. As is
shown in this paper, both the use of the representation formula and the entropy production
as a constitutive function turn out to be decisive improvements in the elaboration of mate-
rial modeling. The representation formula allows for more general non-local properties
while the constitutive entropy production results in a direct method for the description of
hysteretic materials.

2. Notation and Balance Equations

A body occupies a time-dependent region Ω in the three-dimensional space. The posi-
tion vector of a point in Ω is denoted by x. Hence, ρ(x, t) and v(x, t) are the mass density
and the velocity fields at x at time t ∈ R. The symbol ∇ denotes the gradient with respect
to x, while ∇· is the divergence operator. For any pair of vectors u, w, or tensors A, B,
the notation u · w and A · B denotes the inner product. Cartesian coordinates are used,
and then, in the suffix notation, u · w = uiwi, A · B = AijBij, the summation over repeated
indices is understood. Also, symA and skwA denote the symmetric and skew-symmetric
parts of A, while Sym is the space of symmetric tensors. A superposed dot denotes the total
time derivative, and hence, for any function f (x, t) on Ω ×R we have ḟ = ∂t f + (v · ∇) f .
The symbol L denotes the velocity gradient, Lij = ∂xj vi, while D = symL and W = skwL.
Further, T is the Cauchy stress tensor, b is the specific body force, and ⊗ denotes the
dyadic product.

Let R be the region occupied by the body in a reference configuration. Any point in R
is associated with the position vector X relative to a chosen origin. The motion of the body
is a C2 function χ(X, t) : R ×R → Ω = χ(R, t). The gradient, with respect to X, of χ is the
deformation gradient F, FiK = ∂XK χi.

The balance of mass is expressed by the continuity equation:

ρ̇ + ρ∇ · v = 0.

The equation of motion is written in the form

ρv̇ = ∇ · T + ρb.

We assume that there is no internal structure, and then, let T ∈ Sym.
Let ε be the specific internal energy density. The balance of energy leads to

ρε̇ = T · D + ρr −∇ · q, (1)

where r is the heat supply per unit mass, and q is the flux vector.

3. Statements of the Second Law

Let θ be the absolute temperature and η the specific entropy density. We denote as
a thermodynamic process the set of fields describing the evolution of the body, namely,
ρ, v, T, b, ε, r, q, η, θ. We now revisit the statement of the second law in continuum physics
and point out the various formulations that have appeared in the literature.
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Let Pt ⊂ Ω be any sub-region that is convected by the motion. As with any balance
equation we may express the balance of entropy by letting the rate consist of a volume
integral and a surface integral,

d
dt

∫
Pt

ρη dv =
∫
Pt

ρs dv −
∫

∂Pt
j · n da, (2)

and correspondingly viewing s as the entropy supply and j as the entropy flux. The ar-
bitrariness of the region Pt, the transport theorem, and the smoothness of the functions
ρ, η, s, j imply that

ρη̇ = ρs −∇ · j. (3)

Borrowing from classical thermodynamics (e.g., [5]), Coleman and Noll [1] considered
r/θ as the external volume supply of entropy, and likewise, assumed that j = q/θ. Hence,
they considered the difference

γ = η̇ − r
θ
+

1
ρ
∇ · q

θ
(4)

as the internal specific (rate of) production of entropy. Accordingly, they stated the follow-
ing postulate:
For every process admissible in a body the inequality

γ ≥ 0 (5)

is valid.
This postulate, based on Definition (4), amounts to assuming that Inequality (5),

and hence,
ρη̇ +∇ · q

θ
− ρr

θ
≥ 0, (6)

selects the admissible processes. Inequality (5), or (6), is called the Clausius–Duhem (CD)
inequality or entropy inequality, while the postulate is viewed as the second law of thermo-
dynamics or entropy principle.

In light of (6), it follows that

ρη̇ +
1
θ
(∇ · q − ρr)− 1

θ2 q · ∇θ ≥ 0.

Replacing ∇ · q − ρr from (1) and multiplying by θ we have

ρθη̇ − ρε̇ + T · D − 1
θ

q · ∇θ ≥ 0.

In terms of the Helmholtz free energy ψ = ε − θη, we find

−ρ(ψ̇ + ηθ̇) + T · D − 1
θ

q · ∇θ ≥ 0. (7)

In 1967, Müller [2] postulated the entropy balance in the form

ρη̇ +∇ · j − ρr
θ

≥ 0, (8)

where the entropy flux j need not be equal to q/θ, and furthermore, j has to be determined
as any constitutive function.

Next, Green and Laws [6] assumed a modified form of the entropy inequality by
replacing the absolute temperature θ in (6) with a non-equilibrium temperature ϕ, which
requires a constitutive function and, in equilibrium, reduces to θ.
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In 1977, Green and Naghdi [7] wrote the balance of entropy in the form of an equality,

ρη̇ = ρ(
r
θ
+ ξ)−∇ · q, (9)

which, in the previous scheme, amounts to viewing ξ as the entropy production. Yet,
they introduced two novelties. Firstly, the entropy production ξ is given by a constitutive
relation. Secondly, ξ need not be a non-negative while, as for the postulate about the second
law, they assumed that

−ρ(ψ̇ + ηθ̇) + T · D ≥ 0 (10)

for all thermo-mechanical processes. Note that Equation (10) is recovered from (7)
when q = 0.

Some further comments and statements of the second law appeared later on. In 1990,
Maugin [8] (see also [9]) wrote the second law in the form

Ṡ +∇ · S ≥ 0,

where S = ρη and S is the entropy flux taken in Müller’s form S = q/θ + k. Yet, the energy
supply r is missing and the subsequent procedure leads to the requirement (S · ∇)θ ≤ 0,
which is quite unusual.

Lately, “non-conventional” statements have been given and corresponding approaches
have been developed in Refs. [10,11] by distinguishing equilibrium and non-equilibrium
quantities. The stress power w and the heat flux q are considered in the forms w = w̄ + w′

and q = q̄ + q′, where w̄, q̄ are the values associated with the local equilibrium state.
Hence, the entropy inequality is stated in the form

η̇ +
1
ρ
∇ · q̄

θ
≥ 0,

while the balance of energy is written in the form ρε̇ = w̄ −∇ · q̄. Again, the energy supply
r is missing.

