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Vector-Algebra Algorithms to Draw the Curve of Alignment,
the Great Ellipse, the Normal Section, and the Loxodrome
Thomas H. Meyer

Department of Natural Resources and the Environment, University of Connecticut, 1376 Storrs Rd., U4087,
Storrs, CT 06269, USA; thomas.meyer@uconn.edu

Abstract: This paper recasts four geodetic curves—the great ellipse, the normal section, the loxodrome,
and the curve of alignment—into a parametric form of vector-algebra formula. These formulas allow
these curves to be drawn using simple, efficient, and robust algorithms. The curve of alignment,
which seems to be quite obscure, ought not to be. Like the great ellipse and the loxodrome, and unlike
the normal section, the curve of alignment from point A to point B (both on the same ellipsoid) is the
same as the curve of alignment from point B to point A. The algorithm used to draw the curve of
alignment is much simpler than any of the others and its shape is quite similar to that of the geodesic,
which suggests it would be a practical surrogate when drawing these curves.

Keywords: geometric geodesy; curve of alignment; normal section; geodesic; loxodrome; great
ellipse; algorithms

1. Introduction

In a geographic information system (GIS), linear and polygonal features are usually
defined by only their vertices, so the programmer is assigned the task of deciding which
curve to use to connect the points; that is, the task of defining the implied edge [1]. If the
edge is to be a straight line in “the real world”, then it could be found conceptually by
stretching a chalk line between the endpoints and snapping it down, leaving the trace of
the curve on the ground—or, for geomatics, on the reference ellipsoid that is used by the
geodetic datum for the mapping. Such a curve is called a geodesic, being “the curve that
does not veer to the left nor to the right”. Then, the geodesic would be projected onto the
map using the forward map-projection formulas.

The formulas for calculating a geodesic curve on an ellipsoid (hereafter just called a
geodesic) are very complicated [2–8], and there are many special cases. For example, there
are four geodesics connecting any two antipodal points on the Equator: two geodesics
following the Equator itself, one to the east and the other to the west, and two others
following the northwards and southwards meridians connecting the points. There are
other peculiar cases as well, such as the “lift-off” condition [9] for which two points on
the Equator are connected by either one or three geodesics depending on how far apart
they are. Since there is not always exactly one geodesic connecting two points, and given
the programming challenge of implementing them, a programmer might want to consider
other curves that are very nearly geodesics but simpler to implement: normal sections,
great ellipses, loxodromes, and curves of alignment.

This paper presents a single, unified approach for drawing these curves that is based on
a parametric representation using vector algebra. (It would be ideal to provide an algorithm
for the geodesic as well; however, there does not appear to be a way to implement general
geodesics with this approach.) Parametric solutions have already been found for the great
ellipse [10,11], but these approaches use geodetic coordinates for their parameters, which
is very helpful for navigation but complicates the formulas if the goal is only to draw
the curve. The direct and indirect problems for loxodromes were provided by Meyer
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and Rollins [12], but their formulations were also parameterized by geodetic coordinates,
resulting in similarly complicated formulas [3] and Deakin [13] report formulas for points
along a curve of alignment. Testing revealed that the method below produces the same
points as Deakin [13], and the method below is simpler, in the opinion of the author.

Notice that drawing these curves between two points is a separate problem from
the typical “direct” and “indirect” problems of geodesy. The former takes a point, an
azimuth, and a distance, and the implied forward point is to be determined. The latter
takes two points, and the forward and backwards azimuths, and their separation is to
be determined. One can use the indirect problem to find the forward azimuth and the
separation between the points, and then use the direct problem’s solution parametrically as
a function of distance to enumerate the points along the curve to be drawn.

