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Abstract: In the field of geomatics, artificial intelligence (AI) and especially machine learning (ML)
are rapidly transforming the field of geomatics with respect to collecting, managing, and analyzing
spatial data. Feature selection as a building block in ML is crucial because it directly impacts the
performance and predictive power of a model by selecting the most critical variables and eliminating
the redundant and irrelevant ones. Random forests have now been used for decades and allow
for building models with high accuracy. However, finding the most expressive features from the
dataset by selecting the most important features within random forests is still a challenging question.
The often-used internal Gini importances of random forests are based on the amount of training
examples that are divided by a feature but fail to acknowledge the magnitude of change in the
target variable, leading to suboptimal selections. Shapley values are an established and unified
framework for feature attribution, i.e., specifying how much each feature in a trained ML model
contributes to the predictions for a given instance. Previous studies highlight the effectiveness of
Shapley values for feature selection in real-world applications, while other research emphasizes
certain theoretical limitations. This study provides an application-driven discussion of Shapley values
for feature selection by first proposing four necessary conditions for a successful feature selection
with Shapley values that are extracted from a multitude of critical research in the field. Given these
valuable conditions, Shapley value feature selection is nevertheless a model averaging procedure
by definition, where unimportant features can alter the final selection. Therefore, we additionally
present Conditional Feature Selection (CFS) as a novel algorithm for performing feature selection that
mitigates this problem and use it to evaluate the impact of model averaging in several real-world
examples, covering the use of ML in geomatics. The results of this study show Shapley values as a
good measure for feature selection when compared with Gini feature importances on four real-world
examples, improving the RMSE by 5% when averaged over selections of all possible subset sizes. An
even better selection can be achieved by CFS, improving on the Gini selection by approximately 7.5%
in terms of RMSE. For random forests, Shapley value calculation can be performed in polynomial
time, offering an advantage over the exponential runtime of CFS, building a trade-off to the lost
accuracy in feature selection due to model averaging.

Keywords: random forests; Shapley values; feature selection; resource management; model
averaging; XGBoost; gradient boosting

1. Introduction

There are many real-world problems where machine learning enables accurate pre-
dictions and, subsequently, the efficient use of resources, including in agriculture [1],
medicine [2], and logistics [3], just to name a few examples in addition to geomatics. In
the field of geomatics, artificial intelligence and machine learning are traditionally used
in remote sensing and image processing and have started to transform the entire field of
geomatics with respect to the collection, management, and analysis of spatial data [4–6].
The possible machine learning models used are plentiful, and in addition to deep learning,
random forests are used as an explainable and easy-to-train alternative [7]. Random forests
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consist of multiple binary trees that provide predictions by dividing the data following a
cascade of simple yes or no questions regarding the input. Although improving accuracy is
one research direction across all fields, it is not the only desirable goal when designing a
machine learning solution. High accuracy often comes at the cost of an extensive amount
of input features, creating an entry barrier for end users and hindering real-world adoption
of the solutions, as acquiring some features might require expensive specialized sensors or
human labor.

Given an existing machine learning solution based on random forests, we want to
answer the question of whether we can find a decrease in the number of features without
losing the accuracy of our modeling in the process. The naive solution to this problem
includes training and testing of a dedicated machine learning model on all different subsets
of features and the evaluation of the accuracies that a model trained exclusively on this sub-
set can offer. As the number of possible combinations of subsets of features is exponential
in the number of features, this is not feasible for real-world problems. The question comes
to mind about whether we can attribute importance to each feature and greedily select the
features that should be included for the final prediction model.

Shapley values [8] have gained recognition as a unified framework for feature attri-
bution, where feature attributions indicate how much each feature in a machine learning
model contributed to the predictions for each data point. In approaches of explainable
AI (XAI), where explainable predictions are requested, predictions often come along with
feature attribution information. Shapley values are developed as a solution to fairly at-
tribute resources in cooperative games in the field of game theory by Shapley [9], and with
relevance in very diverse fields [10,11], the concept can be translated for feature attribution
in machine learning by defining a game where input features are considered players and
the prediction of the model is the game. Although generally an NP-hard problem, the
calculation of Shapley value feature attributions in polynomial time for random forests was
solved by Lundberg et al. [12], allowing the adoption of the approach in many machine
learning pipelines. Naturally, feature attributions will be used as a tool to select meaningful
features, as is successfully implemented within related research [13–15]. All of these works
deploy a definition of Shapley values for feature attribution, where the value function used
to evaluate subsets of features is a so-called conditional value function that estimates the
expected conditional output of the model for a data point, assuming only a subset of the
features is known to the model, while the missing information is inferred from the data
distribution within the training data.

