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Abstract: One method of nuclear energy development involves using helium. Its properties make
using extended surfaces obligatory. However, currently nuclear technology does not typically use
finned tubes. This study explores ways of enhancing heat transfer efficiency in a high-temperature
gas-cooled reactor system by using novel fin designs in the heat exchanger for residual heat removal.
Four different types of fins were studied: annular, serrated, square, and helical. The effect of fin height,
thickness, and number was evaluated. Serrated and helical fins demonstrated superior performance
compared to conventional annular fin designs, which was expressed in enhanced efficiency. The
thickness of fins was found to have the strongest influence on the efficiency, while the height and
number of fins per meter had weaker effects. In addition, the study emphasized the significance
of considering complex effects when optimizing fin design, like the effect of fin geometry on the
velocity of helium. The findings highlight the potential of creative fin designs to greatly enhance the
efficiency and dependability of gas-cooled reactor systems, opening up possibilities for advancements
in nuclear power plant technology.

Keywords: high-temperature gas-cooled reactor; combined-cycle nuclear power plants; finned tube;
heat transfer

1. Introduction

Properly managing heat removal is crucial for the safe and effective operation of
high-temperature gas-cooled reactors (HTGRs). HTGRs are recognized for their excellent
safety characteristics and ability to operate at high temperatures, allowing them to be
used in a wide range of applications, such as power generation or chemical production.
HTGRs use a mix of passive and active cooling systems to effectively remove heat from the
reactor core. Passive systems utilize the phenomena of natural convection and radiation to
offer safety through the principles of physics. Active systems, such as gas circulation and
dedicated cooling loops, allow for better control over heat removal rates [1].

The studies emphasized by [2] provide insights into experimental thermal fluid be-
havior and safety studies for HTGR designs. These studies explore core heat transfer,
plenum behavior, and safety aspects, enhancing our understanding of HTGR thermal
behavior. The plenum is a vital element in the HTGR design, providing a key function of
enabling effective energy transfer and ensuring reactor stability. Huning et al.’s study [2]
explores the plenum’s behavior, including the intricacies of gas flow, pressure distribution,
and temperature gradients. This information is crucial for enhancing plenum design and
guaranteeing the best thermal performance. A properly constructed plenum improves the
efficiency of heat transfer and enhances the safety and reliability of HTGRs.

Efficient heat removal from the reactor should result in its smooth transition to the
turbine for power generation. Utilizing advanced steam reheating technologies can enhance
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efficiency and power output by incorporating reheated steam in the turbine cycle [3]. It
is essential to have a strong control strategy in place to safely and efficiently operate the
combined cycle at different loads, maintaining peak performance throughout the HTGR’s
operational range [4]. A study by Florido et al. [5] evaluated the economic viability of
power plants that combine nuclear and gas turbine technologies. The combined thermal
cycle is seen as a beneficial connection between nuclear and natural gas fuels, providing a
cost-effective alternative for generating electricity.

A combined-cycle gas turbine power plant is essentially an electrical power plant in
which a gas turbine and steam turbine are used in combination to achieve greater efficiency.
The gas turbine drives an electrical generator while the gas turbine exhaust is used to
produce steam for the steam turbine, whose output provides the means to generate more
electricity [6,7]. This process of steam production is deeply rooted in the principles of
thermodynamics and heat transfer, as expounded by Kays and London [8].

The emergency cooling systems in the core of HTGRs are based on gas–water heat
exchangers, which include the combination of conduction through tubes and convection
from tubes to cooling water or steam and from helium to tubes. However, due to the much
lower rate of the latter, studies in this area usually deal more thoroughly with convection
in order to provide tools for the critical assessment of correlations and data and to provide
pointers for the development of surfaces [9]. There are numerous researchers who have
modeled and/or optimized heat exchangers of HTGR systems [10–12], highlighting their
importance. Using finned tubes seems to be a viable solution for such systems because it
may result in a reduction in capital costs, as well as hydraulic resistance, which influences
the overall efficiency of corresponding systems [10,13].