The terminology and notation for the remainder of the paper are now given. The lengths
of an ellipsoid’s semi-major and semi-minor axes are a and b, and they are related by the
first eccentricity as b2 =

(
1 − ϵ2) a2. The geodetic latitude is −π/2 ≤ ϕ ≤ π/2, longitude

is −π ≤ λ ≤ π, and geodetic height is h. See Appendix A for other formulas. The geo-
centric Cartesian coordinate axes are X, Y, and Z, with Z being the Z-axis of the reference
ellipsoid. The X- and Y-axes are perpendicular to Z and to each other, and they also define
the Equatorial Plane. The Prime Meridian is the section formed by the X–Z plane. (The
reader will recall that a section of an ellipsoid is the curve formed by the intersection of a
plane and the ellipsoid.)

The general idea of the algorithms below is to produce a set of XYZ points along
the straight-line segment (i.e., the chord) connecting the endpoints of the curve to be
drawn. There are simple relationships between these points, which are in the interior of the
ellipsoid, and their images on the ellipsoid. The relationship depends upon which curve is
desired. An XYZ point, or vector, will be denoted by P =

(
XP, YP, Zp

)
. A point in geodetic

longitude, latitude, and height (LBH) will be denoted by P =
(
λP, ϕP, hP

)
.

2. Curve of Alignment

The curve of alignment can be visualized in this way (c.f. [13] (Deakin, 2009)). Consider
two points of interest, A and B, on the ellipsoid, and imagine connecting them with a
straight line that penetrates through the ellipsoid. Now, imagine another line segment that
is perpendicular to the connecting line and that rises outwards, emerging perpendicularly
(normal) to the ellipsoid. This rising line is free to slide along the connecting line and it
remains normal to the ellipsoid as it moves. The curve of alignment is the locus of points at
the intersection of the rising line and the near side of the ellipsoid.

2.1. Properties

The curve of alignment is undefined if A and B are antipodal.
Since A and B are on an ellipsoid, their curve of alignment spans less than 180◦ of

longitude.
The curve of alignment from A to B is the same as the curve of alignment from B to A.
Any portion less than 180◦ of the Equator is a curve of alignment and is also a geodesic,

as is any such portion of a meridian. A portion of any parallel other than the Equator is not
a curve of alignment. (The curve of alignment connecting two points at the same latitude
will pass polewards of their common parallel; see Figure 1).

The curve of alignment is not in general a planar curve. In fact, it is the intersection of
a hyperbolic paraboloid and an ellipsoid [3], p. 67.
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Figure 1. The curve of alignment (orange) and the geodesic (blue) from (165 E, 40 S) and (0 E, 45 N) 
on the WGS 84 reference ellipsoid. The Equator appears in green and the Prime Meridian in orange. 
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An implementation in Mathematica™ produced the image in Figure 1, which shows 

the curve of alignment (red) and the geodesic (green) from (0° E, 45° N) to (165° E, 40° S) 
on the WGS 84 reference ellipsoid. The arc length of the geodesic is 18,669,335.84 m, and 
the arc length of the curve of alignment is 18,671,843.56 m, which is 2507.72 m (134 ppm) 
longer. The arc length of the geodesic was computed using [5], and the arc length of the 
curve of alignment was computed by recursively bisecting the curve into linear segments 
and summing the lengths of the segments until the length converged to submillimeter 
levels. In this example, the curve of alignment starts out north of the geodesic, crosses 
exactly once near the middle, and is south thereafter. 

Figure 1. The curve of alignment (orange) and the geodesic (blue) from (165◦ E, 40◦ S) and (0◦ E,
45◦ N) on the WGS 84 reference ellipsoid. The Equator appears in green and the Prime Meridian
in orange.

2.2. Algorithm

The algorithm used to draw curve of alignment is based on geodetic coordinate-system
conversions. The algorithm depends on the idea that changing a point’s geodetic height
only—not geodetic longitude or latitude—moves the point in a direction normal to the
ellipsoid. The connecting line segment is given by the difference of A and B in geocentric
Cartesian coordinates, and we formulate this segment parametrically. The rising segment is
found by converting a point on the connecting segment from XYZ into geodetic longitude,
latitude, and height, and then setting the geodetic height to zero. This determines a point
on the ellipsoid as the other endpoint of the rising segment such that the rising segment is
perpendicular to the ellipsoid. The following six steps make this algorithm explicit.