Although the right selection of the value function can solve most issues by using
Shapley values as a feature selection tool, there is one problem remaining: lost potential
due to the nature of Shapley values as a model averaging procedure. By definition, Shapley
value feature attributions are calculated by considering all possible subsets of features
during the calculation of the Shapley value of every singular feature. In particular, this
includes subsets of features that are not part of the optimal feature selection. Therefore,
in other words, a feature selection based on the Shapley value feature attributions is
influenced by features that should not be considered for feature selection. To evaluate
the importance of this problem, we developed a novel solution for feature selection based
on the conditional evaluation of the expected model output, called Conditional Feature
Selection (CFS). The idea of the algorithm is to perform a feature selection similar to what a
feature selection based on Shapley values would produce if the problem of model averaging
did not exist. The trade-off for this improvement comes in the form of exponential runtime
in the number of features, as without model averaging, every subset of features needs to
be looked at. We performed an extensive evaluation on multiple real-world geomatics
datasets to better understand the trade-off between runtime and the mitigation of the
model averaging problem. We use this understanding to highlight the differences between
a feature selection based on CFS and a greedy feature selection based on Shapley values.
Following the results of our experiments, we see that, especially for real-world problems
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with complex relations between the features, Shapley values can still be successfully used
as a feature selection tool.

1.1. Contributions

The main contributions to developing efficient prediction systems that forecast the
availability and developments of resources in geomatics are as follows.

• Four necessary conditions for the successful usage of Shapley values for selecting
relevant features are discussed.

• A conditional value function that fulfills all these four necessary conditions is proposed.
• An algorithmic approach to feature selection is provided to evaluate the practical

boundaries of Shapley values for feature selection given the problem of model averaging.
• The utilization of Shapley values for feature selection in representative real-world

geomatic applications is evaluated and accompanied by an in-depth explanation of
the impacts of model averaging.

1.2. Related Work

Feature selection, in general, is a very well-researched topic within the field of machine
learning [16–18]. Historically, approaches to feature selection are divided into three different
families [19].

1. Filter approaches, where the feature subset is selected based on some quality measure-
ment that is independent of any machine learning algorithm. An example of a filter
method is a correlation-based feature selection, where features are greedily selected
based on maximizing the correlation with the target variable while minimizing the
correlation to already-selected features [20].

2. Wrapper methods, where feature selection is wrapped around a machine learning
algorithm to generate a feature subset based on algorithm performance. Exemplarily,
Huang et al. [21] use a random forest to evaluate the value of a feature based on the
performance of the model when the values of a feature are randomly permuted. The
highest-ranked features are then used for feature selection.

3. Embedded methods, where we directly compute the importance of the features
based on their contribution to the machine learning algorithm. A famous example of
embedded feature selection for random forests is a greedy feature selection based on
the internal Gini importances of random forests [22].

Another related research direction is feature extraction, where the existing feature
space is altered to create new more expressive representing features in a lower dimension.
Although procedures like principal component analysis (PCA) [23] are a very common
paradigm in machine learning, we opt to focus on feature selection rather than feature
extraction, as we lose explainability when we alter the feature space [24].

Furthermore, as, throughout our manuscript, we focus on problems where we already
find a functional machine learning algorithm that should be further optimized, we will
focus on wrapper methods and embedded methods for this literature review. As random
forests have been used for several decades now, feature selection methods that wrap
random forests or decision trees are a widely investigated research topic.