Computational studies, such as computational fluid dynamics (CFD) simulations,
have been conducted to compare different types of fins, like segmented and solid fins,
especially for the economizer section of the steam generator of steam–gas power plants [14].

HTGRs have experienced a long and tortuous development since the middle of the
previous century. The final technical route focuses on small modular HTGRs with inherent
safety. HTGRs use helium as the cooling medium, whose reactor outlet temperature
(ROT) can reach 700–950 ◦C. Compared with HTGRs, the outlet temperature of very-high-
temperature gas-cooled reactors (VHTRs) is higher and can exceed 1000 ◦C [15].

Wang J. meticulously developed and contrasted a simplified and a complex combined-
cycle scheme specifically tailored for nuclear power plant applications, taking inspiration
from the conventional designs, which are prevalent in thermal power combined-cycle
systems [16]. This comparative analysis underscored the inherent complexity in adapting
heat recovery steam generators, which are standard in thermal power plants, for use within
HTGRs, noting the advanced design and operational complexities that such applications
entail [17].

Recognizing the pivotal role of finned tubes due to their superior heat transfer effi-
ciencies [18,19], this study argues for their suitability across various emergency cooling
system heat exchangers in HTGR contexts. Despite the apparent benefits, a notable gap
in the literature regarding the performance characteristics of finned tubes under forced
convection conditions with helium prompts an in-depth investigation.

Thus, this study embarks on a focused endeavor to optimize geometric characteristics
of four distinct finned tube designs to enhance the heat transfer dynamics between water
and helium, addressing a critical need for extended knowledge in this domain.

2. Materials and Methods
2.1. Thermal Assumption

This research delves into a comprehensive investigation, meticulously accounting for
a broad spectrum of inlet and outlet conditions to mirror the complexities and variabilities
characteristic of actual HTGR and VHTR operational scenarios. To establish a foundation
for this exploration, Table 1 systematically delineates all presumed initial parameters.
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Table 1. Initial parameters of helium and tubes for calculation.

Parameter, Unit. Symbols Value

Pressure of He, MPa P1 2.44
Inlet temperature of He, ◦C t1 527.5

Outlet temperature of He, ◦C t2 241.4
Outer diameter of tubes, m dout 0.0254

Thickness of tubes, m δtube 0.002415
Tube height, m ltube 8

Material Stainless steel

This study positions helium, known for its unique thermophysical properties such
as its low density, compressibility, and high thermal conductivity, in the spotlight as the
primary coolant, contrasting its utilization against the backdrop of more conventional
coolants, like molten metals or pressurized water, employed in the industry.

This study pays particular attention to the critical importance of tube geometry used in
heat exchanger systems [12], asserting that the dimensions such as tube diameter, thickness,
and height, as well as the allocative density of tubes per row, inherently influence the
overall efficacy of heat transfer.

In adhering to established guidelines and leveraging empirical data drawn from [20,21],
this investigation ensures a robust and adaptive framework to encapsulate the inherent
variabilities integral to nuclear power plant operations, thereby contributing meaningful
insights towards systematic optimization within this field.

As the Nusselt number indicates the contribution of the convective heat transfer of the
helium motion to the conductive heat transfer, the Nusselt criteria for forced convection
were calculated as follows [22]:

Nu

= CZ·Nu0


Nu0 = 0.023·Pr·Re0.8·Ct

1+2.14·Re−0.1·(Pr0.7−1)

Re = w·d
v → w = G

f ·ρ → f = ltube(Wd − Nrow·d)

Ct =
(

Prfluid
Prwall

)n

CZ = 1.048 − 0.712
z + 0.2837

z2 → z = Nrow

(1)

where Pr is Prandtl number; Ct is the allowance for non-isothermal flow [23]; Nu0 is Nusselt
number of the single tube in center of a bundle (crossflow); CZ is the correction factor; n
is equal to 0.11 [23]; Re is Reynolds number; w is velocity of He in tube pack (m/s); and
v is the kinematic viscosity at a given temperature. The calculations were made for the
conditions of the crossflow over tube bundle.