A further approach is due to Dunn and Serrin [12], who posited the existence of a rate
of supply of mechanical energy, u, through the boundary of each sub-region, and hence,
via a corresponding divergence term ∇ · u. So, they assumed the balance of energy and
entropy in the form

ρε̇ = T · L −∇ · q +∇ · u + ρr, ρ(ε̇ − θη̇)− T · L −∇ · u +
1
θ

q · ∇θ ≤ 0,

as though j = q/θ. If T ∈ Sym, then T · L = T · D.

Second Law and Thermodynamic Processes

Back to the general balance of entropy (3), we let

s =
r
θ
+ γ,

where r/θ and γ denote the external and internal volume supply of entropy. As any
flux, j may be viewed as an external entropy contribution to the pertinent sub-region Pt.
Accordingly, we view γ as a term of internal character, and then, we refer to γ as the (rate
of) specific entropy production. Therefore, consistent with Postulate (5), we assume that

ρη̇ +∇ · j − ρr
θ

= ρθγ ≥ 0 (11)

and regard both j and γ as expressed by constitutive relations. Hence, a process is the set
P = (ρ, v, T, ε, η, θ, q, j, γ) expressed by constitutive relations, while b and r are arbitrary
given time-dependent fields on Ω × R. If further fields are involved, such as, e.g., electro-
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magnetic fields, the set P is completed accordingly. The Coleman–Noll postulate is then
generalized as follows.

SECOND LAW OF THERMODYNAMICS. For every process P admissible in a body, the
inequality (11) is valid at any internal point.

As to boundary points and the required boundary condition, we recall the following.
PRINCIPLE OF THE INCREASE IN ENTROPY. The entropy of an isolated system cannot

decrease in time.
Now, let

j =
q
θ
+ k ;

the vector field k is referred to as the extra-entropy flux [3]. Hence, the balance of entropy reads

ρη̇ − ρr
θ
+∇ · q

θ
= ργ −∇ · k. (12)

By the principle of the increase in entropy, when r = 0 on Ω and q · n = 0 on ∂Ω,
we have

d
dt

∫
Ω

ρη dv =
∫

Ω
(ργ −∇ · k)dv ≥ 0 (13)

or ∫
∂Ω

k · n da ≤
∫

Ω
ργ dv. (14)

The flow through the boundary ∂Ω of the extra-entropy flux k is bounded by the entropy
production in the body.

We append two comments on the properties of k. Firstly, keeping the inequality (6) as
valid also when k ̸= 0 or letting (13) hold if Ω is replaced with any sub-region Pt leads to

ργ −∇ · k ≥ 0. (15)

Next, we show the consequences of (15) and compare them with those of (11). Secondly,
sometimes the boundary condition is taken in the form∫

∂Ω
k · n da = 0.

This condition, which is consistent with (14) and Postulate (5), may be suggested by
the mathematical modeling [6,13].

Since j = q/θ + k then Equation (11) can be written in the form

ρη̇ +
1
θ
(∇ · q − ρr)− 1

θ2 q · ∇θ +∇ · k = ργ ≥ 0.

Upon replacing ∇ · q − ρr from (1), using the Helmholtz free energy,

ψ = ε − θη,

and multiplying by θ we obtain

−ρ(ψ̇ + ηθ̇) + T · D − 1
θ

q · ∇θ + θ∇ · k = ρθγ ≥ 0. (16)

As we show in the next section, the role of the extra-entropy flux k is crucial in the
modeling of materials with higher-order gradients [14].

For later use we now derive the Lagrangian version of (16). Let J = det F > 0 and
notice that

Jρ = ρR(X)

is the mass density in the reference configuration R. Next, let
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TRR = JF−1TF−T , qR = JF−1q, kR = JF−1k,

the referential stress TRR and vectors qR, kR; TRR is referred to as the second Piola (or
Piola–Kirchhoff) stress. The Green–Lagrange strain tensor

E = 1
2 (F

TF − 1)

is related to the stretching D by
Ė = FTDF.

Hence, it follows that
JT · D = TRR · Ė.

Furthermore, we have

∇R · kR = J∇ · k, qR · ∇R θ = Jq · ∇θ.

Hence, J times Equation (16) yields

−ρR(ψ̇ + ηθ̇) + TRR · Ė − 1
θ

qR · ∇R θ + θ∇R · kR = ρRθγ ≥ 0. (17)

4. The Extra-Entropy Flux and Materials with Higher-Order Gradients

Non-locality properties in the modeling of materials are often described by a de-
pendence on higher-order gradients. The corresponding thermodynamic consistency is
crucially related to the occurrence of a nonzero extra-entropy flux k and to the way the flux
k is applied.

For definiteness, here we examine materials where the non-locality is modeled by
second-order gradients of temperature and mass density, and then, we let

Γ = (θ, ρ,∇θ,∇ρ, θ̇, ρ̇, D,∇∇θ,∇∇ρ)

be the set of variables. The stress T is assumed to be in the form

T = −p1 + T .

We then apply the second law of thermodynamics to determine the class of
thermodynamically consistent models based on the set Γ of variables.

Compute the time derivative ψ̇ and replace it in (16) to obtain

−ρ(∂θψ + η)θ̇ − ρ∂ρψρ̇ − p∇ · v − ρ∂∇θψ · (∇θ)̇− ρ∂∇ρψ · (∇ρ)̇

−ρ∂θ̇ψθ̈ − ρ∂ρ̇ψρ̈ − ρ∂Dψ · Ḋ − ρ∂∇∇θψ · (∇∇θ)̇− ρ∂∇∇ρψ · (∇∇ρ)̇

+T · D − 1
θ

q · ∇θ + θ∇ · k = ρθγ ≥ 0,

where

∇ · k = ∂θk · ∇θ + ∂ρk · ∇ρ + ∂∇θk · ∇∇θ + ∂∇ρk · ∇∇ρ + ∂θ̇k · ∇θ̇ + ∂ρ̇k · ∇ρ̇

+∂Dk · ∇D + ∂∇∇θk · ∇∇∇θ + ∂∇∇ρk · ∇∇∇ρ.