Deng and Runger [25] do not select a subset of features before creating the model, but
rather encourage the correct choice of features during model creation. This is implemented
by penalizing the selection of new features within computing random forests when the
feature information content is similar to a previously selected feature. Another wrapping
method is proposed by Genuer et al. [26]. After creating a random forest, they evaluate the
importance of features by calculating the difference in error when the feature values are
randomly permuted. The deviation in error is then directly correlated with the importance
of the feature, and the most important features are selected. This idea is further explored by
the work of Gazzola and Jeong [27] by adding a clustering of data points to take advantage
of the structure of dependencies between the input features. The advantages of selecting
features based on the knowledge already provided by the previously selected features are
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suggested by Alsahaf et al. [28]. Features are selected sequentially according to the internal
importance of an extreme gradient boosting model, where, in each step, the probability of
new features being selected is adjusted by the number of misclassified training examples
for a model based on the current feature selection. A different approach is explored by
Shih et al. [29], which is not directly interested in finding a subset of features that are well
suited to retraining a machine learning model with a smaller input feature space, and
similar to our work, they focus on finding explanations based on individual data instances.
The concept of sufficient reasons explains a prediction by finding a subset of features
already sufficient such that the model output will be the same, no matter the other feature
values. Arenas et al. [30] extend this approach by not demanding the exact same model
output but a high probability of equality. Lastly, a wrapper approach is proposed for the
selection of features in random forests by Zhou et al. [31]. They calculate feature weights
dependent on the layers of the decision trees and select the feature with the largest weights
as a partition for further model creation.

With the rise of Shapley values in explainable AI (XAI), it also became an interesting
research topic to explore the possibilities of Shapley values for feature selection. One
of the main benefits of Shapley values in explainability is the ability to provide unified
feature attribution values for any kind of machine learning model. Unified explanations
are important, since inconsistencies between XAI and modeling techniques can have
undesirable effects [32], while model-agnostic methods allow for a widespread adoption of
the explanations and allow for an improved comparability of different machine learning
methods. A similar benefit is given by the popular LIME framework as introduced by
Ribeiro et al. [33], where an interpretable model is learned locally around a prediction to
produce explanations for any classifier. As with Shapley values, LIME was also investigated
as a feature selection tool [34], where, in a comparison, the top-rated features for both a
LIME and a Shapley value-based feature selection improved the performance of random
forests. In another effort to create model-agnostic explanations, the authors of LIME
introduced anchors to explain models [35]. An anchor is a locally computed sufficient set
of features and conditions such that the model output will remain the same.

One of the first works to explore the Shapley values for feature selection is [36]. After
estimating the Shapley value feature importance via sampling permutations, they introduce
the Contribution Selection Algorithm (CSA) to greedily select the most important features.
They show the best results when using the algorithm to eliminate the unimportant features,
instead of selecting the most important ones. They also investigated their CSA approach on
additional datasets in a follow-up work [37]. Marcílio and Eler [13] give a general survey
of the topic. The most important features according to TreeSHAP [12] are greedily selected,
and the accuracies reached are evaluated on several datasets, showing the capabilities
compared with other popular feature selection methods. A broad overview on the use
of the Shapley value in machine learning by Rozemberczki et al. [38] also discusses the
possibilities of Shapley values in feature selection. They see the greatest disadvantages in
the high computational complexity and note that the axioms defining the Shapley value
might not hold when approximation techniques are used. Chu and Chan [39] eliminate
the problem of additional features altering the Shapley value and, therefore, the final
selection of features. They do so by proposing an iterative feature selection approach
based not only on Shapley values but also on higher-order interactions. Although flaws in
Shapley value feature selection are prevalent, as will be further reviewed in Section 2.3 of
this work, we see multiple cases of Shapley value feature selection that solve real-world
problems. Fang et al. [40] successfully decrease the number of features needed for air
pollution forecasting in China, by selecting the most important features of an ensemble
model, including a random forest, according to the output of Shapley value-based SAGE
explanations [14]. Zacharias et al. [15] designed a framework for easy access to a wrapped
feature selection based on Shapley values and random forests. The result is a feature
selection process that includes user feedback. They are able to report nearly unchanged
accuracy for reduced feature counts on a variety of datasets. An overview of the different
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approaches for using Shapley values for feature selection is given in Table 1. Lastly, we
focus on procedures for Shapley value approximations. Strumbelj and Kononenko [41]
give a different procedure to obtain feature attributions with the Shapley value. As is
commonly done, they randomly sample permutations to reduce computational complexity
compared with calculating the exact Shapley value. The novelty of their approach is
obtaining explanations by also randomly sampling an instance from the data that serves
as the base value of the explanation in every iteration of the algorithm. Štrumbelj and
Kononenko [42] extend on this idea by improving the sampling algorithm via quasi-random
and adaptive sampling and are able to show improved explainability in an experiment
with human participants.