1. Some ellipsoid is specified, such as a geodetic reference ellipsoid. This provides the
length of the semi-major axis a and the value of the (first) eccentricity squared ϵ2.
(See Appendix A for the formulas and parameter values.)

2. Two points of interest, A and B, not antipodal and on the ellipsoid are chosen. (Note:
A and B are on the ellipsoid so their geodetic heights are zero.) Their coordinates are
required in geocentric Cartesian coordinates: A = (XA, YA, ZA) and B = (XB, YB, ZB).
If given in geodetic longitude and latitude, they can be readily converted to geocentric
(see Appendix A).

3. Compute the vector v = B–A.
4. The points of the straight-line segment from A to B are given in parametric form by

p(t) = A + t v for 0 ≤ t ≤ 1.
5. Denote the conversion from geocentric Cartesian coordinates to geodetic longitude,

latitude, and height by γ. Then, γ(p) = (λ, ϕ, h). This conversion depends on a
and ϵ2. Define a variant of γ called γ such that γ(p) = (λ, ϕ, 0), where, for some h,
γ(p) = (λ, ϕ, h), i.e., γ(p) returns the same as γ(p) but with h set to zero.

6. The curve of alignment is the curve γ(p(t)) for 0 ≤ t ≤ 1. In other words, the curve
of alignment is the set of geodetic points given by the conversion of all the points p(t)
from geocentric Cartesian to geodetic, setting their geodetic heights to zero.

An implementation in Mathematica™ produced the image in Figure 1, which shows
the curve of alignment (red) and the geodesic (green) from (0◦ E, 45◦ N) to (165◦ E, 40◦ S)
on the WGS 84 reference ellipsoid. The arc length of the geodesic is 18,669,335.84 m, and
the arc length of the curve of alignment is 18,671,843.56 m, which is 2507.72 m (134 ppm)
longer. The arc length of the geodesic was computed using [5], and the arc length of the
curve of alignment was computed by recursively bisecting the curve into linear segments
and summing the lengths of the segments until the length converged to submillimeter
levels. In this example, the curve of alignment starts out north of the geodesic, crosses
exactly once near the middle, and is south thereafter.
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Notes:

• The vector v is equally well defined as v = A − B, but then p(t) = B + t v. The same
curve of alignment results either way.

• Pseudocode for the curve of alignment is given below. The algorithm assumes there is
a function named XYZ_to_LBH that converts XYZ coordinates to geodetic longitude,
latitude, and height LBH. This code is assumed to be written in a language with built-in
vector algebra operators such as Mathematica or Matlab, or with a vector-algebra library
such as NumPy.

A := (XA, YA, ZA) # FROM point in XYZ
B := (XB, YB, ZB) # TO point in XYZ
t: floating point scalar in [0, 1]
V := B − A # vector subtraction
pt := A + t * V # pt will be inside the ellipsoid
p2 := XYZ_TO_LBH(pt) # convert pt to LBH

(
λp2, ϕp2, hP2

)
.

CoA :=
(
λp2, ϕp2, 0

)
# set hP2 to zero.

3. Normal Sections

Normal sections can be defined with a single point on an ellipsoid and an azimuth [14].
There is a vector that is normal to the ellipsoid at this point. The sectioning plane contains
the point and the normal vector, and the sectioning plane is oriented by the azimuth.
The normal section is the intersection of that plane and the ellipsoid. This definition is not
well suited for the purposes of this paper, so an alternative based on two points is provided.
A normal section from A to B is a section formed from the intersection of a plane containing
A, B, and another point V, where VA is normal to the ellipsoid at A (see Figure 2). There
are many choices for V, but it is convenient and helpful to choose V to be the point on the
Z-axis intercepted by the inwards-directed normal vector at A (details are given below).
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3.1. Properties

The normal section is a planar curve. On an ellipsoid, the normal section is the entire
ellipse (a circle for the Equator), but it is common practice to consider the normal section to
be the shorter limb from A to B. The algorithm below produces the shorter limb, which is
consistent with the goal of this paper.