Two identities are convenient in the analysis of the inequality. They are

(∇θ)̇ = ∇θ̇ − LT∇θ, (18)

[(∇∇θ)̇]jk = ∂xj ∂xk θ̇ − ∂xi θ∂xj ∂xk vi − (Lik∂xj + Lij∂xk )∂xi θ, (19)
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and similar with ρ in place of θ. Note that (∇∇θ)̇, (∇∇ρ)̇, θ̈, ρ̈, and Ḋ can take arbitrary
(tensor or scalar) values at the point x and time t under consideration. The linearity
(and arbitrariness) of these quantities imply

∂∇∇θψ = 0, ∂∇∇ρψ = 0, ∂θ̇ψ = 0, ∂ρ̇ψ = 0, ∂Dψ = 0.

Now, observe that

ρ∂∇θψ · (∇θ)̇ = ρ∂∇θψ · (∇θ̇ − LT∇θ)

= θ
[
∇ ·

(ρ

θ
∂∇θψθ̇

)
− θ̇∇ ·

(ρ

θ
∂∇θψ

)]
− ρ∂∇θψ · LT∇θ

and the like for ρ. Hence, the remaining inequality can be written in the form

−ρ(δθψ + η)θ̇ − ρ(δρψ − p
ρ2 )ρ̇ + θ{∇ · k −∇ · (ρ

θ
∂∇θψ θ̇)−∇ · (ρ

θ
∂∇ρψ ρ̇)}

+ρ(∇θ ⊗ ∂∇θψ +∇θ ⊗ ∂∇ρψ) · W + {T + ρ(∇θ ⊗ ∂∇θψ +∇θ ⊗ ∂∇ρψ)} · D

−1
θ

q · ∇θ = ρθγ ≥ 0,

(20)

where δθ and δρ denote generalized variational derivatives,

δθψ = ∂θψ − θ

ρ
∇ · (ρ

θ
∂∇θψ), δρψ = ∂ρψ − θ

ρ
∇ · (ρ

θ
∂∇ρψ). (21)

The linearity and arbitrariness of W in (20) imply that

∇θ ⊗ ∂∇θψ +∇ρ ⊗ ∂∇ρψ ∈ Sym. (22)

Condition (22) holds if ψ depends on ∇θ and ∇ρ through |∇θ|,∇θ · ∇ρ, |∇ρ|.
To within inessential divergence-free terms we can take the extra-entropy flux k in

the form
k =

ρ

θ
{∂∇θψ θ̇ + ∂∇ρψ ρ̇}. (23)

Inequality (20) allows for a dependence of η on θ̇ and p on ρ̇, e.g., by letting η = η̃ −
cθ̇, p = p̃ + dρ̇ with c, d > 0 [4,15]. Yet, for simplicity we neglect these dependencies for η
and p, and then, it follows that

η = −δθψ, p = ρ2δρψ. (24)

Consequently, Equation (20) reduces to

Td · D − 1
θ

q · ∇θ = ρθγ ≥ 0, (25)

where
Td = T + ρ(∇θ ⊗ ∂∇θψ +∇θ ⊗ ∂∇ρψ).

Hence, the entropy production γ is amenable to the dissipative stress Td and the heat flux q.
The classical Navier–Stokes–Fourier model for Td and q is just the simplest non-trivial
model to account for the entropy production.

To summarize, a free energy ψ(θ, ρ, |∇θ|,∇θ · ∇ρ, |∇ρ|) and the constitutive functions
k, η, p, Td, q satisfying (23)–(25) make a non-local model thermodynamically consistent.
Though the model might be more general (e.g., η, p dependent on θ̇, ρ̇), the previous scheme
allows for higher-order gradients. Indeed, we can say that the scheme is characterized by
the free energy ψ and the entropy production γ.
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4.1. Some Features of the Free Negentropy

It is of interest to examine some consequences of the dependence of constitutive proper-
ties on the gradients ∇θ and ∇ρ. The occurrence of ρψ/θ in the variational derivatives (21)
suggests that we determine η and p in terms of the function

ζ =
ρ

θ
ψ,

which is the opposite of the Massieu potential [16,17]; borrowing from the terminology
in [18] we can say that ζ is the Helmholtz free negentropy . We find that

η = −1
ρ
[ζ + θdθζ], p = −θ[ζ − ρdρζ], (26)

where dθ , dρ stand for the classical variational derivatives

dθ = ∂θ −∇ · ∂∇θ , dρ = ∂ρ −∇ · ∂∇ρ.

4.1.1. Convexity Relative to the Mass Density

Subject to the approximation of a constant temperature, the propagation of linear
acoustic waves is governed by the equation

∂2
t ρ = ∆p,

where ∆ denotes the Laplacian. If p = p(ρ,∇ρ) then, neglecting the nonlinear terms in ∇ρ,
we have

p = p0(ρ) + p1(ρ)∆ρ. (27)

The governing equation becomes

∂2
t ρ = ∂ρ p0∆ρ + p1∆∆ρ.

Harmonic plane waves exp(i(ωt − kx)) occur with

ω2 = ∂ρ p0k2 + p1k4

only if ∂ρ p0 > 0. This insight, along with the thermodynamic interest in the dependence of
p on ρ and ∇ρ, suggests that we look for the effect of non-locality (via ∇ρ). Now, by (26)
we have

∂ρ p = θρ∂2
ρζ − θ[∇ · ∂∇ρζ + ρ∂ρ∇ · ∂∇ρζ]. (28)

For definiteness suppose that ζ has the form

ζ = ζ0(θ, ρ) + 1
2 f (ρ)|∇ρ|2. (29)

Thus, ∂∇ρζ = f (ρ)∇ρ, and then,

∇ · ∂∇ρζ + ρ∂ρ∇ · ∂∇ρζ = [ f ′ + ρ f ′′]|∇ρ|2 + [ f + ρ f ′]∆ρ.

so that
∂ρ p = θρ∂2

ρζ − θ{[ f ′ + ρ f ′′]|∇ρ|2 + [ f + ρ f ′]∆ρ}.