Then, the heat transfer coefficient, which describes the intensity of the heat transfer
process between the tube surface and helium, was calculated as

α =
Nu·λ

d
, W/(m²·◦C) (2)

where λ is the thermal conductivity of the tube material. It was assumed to be equal to
15 W/m·◦C, which is the typical value for stainless steel.

The higher the heat transfer coefficient, the greater the ability for thermal energy to
move from one medium to another. The challenge is to increase this equivalent heat transfer
coefficient by increasing the heat transfer area using extended surfaces. Using fins is the
most widespread solution for such extended surfaces.

2.2. Fin Types and Characteristics

The strategic integration of fins into the design significantly amplifies the surface area
available for heat transfer, thus propelling the efficiency of thermal management in nuclear
reactor applications. This methodology not only proves to be cost-effective, bypassing the
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need for additional pressure piping, but also adapts to gradients of heat transfer coefficients,
optimizing areas with inherently lower rates.

Crucially, the assumption of impeccable thermal contact between the fins and the tube
walls underpins the reliability of subsequent calculations, setting a stringent manufacturing
standard for the production of finned surfaces.

It is, however, essential to acknowledge the limitations inherent in current analytical
methods, which fall short of accurately predicting heat transfer coefficients across the
spectrum of finned surface typologies. Therefore, this exploration underscores the necessity
of employing numerical simulations, corroborated by empirical testing, to bridge the gap
in precision, thereby ensuring the fidelity and applicability of findings within the nuanced
context of heat exchanger design and optimization of settings.

The overall heat transfer coefficient in the current study was determined as follows:

k =

[
A

A0 + A f ·η f
· 1
α1

+
δtube
λtube

+
δ f o

λ f o
+ 2

δox

λox
+

1
α2

]−1

, W/(m²·◦C). (3)

where
δ f
λ f

is heat resistance caused by fouling layer (it was assumed to be equal to 0.000081

according to [24]) (m2·K/W); δtube
λtube

is heat resistance caused by tube wall (m2·K/W); α1
is convective heat transfer coefficient from the He to the tube wall; α2 is convective heat
transfer coefficient from the tube wall to the working fluid; λtube is the thermal conductivity
of tube material (it was assumed to be equal to 15) (W/m·K); δox

λox
is heat resistance caused

by oxidized layer (it was assumed to be equal to 0.00001 according to RD 24.035.05-89
thermal and hydraulic calculation [25]); A, A0, A f are the surface area of non-finned tube,
section of tube between the fins, and area of the fins themselves (m2); and η f is fin efficiency.

In general form, the equation can be written as k =
[

1
α1

+ ∑ δi
λi

+ 1
α2

]−1
where 1

α1
is

the convective heat resistance on one side, ∑ δi
λi

represents the sum of conductive heat

resistances through various layers, and 1
α2

is the convective heat resistance on the other

side. The term A
A0+A f ·η f

in Equation (3) enhances the effective heat transfer area due to the
presence of fins, thereby improving the overall heat transfer performance [26].

The concept of fin efficiency is crucial for evaluating fin performance. Understand-
ing fin efficiency is critical for optimizing heat exchanger design. A high-efficiency fin
maximizes the use of its surface area for heat transfer. A low-efficiency fin may be under-
utilized, resulting in poor heat transfer performance. However, increasing fin dimensions
always results in decreasing efficiency, making optimization necessary. The following is
the expression for fin efficiency.

η f =
tanhX

X
(4)

The dimensionless value X is calculated as

X = φ·dout

2
·
√

2·α
λ·δ f

(5)

where φ is the correction factor in different geometries; δ f is the thickness of the fin.
Among the numerous variations of fin types, four basic types emerge: annular, helical,

serrated, and square, each with unique characteristics, advantages, and disadvantages
(Figure 1).
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Figure 1. Image of finned tube types considered in current study.