A, B, and V will not define a normal section if they are collinear, but selecting B to be
antipodal to A is not a problem (generally), as will now be shown. Point C in Figure 2 is
the point where VA is extended to intersect the ellipsoid on the hemisphere opposite A. C
is collinear with A and V, but C is not antipodal to A unless A is on the Equator or is a Pole
(antipodal points are on a line through the origin). VA is normal to the ellipsoid at A, but
VA does not generally contain the origin due to the ellipsoid having non-zero eccentricity.
Therefore, the normal section is uniquely defined if A and B are antipodal but not on the
Equator and not Poles. In that case, there is a singularity at the exact midpoint, which is at
the origin and thus does not possess a unique normal vector.

The normal section from A to B is not the same as the normal section from B to A
unless A and B are at the same latitude or at the same longitude.

The Equator and the meridians are normal sections. Any parallel other than the
Equator is not a normal section (the normal section connecting two distinct points at the
same latitude other than zero will pass polewards of their common parallel; see Figure 3).
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Figure 3. The two normal sections (black) and the geodesic (blue) between (0◦ E, 45◦ N) and (165◦ E,
40◦ S) on the WGS 84 reference ellipsoid. The Equator appears in green and the Prime Meridian
in orange.

The normal section from A to B does not have the same arc length as the normal
section from B to A unless ϕA = ϕB or ϕA = −ϕB.

3.2. Algorithm

The algorithm used to draw a normal section is similar to that for curve of alignment,
but it is a little more complex, so it warrants a figure to help explain it (see Figure 2). Some
of the steps given here are expounded upon below in the notes.

1. Some ellipsoid is specified, such as a geodetic reference ellipsoid. This provides the
length of the semi-major axis a and the value of the (first) eccentricity squared ϵ2. (See
Appendix A for the formulas and parameter values.)

2. There is a point V on the Z-axis at a distance NA from A, where NA = a/
√

1− ϵ2sin2 ϕA
is the radius of curvature in the prime vertical at A. V’s geocentric coordinates are
(0, 0, ZA − NAsin ϕA) =

(
0, 0,−NA ϵ2sin ϕA

)
and VA is normal to the ellipsoid at A.

The plane AVB contains VA and so AVB is the normal sectioning plane at A.
3. A point of the straight-line segment (chord) from A to B is given in parametric form

by p(t) = A + t (B − A) for 0 ≤ t ≤ 1.
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4. Any scalar multiple of a vector from V to p(t) is in the normal sectioning plane
defined by AVB. Let q denote a vector in the normal sectioning plane defined by
q(t, u) = V + u(p(t)− V), where u is a positive real number.

5. There is one value for u, say u*, such that the geodetic height of γ(q(t, u∗)) is zero
for u ≥ 0. The point q(t, u∗) is on the normal-section curve from A to B because
q(t, u∗) is in the sectioning plane and the geodetic height of γ(q(t, u∗)) is zero. Notice
that this is different from the curve of alignment: there, the geodetic height is set to
zero, but here, a value for u must be found that produces a geodetic height of zero.
Setting the height to zero does not work for normal sections because q is not generally

normal to the ellipsoid. The points on an ellipsoid satisfy x2

a2 + y2

a2 + z2

(1−ϵ2)a2 = 1, so

q(t, u∗) must also. Define n = p(t)− V. Substituting in q(t, u∗)’s components and
recalling that Vx = Vy = 0 gives:

(u∗ nx)
2

a2 +

(
u∗ ny

)2

a2 +
(Vz + u∗ nz)

2

(1 − ϵ2)a2 = 1

which is a quadratic in u∗. After some algebra, u∗ can be computed from

u∗ =
−κ1+

√
κ2

1 − 4κ2κ0

2κ2
(1)

where
κ0 = a−2

(
1 − ϵ2

)−1
V2

z − 1

κ1 = 2a−2
(

1 − ϵ2
)−1

nzVz

κ2 = a−2
(

n2
x + n2

y +
(

1 − ϵ2
)−1

n2
z

)
6. The normal section from A to B is the curve γ(q(t, u∗)) for 0 ≤ t ≤ 1. In other words,

the normal section from A to B is the set of points given by the set of all the points
q(t, u∗) converted from geocentric Cartesian to geodetic coordinates.