A further simplification arises if ζ is independent of ∆ρ, which is the case if f + ρ f ′ = 0.
This happens if

f (ρ) =
λ

ρ
, (30)

with λ being a constant. With this function f , it follows that
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f ′ + ρ f ′′ =
λ

ρ2

and then,

∂ρ p = θρ∂2
ρζ − θ{[ f ′ + ρ f ′′]|∇ρ|2 = θρ∂2

ρζ − λθ

ρ2 |∇ρ|2.

In light of (29), it follows that

∂ρ p = ρθ∂2
ρζ0(θ, ρ).

Hence, if the negentropy has the form (29), then the convexity of ζ0, relative to the mass
density ρ, implies the positive value of ∂ρ p. This in turn occurs if the free energy ψ has
the form

ψ =
1
ρ

ψ0(θ, ρ) + 1
2 θ

λ

ρ2 |∇ρ|2,

where ψ0 is convex relative to ρ.
Incidentally, in view of (27), the function p0(ρ) = ρ2∂ρψ, at ∇ρ = 0, yields

∂ρ p0 = ∂ρ[ρ
2∂ρ(

θ

ρ
ζ0)] = ρθ∂2

ρζ0.

Hence, in the event (29), the requirement of the positiveness of ∂ρ p0(ρ) coincides with that
of ∂ρ p(ρ,∇ρ).

The convexity of ζ0(θ, ρ), relative to ρ, is connected with the convexity of the free
energy ψ0 = θζ/ρ. Indeed,

p = ρ2∂ρψ = ρ2∂ρ(θζ0/ρ) = θ(−ζ + ρ∂ρζ),

∂ρ p = ρθ∂2
ρζ0.

Also, let v = 1/ρ the specific volume and define ψ̃0(θ, v) = ψ0(θ, ρ). Hence,

∂ρ p∂ρ(ρ
2∂ρψ0) = ∂v(−∂vψ̃)(−v2) = ∂2

vψ̃0.

Thus,
ρθ∂2

ρζ0 = ∂2
vψ̃0.

and the convexity of ζ0(θ, ρ) amounts to the convexity of ψ̃0(θ, v).

4.1.2. Convexity Relative to the Temperature

It is worth checking the influence of the temperature gradient ∇θ on the specific heat
∂θε = θ∂θη. Since

η = −δθψ = −∂θψ +
θ

ρ
∇ · (ρ

θ
∂∇θψ)

then in terms of ζ we can write

η = −∂θψ +
θ

ρ
∇ · (∂∇θζ).

It follows that
∂θη = −∂2

θψ +
1
ρ
[∇ · (∂∇θζ) + θ∂θ ∇ · (∂∇θζ). (31)

For definiteness let
ζ =

ρ

θ
ψ0(θ, ρ) + 1

2 g(θ)|∇θ|2. (32)

Hence, we have
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∇ · (∂∇θζ) + ρ∂θ ∇ · (∂∇θζ) = [g′ + θg′′]|∇θ|2 + [g + θg′]∆θ.

Consider the particular case g + θg′ = 0, where

g(θ) =
ν

θ
,

with ν being a constant, and

g′ + θg′′ =
ν

θ2 .

Consequently, Equation (31) yields

∂θη = −∂2
θψ +

ν

ρθ2 |∇θ|2.

We then notice that the definition ψ = (θ/ρ)ζ and Function (32) result in

θ∂θη = −θ∂2
θψ0(η, ρ) +

ν

ρθ
|∇θ|2.

The specific heat θ∂θη is positive for any values of θ, ρ, and ∇θ provided ν > 0 and −ψ0 is
convex, relative to θ.

4.2. Restrictions Placed by Inequality (15)

As a comment on inequality (15), which is not assumed to be valid, we point out that
the consequences of (15) on the modeling of non-local materials would be different from
those of γ ≥ 0.

For formal simplicity we restrict attention to non-local effects of temperature, and
hence, let

Γ = (θ, ρ,∇θ, θ̇, D,∇∇θ)

be the set of variables. Inequality (15) implies that

−ρ(ψ̇ + ηθ̇)− p∇ · v + T · D − 1
θ

q · ∇θ = ρθγ − θ∇ · k ≥ 0,

which means that −ρ(ψ̇ + ηθ̇)− p∇ · v + T · D − (1/θ)q · ∇θ, and ρθγ − θ∇ · k have to
be non-negative in addition to being equal to each other. Now, ρθγ − θ∇ · k ≥ 0 results in

ργ(Γ)− ∂θk · ∇θ − ∂ρk · ∇ρ − ∂∇θk · ∇∇θ − ∂θ̇k · ∇θ̇ − ∂Dk · ∇D − ∂∇∇θk · ∇∇∇θ ≥ 0.

The linearity and arbitrariness of ∇ρ,∇θ̇,∇D,∇∇∇θ imply that

k = k(θ,∇θ).

Likewise, from

−ρ(ψ̇ + ηθ̇)− p∇ · v + T · D − (1/θ)q · ∇θ ≥ 0,

namely,

−ρ(∂θψ + η)θ̇ − (ρ∂ρψ − p/ρ)ρ̇ − ρ∂∇θψ · (∇θ)˙− ρ∂θ̇ψθ̈

−ρ∂Dψ · Ḋ − ∂∇∇θψ · (∇∇θ)˙+ T · D − (1/θ)q · ∇θ ≥ 0

it follows that
ψ = ψ(θ, ρ), η = −∂θψ, p = ρ2∂ρψ,

along with the reduced inequality

T · D − (1/θ)q · ∇θ ≥ 0.
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Different to what follows from the CD inequality (16), here ψ is required to be inde-
pendent of ∇θ, and so is for η and p. Furthermore, T does not involve the dyadic product
∇θ ⊗∇θ (and this would be the same for ∇ρ ⊗∇ρ) as happens in the previous scheme.

This example shows that the assumption (15) on the entropy inequality would be
unduly restrictive relative to the correct assumption (11). Having ψ̇ and ∇ · k in distinct
inequalities is more restrictive than a single condition on −ρψ̇ + θ∇ · k.

5. Entropy Production as a Constitutive Function

Back to the CD inequality (16), we now show how the entropy production γ af-
fects, or is affected by, the constitutive equations. This is exemplified by considering the
temperature-rate dependence or by models of aging materials.