Annular fins emerge as a paradigm of enhanced structural integrity and thermal
dynamics, attributed to their circular form facilitating a broader heat transfer surface.
Despite the allure of their efficacy, it is imperative to weigh the economic considerations
stemming from their intricate manufacturing processes.

Helical fins have a spiraled configuration, which not only accentuates thermal transfer
rates, but also adeptly navigates the challenges posed by fluctuating flow conditions, albeit
with elevated production costs and potential constraints in application breadth.

Serrated fins introduce a novel tactic in thermal optimization by leveraging their
distinctively notched edges to induce turbulence, thereby magnifying heat exchange effec-
tiveness. Yet, this approach is not without its complexities, presenting potential hurdles in
both manufacturing and ongoing maintenance.

Square fins offer a straightforward, cost-efficient solution to heat transfer enhancement,
albeit potentially at the expense of reduced efficiency relative to their more complex
counterparts. This exploration underlines the intricate balance between geometric design,
manufacturing feasibility, and the overarching aim of optimizing thermal performance in
heat exchanger applications specific to nuclear reactor technologies.

The choice of fin type can be determined after demonstrating the effect of each of them
on the efficiency of heat transfer, taking into account their advantages and limitations.

The surface area A of the non-finned tube can be calculated as

A = π·dout·ltube (6)

The surface area A0 of the tube between the fins is as follows.
For annular, square, and serrated:

A0 = π·dout·ltube·
(

1 −
δ f

t f

)

For helical:

A0 = π·dout·ltube −
(

Lturn·ltube·
δ f

t f

)
Surface area of the fins, A f :
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Annular:
A f = 2·π

4
·
(

D2 − d2
out

)
· ltube

t f

Square:

A f = 2·
(

a2 − π

4
·d2

out

)
· ltube

t f

Serrated:
A f = 2·

(π

4
·
(

D2
solid − d2

out

)
+ nser·hser·wser

)
· ltube

t f

Helical:

A f = 2·


(

Lout
turn + Lin

turn

)
·h f

2

· ltube
t f

where Lin
turn is the length of one complete turn of the helical fin around the tube, and Lout

turn
is the same parameter with extended fin height.

The correction factor φ is a crucial component in the fin efficiency equation, acting
as a dynamic element that encompasses various influences on the heat transfer process.
It serves as a multiplier, enhancing the accuracy in representing the unique attributes of
various fin types within the system.

Essentially, φ takes into consideration variations in fin geometry, including factors like
shape, surface irregularities, and structural intricacies. Flexibility is essential in situations
where the fundamental variables in the equation may not fully encompass the intricacies
of the heat transfer process. However, φ explores the various heat transfer characteristics
displayed by different materials. Considering the crucial role of materials in determining
heat exchange efficiency, the correction factor enables the equation to be customized
according to the thermal properties of the fin material. This guarantees that it accurately
reflects heat transfer in real-world scenarios [26,27].

φ =
(

φ′ − 1
)
·
[
1 + 0.35·ln

(
φ′)] (7)

Annular:
φ′ =

D
dout

Square:

φ′ = 1.28·
(

b
dout

)
·
√

a
b
− 0.2

Serrated:
φ′ =

Dsolid + hser

dout

Helical:

φ′ =

(
D

dout

)
·

√
D1

D2
− 0.1

D1 =
√

D2 + t f
2; D2 =

√
D2 +

( t f

2

)2

In the case of serrated and helical fins, the correction factor is mostly based on φ’,
which describes the effective diameter or the ratio of diameter projection from one side to
the ratio of diameter projection with 90◦ rotation as represented before.