Notes:

• The normal-section curve is parameterized by t, the same as the curve of alignment.
• In general, each t will have its own u*.
• The point on the normal section is given by V + u∗(p(t)− V).
• The vector q(0, u) is normal to the ellipsoid but no other vector q(t, u) for 0 < t ≤ 1 is

also normal unless A and B have the same latitude, and then q(0, u) and q(1, u) are
both normal (at A and B).

• Pseudocode for the normal section is given below, with the same assumptions as for
the curve of alignment.

A := (XA, YA, ZA) # starting point in XYZ
B := (XB, YB, ZB) # ending point in XYZ
t: floating point scalar in [0, 1]
pt := A + t(B − A)
V :=

(
0, 0,−NA ϵ2sin ϕA

)
# get ϕA from XYZ_TO_LBH(A)

n := pt − V
κ0 := a−2(1 − ϵ2)−1V2

z − 1

κ1 := 2a−2(1 − ϵ2)−1nzVz

κ2 := a−2
(

n2
x + n2

y +
(
1 − ϵ2)−1n2

z

)
# N.B. κ2 > 0

u* := −κ1 +
√

κ2
1 − 4κ2κ0/(2κ2)

pNS := V + u∗(pt − V)
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The two normal sections (black) and the curve of alignment (red) between (0◦ E, 45◦ N)
and (165◦ E, 40◦ S) on the WGS 84 reference ellipsoid are shown in Figure 3. The normal
sections have arc lengths of (N–S) 18,669,545.69 m and (S–N) 18,670,163.62 m, making
the N–S section 617.94 m longer than the other. The lengths of the normal sections were
computed with recursive subdivision, as above.

4. Great Ellipses

For non-antipodal points A and B, a great ellipse from A to B is a section formed from
the intersection of a plane containing A, B, and the origin; therefore, the great ellipse is
available from the normal-section algorithm simply by setting V = (0,0,0). The equation for
q(t, u*) simplifies to q(t, u∗) = u∗ p(t). The value for:

u* = a2
√
(1 − ϵ2)/((1 − ϵ2)(n2

x + n2
y) + n2

z)

The algorithm is otherwise unchanged.

Properties

1. The great ellipse is a planar curve.
2. The great ellipse is the entire ellipse (a circle for the Equator). Every great ellipse

contains A’s antipodal point by construction; however, the antipodal point cannot
be used to define the great ellipse because, then, A, B, and V would be collinear.
The algorithm below produces the shorter limb between A and B, which is consistent
with the goal of this paper.

3. The great ellipse from A to B is the same as the great ellipse from B to A.
4. The Equator and the meridians are great ellipses. Any parallel other than the Equator

is not a great ellipse (the great ellipse connecting two distinct points at the same
latitude other than zero will pass poleward of their common parallel; see Figure 4).
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Figure 4. Great ellipse (orange) and the geodesic (blue) between (0◦ E, 45◦ N) and (165◦ E, 40◦ S) on
the WGS 84 reference ellipsoid. The Equator appears in green.

Figure 4 shows the great ellipse, the curve of alignment, and the normal sections
between (0◦ E, 45◦ N) and (165◦ E, 40◦ S) on the WGS 84 reference ellipsoid. The arc length
of the great ellipse is 18,669,406.160 m, as computed by recursive subdivision. For this
example, the curve of alignment starts out north of the great ellipse, then crosses once near
the middle, and remains south thereafter, which is also true for the geodesic.