5.1. Models of Rigid Heat Conductors

For simplicity consider a rigid heat conductor with

θ, θ̇,∇θ,

as the set of variables. The CD inequality becomes

−ρ(∂θψ + η)θ̇ − ρ∂∇θψ · (∇θ̇)− 1
θ

q · ∇θ + θ∇ · k = ρθγ. (33)

Since
−ρ∂∇θψ · (∇θ̇) = −θ{∇ · (ρ

θ
∂∇θψθ̇)− [∇ · (ρ

θ
∂∇θψ)]θ̇}

then we have

−ρ(δθψ + η)θ̇ + θ∇ · (k − ρ

θ
∂∇θψθ̇)− 1

θ
q · ∇θ = ρθγ.

Hence, it follows that
k =

ρ

θ
∂∇θψ θ̇.

No further dependence of k is allowed, otherwise ∇ · k would include terms with
an undetermined sign. A sufficient pair of relations for the validity of the remaining
requirement

−ρ(δθψ + η)θ̇ − 1
θ

q · ∇θ = ρθγ

is
η = −δθψ, q = −κ∇θ, ρθγ =

κ

θ
|∇θ|2, κ > 0.

This is what follows if γ is only assumed to be non-negative; once γ ≥ 0 is satisfied,
then γ is given by 1/ρθ times the left-hand side.

Things are different if γ ≥ 0 is defined per se; in this event, a family of relations follow
depending on the form of γ. For definiteness, if γ = c1(θ)|θ̇|n + c2(θ)|∇θ|m, then we have
the relations

η = −δθψ − c1|θ̇|n−2θ̇, q = −ρθ2c2|∇θ|m−2e, c1, c2 > 0, e = ∇θ/|∇θ|.

5.2. Models of Aging Thermoelastic Materials

Aging properties are described by letting the constitutive parameters depend explicitly
on time. This feature is now developed in connection with thermoelastic solids.

Classically (linear) thermoelastic solids are modeled by letting the second Piola stress
TRR be determined by strain and temperature in the form (see [19], ch. 59)

TRR = CE + (θ − θ0)M, (34)
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where θ0 is an equilibrium reference temperature such that TRR = 0 when E = 0 and θ = θ0.
Furthermore, the heat flux is assumed to be given by a Fourier-type law,

qR = −K∇R θ. (35)

The tensors C, M, and K are the classical thermoelastic tensors. Aging thermoelastic
solids are characterized by letting C, M, and K depend on time.

This suggests that we consider a thermoelastic framework where the variables are

E, θ,∇R θ, t,

with the occurrence of t accounting for the aging effects. Hence,

ψ = ψ(E, θ,∇R θ, t)

and similar for η, TRR, qR. The Clausius–Duhem inequality is considered in form (17), with
the formal change due to the partial dependence on t. Upon computation and substitution
of ψ̇ we have

−ρR∂tψ − ρR(∂θψ + η)θ̇ − ρ∂∇R θψ · (∇R θ)̇ + (TRR − ρR∂Eψ) · Ė

−1
θ

qR · ∇R θ = ρRθγ ≥ 0;
(36)

without any loss of generality, for formal simplicity we have assumed kR = 0 from the start.
The linearity and arbitrariness of (∇R θ)̇, θ̇, Ė imply that

∂∇R θψ = 0, η = −∂θψ, TRR = ρR∂Eψ (37)

and
1
θ
∇R θ · K∇R θ − ρR∂tψ = ρRθγ. (38)

We now restrict attention to the constitutive Equations (34) and (35). By (37) we have

ρRψ = Ψ(θ) + 1
2 EC(t)E + (θ − θ0)M(t) · E.

Hence, we have
∂tψ = 1

2 E · ĊE + (θ − θ0)Ṁ · E.

Likewise, we let K depend on time, and then, the reduced inequality (38) reads

1
θ
∇R θ · K(t)∇R θ − 1

2 E · Ċ(t)E − (θ − θ0)Ṁ(t) · E = ρRθγ ≥ 0. (39)

The requirement (39) can be applied by following two views. Firstly, we let γ ≥ 0 be a
reminder that the left-hand side has to be non-negative and the left-hand side is just the
expression of ρRθγ. Secondly, the left-hand side is defined in terms of γ, of course subject
to γ ≥ 0. To illustrate the two views we simplify the model by letting the solid be isotropic
so that

M = m1, CE = 2µE + λ(tr E)1 = 2µE0 + κ(tr E)1,

where E0 is the deviator of E, κ = λ + 2µ/3, and µ and λ are the Lamé moduli. Hence,

TRR = 2µE0 + κ(tr E)1 + m(θ − θ0)1.

In stress-free conditions, we have

E0 = 0, κ(tr E) + m(θ − θ0) = 0. (40)
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Since tr E ≃ ∇R · u and ∇R · u is the relative variation in the volume, then −m/κ is
the coefficient of thermal expansion (in R). We assume that m < 0, so that, since κ > 0,
the body expands when the temperature increases. For isotropic solids the free energy has
the form

ρRψ = Ψ(θ) + µE0 · E0 + κ(tr E)2 + m(θ − θ0)tr E

and hence,
ρR∂tψ = µ̇E0 · E0 + κ̇(tr E)2 + ṁ(θ − θ0)tr E.

By (40) we have (θ − θ0)tr E = −(κ/m)(tr E)2. Consequently, it follows that

ρR∂tψ = µ̇E0 · E0 + (κ̇ − κṁ/m)(tr E)2.

Hence, the reduced inequality

K
θ
|∇R θ|2 − µ̇|E0|2 − (κ̇ − κṁ/m)(tr E)2 = ρRθγ ≥ 0 (41)

implies

K ≥ 0, µ̇ ≤ 0, κ̇ − κṁ
m

≤ 0. (42)

In the second view, we might fix the constitutive equation for γ. For example, let

ρRθγ =
1
θ

K|∇R θ|2 + c1(θ)µ
n|E0|2 + κc2(θ)|∇R θ|n(tr E)2,

where K, α, and β are positive parameters, while c1(θ) ≥ 0, c2(θ) ≥ 0. Hence, Equation (41)
implies that

µ̇ = −c1(θ)µ
n, κ̇ − κṁ

m
= −κc2(θ)|∇R θ|n.