While nuclear energy is known for its unique equipment requirements, the constant
demand for reducing capital costs creates constant pressure to use more common and
standard solutions. The fin height hf and fin thickness δf are the most studied dimensions
in the literature, but it was established that the number of fins per tube, which can also be
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normalized as fins per meter, should also be taken into account. These parameters were set
at the following range as the most widespread values, which are currently used in various
industrial areas (predominantly in fossil-fired energy production areas) according to the
literature [27–29]:

For fin height: from 0.005 m to 0.01 m, with a step of 0.0005 m.
For fin thickness: from 0.0005 m to 0.005 m, with a step of 0.00045 m.
For fin frequency: from 160 to 200 fins per meter, with a step of 10.

3. Results and Discussion

As the principal aim of integrating fins is to enhance the heat transfer from the helium
side, which leads to a noticeable reduction in the overall layout of the heat exchanger, it is
crucial to emphasize that the optimization of fin dimensions directly affects the efficiency
and safety of VHTR systems. These reactors, characterized by their high outlet temperatures
and efficiency, significantly benefit from the improved heat transfer capabilities facilitated
by optimized fin designs. However, in actual applications, manufacturing, maintenance,
and cost constraints are also considered, putting certain limits on the optimization process.

3.1. Annular Type

The relationship between thicker fins and higher fin efficiency can be attributed to
their thermal conductivity. Thicker fins provide a greater surface area for heat transfer
with more constant temperature over their height, resulting in improved heat dissipation
efficiency, as can be seen in Figure 2. The increase in the thickness of the fins from 0.0005 m
to 0.005 m resulted in a noticeable increase in fin efficiency of almost 37%. Nevertheless,
there is an ideal thickness that, when exceeded, leads to diminishing returns. It is probable
that the observed phenomenon is a result of a rise in thermal resistance when the thickness
surpasses the threshold for optimal conduction.
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Figure 2. Dependence of annular−type fin efficiency on height and thickness.

On the other hand, an inverse relationship between fin height and fin efficiency was
observed. The favorable fluid dynamics around the fins are influenced by the low density
and viscosity of helium. Reducing the height of the fins can enhance convective heat
exchange, allowing helium to flow more smoothly through the passages, and this can
be established as well from Figure 2, which shows that fin efficiency decreases by about
25% when the height increases from 0.005 m to 0.01 m. In addition, shorter fins may
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undergo less heat loss to the helium environment because they have a smaller surface area
exposed. However, smaller fins provide less surface area, meaning larger dimensions of
corresponding equipment.

3.2. Square

The consistent factors of fin height, thickness, and number of fins per meter remain
unchanged for both annular and square fins. Nevertheless, the different geometric configu-
rations of annular and square fins result in differences in heat transfer properties, including
surface area and helium flow patterns. Annular fins, with their circular shape, offer a
continuous and smooth surface that may promote more consistent helium flow patterns.
The geometry of this structure may play a role in enhancing convective heat exchange,
leading to improved fin efficiency. Nevertheless, in the case of square fins, the presence of
edges and corners can potentially disturb the flow, resulting in irregular flow patterns and
heightened air resistance.

It can be clearly seen in Figure 3 that as the thickness increases from 0.0005 m to
0.005 m and height from 0.005 m to 0.01 m the maximum fin efficiency reaches 88.6%,
which is lower than that of the annular shape. When discussing thermal conduction and
heat distribution, it is worth noting that annular fins possess a continuous circular shape
that enhances the efficiency of temperature distribution over the fin surface. However,
when it comes to square fins, thermal gradients may arise due to the presence of distinct
corners and edges, which could result in an uneven distribution of heat and lower efficiency.
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Figure 3. Dependence of square−type fin efficiency on height and thickness.

3.3. Serrated Fins

This study has shown that serrated fins have a higher heat transfer efficiency compared
to annular and square fin types. Several factors contribute to this remarkable efficiency,
such as the surface area and the serrated edge, which provides additional surface area,
promoting enhanced convective heat exchange. As clearly shown in Figure 4, there is an
increase in efficiency from 64.5% to 93.6% due to varying the thickness with the same values
as in the previous shapes.