5. Loxodromes

The loxodrome is a curve of constant azimuth [12], so all the parallels of constant
latitude (i.e., “parallels”) are loxodromes. A loxodrome is drawn as a straight line on a
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Mercator-projection map, which permits a method of drawing loxodromes in geodetic
coordinates using this paper’s approach.

Properties

1. The parallels and meridians are loxodromes.
2. A loxodrome is a spiral if its starting azimuth is not a cardinal direction. In that

case, loxodromes spiral infinitely many times around both Poles but do not reach
them—yet, they have finite length. For example, for the WGS 84 ellipsoid and azimuth
45◦, the total length works out to be 28,289,831.17 m [12].

3. The loxodrome from A to B is the same as the loxodrome from B to A.
4. The loxodrome is not a planar curve in general.
5. The loxodrome is defined if A and B are antipodal.

The algorithm used to draw loxodromes given below is based on the loxodromes
being straight lines when drawn using a Mercator projection. See [15] or [3] for traditional
implementations of the Mercator projection. However, Rollins and Meyer [16] provide a
more succinct implementation, which is used here. Set the central meridian of the projection
λ0 to be the average of λA and λb, λ, which avoids issues that arise if the loxodrome crosses
180◦. However, the arithmetic average of two angles can fail, so let s = sin(λA) + sin(λB)
and c = cos(λA) + cos(λB). Then, λ0 = λ = atan2(c, s), and

x = a(λ − λ0)

y = aq

q = atanh(sin ϕ)− ϵatanh(ϵsin ϕ)

where atan2 is a 2-argument arctangent function, atanh is the inverse hyperbolic tangent, x
is the Mercator easting, y is the Mercator northing, and q is isometric latitude. The Mercator
forward mapping formulas are applied to A and B, producing Mercator grid coordinates
(x, y), and the vector v is given by their difference, as before. Points p(t) in the Mercator
grid are computed as a multiple of v and then converted back to geodetic coordinates.
The inverse formulas are from [16], as provided in Appendix A. The following six steps
make this algorithm explicit.

1. Some ellipsoid is specified, such as a geodetic reference ellipsoid. This provides the
length of the semi-major axis a and the value of the (first) eccentricity squared ϵ2. (See
Appendix A for the formulas and parameter values.)

2. Two points of interest on the ellipsoid are chosen. Their coordinates are required
in geodetic coordinates; e.g., A = (λA, ϕA) and B = (λB, ϕB). If given in geocentric
Cartesian coordinates, they can be readily converted to geodetic.

3. Using the forward mapping equations (see above), convert A and B into Mercator
coordinates a = (xa, ya) and b = (xb, yb).

4. Compute the vector v = b − a.
5. The points of the straight-line segment from a to b are given in parametric form by

p(t) = a + t v for 0 ≤ t ≤ 1.
6. Denote the inverse Mercator mapping equations (see Appendix A) by γM. Then,

γM(p(t)) = (λ, ϕ).
7. The loxodrome is curve γM(p(t)) for 0 ≤ t ≤ 1. In other words, the loxodrome is

the set of points given by the conversion of all the points p(t) from Mercator grid
coordinates to geodetic coordinates.

An implementation in Mathematica™ produced Figure 5, which shows the geodesic
(green) and loxodrome (blue) from (0◦ E, 45◦ N) to (165◦ E, 40◦ S) on the WGS 84 reference
ellipsoid. The arc length of the geodesic is 18,669,335.840 m, and the arc length of the
loxodrome is 19,066,164.69 m, as computed by recursive subdivision, which is 396,828.850 m
longer.
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Notes:

• The vector v is equally well defined as v = a − b, but then p(t) = b + t v. The same
loxodrome results either way.

• The inverse formula for latitude requires finding a fixed point. This can be cast as
a root-finding problem by finding the latitude such that the difference of the input
latitude minus the output latitude equals zero.

• Pseudocode for the loxodrome is given below. The reference-ellipsoid object RE is
assumed to have a method ecc1 that returns the first eccentricity of the reference
ellipsoid; otherwise, the same assumptions as above pertain.