Accordingly, given the constitutive function of the entropy production the entropy
inequality results in the aging rate of the thermoelastic parameters. A larger set of variables
might allow a more realistic evolution equation for the parameters µ, κ, and m.

In these models, we can view γ as determined by the constitutive equations, but also,
the constitutive equations as determined by γ. The next section shows that for hysteretic
rate-type materials the complete form of the constitutive equation is given by the assump-
tion on the constitutive property of the entropy production.

Some comments are in order about the inequalities (42). The requirement K ≥ 0
merely shows that K can increase or decrease because of aging but anyway K remains
non-negative. Instead, aging produces a decrease in µ. The bulk modulus κ is positive, and
then, we can write

κ̇

κ
+

ṁ
|m| ≤ 0.

In a thermoelastic material, aging results in a decrease in µ. A joint decrease in µ, κ,
and m is consistent with thermodynamics. Yet, since m < 0, then an increase in m looks
more realistic, ṁ = −|m|̇ ≥ 0. In this event, the consistency is expressed by

ṁ
|m| ≤ − κ̇

κ
, κ̇ ≤ 0.

The coefficient of thermal expansion α = −m/3κ satisfies

α̇ = − m
3κ

(
ṁ
m

− κ̇

κ
)

and hence,
α̇ ≥ 0.

Accordingly, aging results in an increase in the ratio
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tr E
θ − θ0

so that the solid expands more and more per increment of temperature.

6. Hysteretic Models and Entropy Production

To show the essential role of the entropy production we now consider constitutive rela-
tions for elastic–plastic bodies. We let the strain E, the Piola stress TRR, and the derivatives
Ė, ṪRR be among the independent variables. The common dependence on stress and strain
is connected with the hysteretic behavior; otherwise we should allow TRR to depend on E
through a multi-valued function or to add an internal variable (as in [19], ch. 76). Thermal
properties are also modeled, and then, we let

Ξ = (θ, E, TRR,∇R θ, Ė, ṪRR)

be the set of variables. Hence, we let ψ, η, qR be functions of Ξ and assume η and qR are
continuous while ψ is continuously differentiable.

Upon computation of ψ̇ and substitution into (17) we obtain

ρR(∂θψ + η)θ̇ + (ρR∂Eψ − TRR) · Ė + ρR∂TRR ψ · ṪRR + ρR∂∇R θψ · ∇R θ̇

+∂Ėψ · Ë + ∂ṪRR
ψ · T̈RR +

1
θ

qR · ∇R θ + θ∇R · kR = −ρRθγ ≤ 0.

The linearity and arbitrariness of θ̇,∇R θ̇, Ë, T̈RR imply that ψ is independent of ∇R θ, Ė, ṪRR,
and hence,

ψ = ψ(θ, E, TRR), η = −∂θψ.

Likewise, we find that
kR = kR(θ,∇R θ),

subject to ∂∇R θkR ∈ Skw. No skew tensor is available in the model, and hence, ∂∇R θkR = 0.
Furthermore, the isotropic character of the solid implies that kR(θ) has to be zero. The re-
maining inequality is

(ρR∂Eψ − TRR) · Ė + ρR∂TRR ψ · ṪRR +
1
θ

qR · ∇R θ = −ρRθγ ≤ 0. (43)

If Ė and ṪRR are independent, then it follows that

∂TRR ψ = 0, TRR = ρR∂Eψ,

as happens for hyperelastic materials. Yet, here we consider hysteretic materials, and hence,
Ė and ṪRR are not independent. A reasonable assumption is to assume qR is independent
of Ė and ṪRR. In this event, Equation (43) splits into

(ρR∂Eψ − TRR) · Ė + ρR∂TRR ψ · ṪRR = −ρRθγT ≤ 0, (44)

qR · ∇R θ = −ρRθ2γq ≤ 0. (45)

where γT is the value of γ when ∇R θ = 0, while γq is the value of γ when Ė = 0 and
ṪRR = 0. If, instead, qR depends on Ė and ṪRR, then (44) holds along with (25), whereas (45)
no longer holds.

As to (45), a Fourier-like equation for qR is allowed in the form

qR = −κ(θ, E, TRR)∇R θ, γq =
κ

Jθ2 |∇Rθ|2, κ ≥ 0.
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Since qR = JF−1q and ∇R θ = ∇θ F, then in the corresponding Eulerian description,
we have

q = −1
J

FFTκ∇θ.

Equation (44) can be solved by finding, e.g., ṪRR, on the assumption that ∂TRR ψ ̸= 0.
This problem is solved by using a representation formula for tensors ([4], §A.1.3). Given
any tensor A and N = A/|A|, we can represent a tensor Z in the form

Z = (Z · N)N + Z⊥,

where Z⊥ · N = 0. If Z · N is known, say Z · N = g, while Z⊥ is unknown, then we can write

Z = gN + (I− N ⊗ N)G, (46)

where I is the unit fourth-order tensor and G is any second-order tensor. As a check,
N · (I− N ⊗ N)G = 0 while (I− N ⊗ N)Z⊥ = Z⊥.

Let

N =
∂TRR ψ

|∂TRR ψ| .

By applying (46) to (44) we obtain

ṪRR = −ρRθγT + (ρR∂Eψ − TRR) · Ė
ρR|∂TRR ψ|2 ∂TRR ψ + (I−

∂TRR ψ ⊗ ∂TRR ψ

|∂TRR ψ|2 )G. (47)

Depending on the choice of G we can find various models of rate-type materials.
The simplest example is obtained by letting

∂Eψ = 0, ψ = 1
2 β|TRR|2, G =

1
βρR

Ė.

In this event, Equation (47) takes the form

ṪRR +
θγT

β|TRR|2
TRR =

1
βρR

Ė.

This is the referential version of the Maxwell–Wiechert fluid. Indeed, the quantity β|TRR|2/θγT

plays the role of relaxation time.

6.1. One-Dimensional Models

Also, with a view to experimental settings, we observe that it is worth investigating
the continuum in a one-dimensional geometry. This has the advantage of simplifying the
model because we can apply the Eulerian description.