The presence of serrated ends enhances convective heat transfer coefficients and
facilitates heat distribution. The serrations distribute heat along the edges, creating mul-
tiple smaller channels for heat conduction, as well as for reduced flow resistance. It has
been observed, that the serrated configuration can potentially decrease flow resistance in
comparison to square fins [29]. All these factors contribute to an enhanced fin efficiency.
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3.4. Helical Fins

Among the various types of fins, helical fins have emerged as the most efficient in terms
of performance. Various factors contribute to their exceptional performance, including
an extended surface area and an enhanced heat transfer path that offers a longer and
uninterrupted surface area for heat exchange.

The helical fin has the highest efficiency compared to all other shapes, which is
demonstrated in Figure 5. The highest recorded efficiency is 95.1% when both the fin height
and thickness are 0.005 m, which is about 1.5% higher compared to the same-sized serrated
fin. Additionally, the increased number of fins per meter increases velocity within the
helium flow at a higher rate compared to other types. This is due to the different shape of
each fin from side to side. This phenomenon can be attributed to the correlation between
the number of fins per meter and the subsequent enhancement in fin efficiency.
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Based on the data of Figure 6, it can be observed that there is a correlation between
the number of fins per meter and fin efficiency. While this is quite small (less than 0.5%
for all samples), it is still worth being considered, especially with the further expansion
of the studied range of parameter variation. The effect of the number of fins per meter
was stronger for thin fins than for thick ones: variation in efficiency was around 0.5% for
0.5 mm thickness fins, while for 5 mm thickness fins it was 0.1%. It is commonly observed
that an increased number of fins tends to result in reduced fin efficiency in many cases.
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4. Conclusions and Prospects

This study’s findings on the impact of creative fin designs on heat transfer efficiency
have direct implications for improving the performance and reliability of VHTRs and
HTGRs. As improving heat transfer efficiency in these reactors progresses, it becomes clear
that creative fin designs offer great potential in boosting the performance and dependability
of gas-cooled reactor systems. This research explored different fin geometries, providing
insights into their unique characteristics and how they affect heat transfer efficiency.

After thorough analysis and experimentation, it was proven that innovative designs
like serrated and helical fins surpass traditional fin types in terms of heat transfer efficiency,
providing significantly better results. Serrated fins, with their irregular edges, bring about
significant enhancements in efficiency, while helical fins, with their extended surface area
and unique geometry, showcase exceptional performance in boosting heat transfer, whereas
annular fins showed visibly worse performance.

These insights underscore the potential for these designs to contribute to the develop-
ment of more efficient and safer VHTR and HTGR systems. However, it is important to
acknowledge the limitations that arise from making assumptions based on existing research.
These inaccuracies highlight the necessity for further research, especially in the realm of
simulation models for finned heat exchangers in VHTR and HTGR conditions. This ongo-
ing effort aims to refine thermal management strategies in advanced reactor technologies,
ensuring the optimization of fin designs for enhanced performance and reliability.
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Abbreviations

Nomenclature
BC Brayton cycle
CC Combined cycle
CCPP Combined-cycle power plant
GCR Gas-cooled reactors
GT Gas turbine
He Helium
HGTS Helium Gas Turbine System
HTGR High-temperature gas-cooled reactor
NPP Nuclear power plant
TPs Thermodynamic properties
Parameters
d Diameter, m
f Cross-section area, m2

G Flow rate of helium coolant, kg/s
H Heat drop, kJ/kg
h Specific enthalpy, kJ/kg
k Overall heat transfer coefficient, W/(m2·K)
l, L Length, height, m
Nu Nusselt number
P Pressure, MPa
Q Thermal power, MW
Re Reynolds criteria
t Temperature, ◦C
v Kinematic viscosity, m2/s
α Heat transfer coefficient, W/(m2·K)
δ Thickness, m
∆t Temperature difference, ◦C
ηf Fin efficiency, %
λ Thermal conductivity, W/(m·K)
ρ Density, kg/m3

Subscript
∆tpp Temperature difference at pinch point
δ f /λ f Thermal resistance of fouling layer
δox/λox Thermal resistance of oxidizing layers
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