Define a function M f (λ, ϕ) → (x, y) := (aλA, a(atanh(sin ϕA)− ϵatanh(ϵsin ϕA) )) .
Define a function Mr(x, y) → (λ, ϕ) to be the reverse Mercator mapping formulas.

See Appendix A.
t: floating point scalar in [0, 1]
A := (λA, ϕA) # starting point
a := Mf(A) # forward Mercator mapping formulas
B := (λB, ϕB) # ending point
b := Mf(B) # forward Mercator mapping formulas
v := b − a # vector subtraction
pt := a + tv # linear interpolation
pL := Mr(pt) # reverse Mercator mapping formula

6. Summary

Four new algorithms are presented that draw loxodromes, great ellipses, curves
of alignment, and normal sections. The algorithms are parameterized so that a simple
implementation based on vector algebra is available, given a supporting geometric geodesy
library to calculate the coordinate system. There are many, more or less equivalent, choices
for the conversion from geocentric Cartesian coordinates to geodetic longitude, latitude,
and height [17,18]. However, for long lines, the chord between the beginning and ending
points can come near to the geocenter, which can cause some algorithms to fail. For such
situations, a robust algorithm such as [19] is recommended. Also, the algorithms herein are
language neutral and do not depend on external packages. However, it should be noted
that efficient algorithms and packages exist for geodesics [20] when the actual geodesic
is required.

The examples herein were computed using the WGS84 reference ellipsoid. Ref. [21]
showed that the minute difference in the flattening of these ellipsoids cannot result in a
difference in coordinates at the millimeter level. So, these examples are properly illustrative
for GRS80, as well.
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Appendix A

For any geodetic reference ellipsoid, the semi-major axis a is a defining parameter.
The ellipsoid’s shape is given either by the semi-minor axis b, by the flattening f, or by
the square of the first eccentricity ϵ2. See [22] for a list of the parameter values defining
geodetic reference ellipsoids. The value for a is 6,378,137 m for the GRS 80 and WGS 84
reference ellipsoids. The values for f are 1/298.257222101 and 1/298.257223563 for the GRS
80 and WGS 84 reference ellipsoids. (This minute difference in the flattenings creates no
practical difference in the positions [21].

The flattening of an oblate ellipse is:

f = (a − b)/b

The first eccentricity squared of an oblate ellipsoid is:

ϵ2 = (a2 − b2)/a2 = 2 f − f 2

The semi-minor axis b can be computed from either the flattening or the first eccentric-
ity.

The radius of curvature in the prime vertical is N = a/
√

1 − ϵ2sin2 ϕ.
Conversion from geodetic to geocentric:

X = (N + h)cos λcos ϕ

Y = (N + h)sin λcos ϕ

Z = ((1 − ϵ2)N + h)sin ϕ

but for h = 0 :
Z = (1 − ϵ2) Nsin ϕ

The Mercator forward (direct) mapping equations take geodetic coordinates (λ, ϕ) to
Mercator grid coordinates (x, y). They are as follows:

x = a (λ − λ0)

y = a q

q = atanh(sin ϕ)− ϵatanh(ϵsin ϕ)

There is no exact algebraic expression that provides the geodetic latitude directly from
the Mercator northing, so either iterations or approximations are needed. The formulas
below follow from the mathematics in [16] and they use iteration. For longitude,

λ = λ0 + x/a

For latitude,
q = y/a

https://github.com/thomas6meyer/geodetic_curves.git
https://github.com/thomas6meyer/geodetic_curves.git
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s = Limit of s(0), s(1), s(2), . . .

ϕ = asin(s)

where:
s(0) = tanh(q)

s(i+1) = tanh(q + ϵatanh(ϵ s(i))

and asin(. . .) is the inverse sine function. The iteration is avoidable by using truncated
infinite series: “first calculate the conformal latitude chi based on the inverse of the spherical
Mercator, then use the method found in https://arxiv.org/pdf/2212.05818.pdf to calculate
geodetic latitude” (accessed 17 April 2024) (anonymous reviewer 2024).
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