Let e1 be the longitudinal direction of the one-dimensional domain and let T11 = σ be
the only nonzero stress component. Positive values of σ denote traction, negative values
denote compression. The mechanical power T · D simplifies to

T · D = σD11 = σF−1 Ḟ,

where F is the longitudinal strain, F = F11 > 0. Consistent with the one-dimensional model,
we assume J = 1, and hence, ρ is constant while F22 = F33 = 1/F1/2. For formal simplicity
we neglect heat conduction. Hence, we write the counterpart of (44) in the form

−ρ(ψ̇ + ηθ̇) + σF−1 Ḟ = ρθγ ≥ 0. (48)

Since
F−1 Ḟ = (ln F)̇
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then, letting λ = ln F we can write the CD inequality (48) in the form

−ρ(ψ̇ + ηθ̇) + σλ̇ = ρθγ ≥ 0. (49)

The scalars σ and λ are Euclidean invariants. Consider the Euclidean transformation
([19], ch. 20, 21; [4], §1.9)

x∗ = c(t) + Q(t)x t∗ = t.

where Q is a rotation tensor, QTQ = 1. Since σ = T11 = e1 · Te1, then, under a Euclidean
transformation, we have

σ∗ = e∗1 · T∗e∗1 = (Qe1) · (QTQT)Qe1 = e1 · (QTQTQTQe1) = e1 · Te1 = σ.

Likewise, letting ê1 be the first referential unit vector we have

F∗
11 = e∗1 · F∗ê1 = Qe1 · QFê1 = e1 · Fê1 = F11.

Consequently, λ, σ, λ̇, and σ̇ are Euclidean invariants and can be used as constitutive variables.
Let

θ, λ, σ, λ̇, σ̇

be the set of variables. It is standard to prove that ψ has to be independent of λ̇ and σ̇,
and that

η = −∂θψ.

Hence, it follows from (49) that

(σ − ρ∂λψ)λ̇ − ρ∂σψσ̇ = ρθγ ≥ 0. (50)

Since ψ = ψ(θ, λ, σ), then at constant temperature ψ̇ = ∂λψλ̇ + ∂σψσ̇. Hence, along
any cyclic process on [t1, t2] we have∫ t2

t1

σλ̇dt = ρθ
∫ t2

t1

γ dt ≥ 0.

The positiveness of this integral denotes that the area within the oriented loop is
positive. Thus, in a cyclic process in the λ − σ plane, the curve (λ(t), σ(t)) is run in the
clockwise sense.

In a hysteretic process, the rate σ̇ is associated with a

dσ

dλ

that depends on the sign of λ̇. This would not be the case if γ = 0 or even if γ ∝ λ̇ and γ ∝ σ̇.
Hence, necessarily the entropy production γ has to be a constitutive function qualitatively
different from the left-hand side, say a constitutive function per se. The simplest attempt is
to look for a function γ proportional to |λ̇|. Hence, we let

ρθγ = γ0(θ, λ, σ)|λ̇|.

Thus, Equation (50) takes the form

(σ − ρ∂λψ)λ̇ − ρ∂σψσ̇ = γ0|λ̇| ≥ 0. (51)

and becomes an operative model of hysteresis once ψ and γ0 are determined.
Analogous models are obtained by letting γ = γσ(θ, λ, σ)|σ̇|; here, though, we restrict

our attention to inequality (51).
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6.2. A Thermoelastic Hysteretic Model

For formal convenience we let Ψ = ρψ. Assume ∂σψ ̸= 0. Except for times where
λ̇ = 0, we can divide (51) by ∂σψλ̇ to obtain

σ̇

λ̇
=

σ − ∂λΨ
∂σΨ

− γ0

∂σΨ
sgnλ̇.

Both σ and λ are functions of X, in the referential domain, and t ∈ R. At a fixed point
X in the referential domain [0, L], σ and λ are functions of t only. Hence,

σ̇

λ̇
=

dσ

dλ
.

For formal convenience we put

χ1 =
σ − ∂λΨ

∂σΨ
, χ2 = − γ0

∂σΨ
.

Both χ1 and χ2 are functions of λ and σ, parameterized by the temperature θ. The uni-
axial stress–strain slope is then expressed in the form

dσ

dλ
= χ1 + χ2 sgnλ̇.

If γ0 = 0, then χ2 = 0 and
dσ

dλ
= χ1(θ, λ, σ);

the slope of the curve depends also on σ and we assume that χ1 > 0. Since the slope dσ/dλ
is anyway supposed to be non-negative, we assume

χ1 + χ2 sgnλ̇ ≥ 0.

To determine the free energy Ψ we look for a function in the form

Ψ(λ, σ) = L(σ − G(λ)) +F (σ) +H(λ),

where L,G,F ,H are differentiable functions parameterized by θ. Substitution of ∂σΨ and
∂λΦ yields χ1 and χ2 in the forms

χ1 =
σ + L′(σ − G(λ))G ′(λ)−H′(λ)

L′(σ − G(λ)) +F ′(σ)
, χ2 = − γ0

L′(σ − G(λ)) +F ′(σ)
. (52)

The function χ1 is the elastic differential stiffness. Hence, we let

χ1 = g(λ) > 0.

Accordingly, we obtain the requirement

σ −F ′(σ)g(λ)−L′(σ − G(λ))[g(λ)− G ′(λ)] = H′(λ).

This condition is satisfied by letting F ′(σ) = 0 and

g(λ)− G ′(λ) = α, H′(λ) = G(λ), L′(σ − G(λ)) = 1
α
(σ − G(λ)),

where α ̸= 0 is a suitable parameter for the model. Hence, we have

χ2 = −γ0α
1

σ − G(λ) .

Furthermore,
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Ψ(λ, σ) =
1

2α
[σ − G(λ)]2 +H(λ), H′(λ) = G(λ). (53)

To sum up, the whole model is determined by

g(λ), α, γ0(λ, σ)

and

G(λ) =
∫ λ

0
[g(y)− α]dy, H′(λ) = G(λ).

For definiteness we now establish some examples of hysteretic solids. The correspond-
ing loops are obtained by letting λ = Λ sin(ωt), and then, solving the system{ λ̇ = ωΛ cos ωt,

σ̇ = (dσ/dλ)λ̇.
(54)

Since the model is rate-independent, the loops are not affected by the value of the
angular frequency ω.

• Plastic flow with asymptotic strength.

We start with a model based on a constant elastic differential stiffness α. Let G(λ) = 0
so that Ψ = σ2/2α and χ1 = α. The hysteretic function γ0 is taken in the form

γ0(σ) =
σ2

σu
, σu > 0.

Hence, the whole differential stiffness is

dσ

dλ
=

α

σu
(σu − σsgnλ̇). (55)

In this event it follows that

d
dλ

(σ − σu)
2 = 2

α

σu
(σ − σu)(σu − σsgnλ̇),

where
d

dλ
(σ − σu)

2 = (2α/σu)
{ −(σ − σu)2 if λ̇ > 0,

σ2 − σ2
u if λ̇ < 0.

Thus,
d

dλ
(σ − σu)

2 ≤ 0

and the hysteresis loops are confined to the strip |σ| ≤ σu.
The hysteresis loops in Figure 1 are obtained by solving the system (54) and using (55)

with α = 1 and σu = 1.5.

• Plastic flow with a nonlinear elastic function.

Let
G(λ) = tanh(κλ), κ > 0

and
γ0 =

1
β
{σ − tanh(κλ)}2, β > 0.

Hence, by (53) and (52) it follows that

Ψ(σ, λ) =
1

2α
[σ − tanh(κλ)]2 +

1
κ

ln[cosh(κλ)],

χ1 = κ[1 − tanh2(κλ)], χ2 = −α[σ − tanh(κλ)]sgnλ̇.
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Figure 1. Plastic model with asymptotic bounds σ = ±σu (dashed): hysteresis loops (solid) with
Λ = 1, 2, 3 and starting values (λ0, σ0) = (0, 0), (0,−0.1).

The differential stiffness dσ/dλ can be given the form

dσ

dλ
= κ[1 − tanh2(κλ)] +

α

β
{β − [σ − tanh(κλ)]sgnλ̇}. (56)

The hysteresis loops in Figure 2 are obtained by solving the system (54) and using (56)
with α = 1, β = 1.5, and κ = 4. They well describe the hysteretic responses of lat-
eral loads with respect to lateral displacements in a typical medium-rise building model
(see, e.g., [20]).

Figure 2. Plastic model with nonlinear elastic function: hysteresis loops (solid) with Λ = 2, 5 and
starting values (λ0, σ0) = (0, 0), (0,−0.1); asymptotic bounds σ = ±(1 + β) (dashed).

• Elastic–plastic model.

We now describe a solid undergoing linear behavior in the elastic regime. Hence, we
let G(λ) = 0 and obtain

Ψ =
σ2

2α
, χ1 = α.

To characterize γ we consider two stress levels, σu > σy > 0, and assume hysteretic
effects are confined to the region |σ| ∈ [σy, σu] in the form

γ0(σ, sgnλ̇) =
{ (|σ| − σy)/(σu − σy)|σ| if |σ| ≥ σy and σλ̇ > 0,

0 if |σ| < σy or |σ| ≥ σy, σλ̇ < 0.

The differential stiffness takes the form
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dσ

dλ
=

{ α(σu − |σ|)/(σu − σy) if |σ| ≥ σy and σλ̇ > 0,
0 if |σ| < σy or |σ| ≥ σy, σλ̇ < 0.

(57)

Figure 3 shows the hysteresis loop obtained by solving the system (54) and using (57)
with the parameters α = 1, σu = 2.5, and σy = 1.5. Within the region σy ≤ |σ| ≤ σu,
the material behaves elastically during unloading and plastically during loading.

Figure 3. Elastic–plastic model with asymptotic bounds σ = ±σu (dashed) and yielding thresh-
olds σ = ±σy (short dashed); hysteresis loops (solid) with amplitude Λ = 4 and starting value
(λ0, σ0) = (0, 0).

As exemplified by the previous models of plastic materials, the hysteretic properties
are represented in simple and direct ways by an appropriate form of the entropy production
γ as a constitutive function. Analogous properties hold in the modeling of ferroics. In addi-
tion to the conceptual character of γ as a constitutive function, these examples prove the
experimental evidence of the reported method on the exploitation of the entropy inequality.

7. Conclusions

This paper deals with the mathematical formulation and the use of the second law
of thermodynamics in continuum physics. Conceptually the second law states that the
rate of entropy in any sub-region of the continuum is greater than the external entropy
supply. This amounts to the assumption that the (rate of) entropy production is non-
negative. Mathematically, this leads to a procedure for the selection of physically admissible
constitutive properties [21]. In the Coleman–Noll formulation, the entropy flux, say j, is
q/θ, while j is a constitutive function in the Müller formulation. It is an important point
of the present formulation that the entropy production γ is also a constitutive function
(Section 3).

The constitutive property of γ is shown to have remarkable consequences on the whole
thermodynamic scheme. Though quite uncommon in the literature, Section 5 shows that
the aging properties of non-dissipative materials, that is, terms related to energy functions,
result in positive entropy productions. Next, as is shown in Section 6, the occurrence of
γ as a constitutive function is essential in the modeling of thermodynamically consistent
hysteretic materials. In particular, this is shown for elastic–plastic materials, though the
analogue can be performed for magnetic or electric hysteresis [22–24].

It is a further result, shown in Section 6, that a representation formula allows a complete
description of the consequences of the second law inequality. This greater generality is
apparent when the constitutive equations involve vectors or tensors in rate-type equations.

From the standpoint of the mathematical modeling, the role played by the entropy
production as a constitutive function is decisive, at least in the case of hysteretic materials.
This is so because hysteresis exhibits a different behavior depending on the sign of a time
derivative (namely, in loading and unloading). If, e.g., the variables are λ, λ̇, then the term
∂λ̇ψλ̈ in the entropy inequality leads to ∂λ̇ψ = 0. Hence, the dependence on λ̇ happens
through ∂λψλ̇. The dependence on the sign of λ̇ is then allowed by letting γ depend on
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λ̇ through |λ̇|. By this approach, the thermodynamic requirement results in a hysteretic
Duhem-like model [25].

The procedure of Section 6, based on the constitutive function of entropy production,
is likely to apply to hysteresis processes [26,27]. To our mind, a rate equation similar to (50)
might well describe the time evolution of entropy–temperature loops.
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