In total, we see that there exist multiple approaches to calculate feature attributions
with Shapley values that differ especially in terms of selecting the value function that is
used to evaluate subsets of features for the purpose of feature selection. In addition, we see
different approaches to take advantage of the calculated values to perform feature selection,
from greedy selections [40] to more elaborate algorithms [39]. Our work follows up on the
established research and is the first to conceptually define the conditions that the definition
of Shapley values should meet so that the resulting values can be used for feature selection.
Furthermore, we give the first algorithm to evaluate the impact of the model averaging
problem, which is intrinsic to any definition of Shapley values in machine learning, and we
give an extensive analysis on multiple real-world examples from the field of geomatics.

Table 1. An overview of different approaches using a Shapley value for feature selection. All existing
approaches either do not approach the problem of model averaging at all or take some measures
to reduce the effects at the cost of increased computational complexity. Regarding the necessary
conditions we will introduce later in the manuscript, we see that every Shapley value idea besides
TreeSHAP suffers at least from not fulfilling C4. Methods using SHAP and SAGE also do not meet
C2 and C3, as they include sampling data points to estimate the impact of features.

Publications Shapley Value Approach ML Methods Sampling Model Averaging

CSA [36,37] Model retraining Any Yes Weak
Greedy SHAP [15] SHAP [8] Any No Weak
SHAP + interactions [39] SHAP [8] Any No Weak
Greedy SAGE [40] SAGE [14] Any Yes Yes
Greedy TreeSHAP [13], (we) TreeSHAP [12] RF No Yes
CFS (we) Value function only RF No No

2. Shapley Values for Feature Attributions in Random Forests

We start with an informal introduction to the machine learning approach of random
forests and continue by defining a feature attribution score based on Shapley values. We
explain how this attribution is used for feature selection and what constraints the value
function needs to satisfy for a successful Shapley value implementation. Lastly, we give an
example of a value function for random forests that satisfies all four conditions.

2.1. Random Forests

The method of random forests is an ensemble learning approach to classification and
regression by constructing an ensemble of trees at training time.

With respect to regression, among the machine learning methods used in practice,
gradient tree boosting (GTB) or gradient boosted regression tree (GBRT) and especially
the XGBoost approach of Chen and Guestrin [43] have been shown to give state-of-the-art
results in many standard classification and regression benchmarks and competitions. For
example, in KDDCup 2015 [44], all teams in the top 10 used XGBoost.

A single regression tree is a set of cascading questions. Applied to a data point (i.e., a
set of features and their values), the feature values are used to answer the cascading
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questions, yielding a result value. Regression trees are trained on training data to learn the
appropriate cascade of questions.

A tree ensemble is a family of regression trees where the final prediction is the sum
of the predictions for each tree. The appropriate tree ensemble is learned from training
data by iteratively adding new trees into the given ensemble that maximize the prediction
performance of the trees already in the ensemble plus the new tree that has to be added.
Maximizing the prediction performance is performed by minimizing the residuals, i.e.,
the difference between the observed true values of the training samples and the estimated
values of the tree ensemble. In other words, for a given tree ensemble Ek of k trees and
its residuals, a new tree ek+1 that fits best to these residuals is combined with the given
ensemble Ek, which produces the boosted version Ek+1 of Ek. This is performed for k
(1 ≤ k ≤ K) iterations, until the residuals have been minimized as much as possible.
Figure 1 depicts an illustrative example from the application field of yield prediction.

− −−

− −

−

−

Figure 1. A snapshot of building a regression tree ensemble, where the second tree is chosen to
minimize the residual value (i.e., true value − predicted value = 13 kg − 12 kg) of the first tree.

2.2. Shapley Values for Feature Attributions

The Shapley value is capable of attributing resources in a cooperative game fairly
among players. A cooperative game (P, v) consists of a finite set of players P = {1, 2, . . . , p}
and a value function v : 2P → R that assigns a value to each subset (coalition) of players,
with 2P being the powerset of P. The Shapley value represents the average contribution of a
player in all possible coalitions. The Shapley value φi(v) for a player i and a value function
v is defined as follows:

φi(v) = ∑
S⊆P\{i}

|S|! (p − |S| − 1)!
p!

(v(S ∪ {i})− v(S)). (1)

The fraction is made by permuting the set of players and averaging the difference
when evaluating the value function over the coalition S with all players that precede a
player i in the given order with and without i itself. The number of players preceding in
the formula coincides with the number of players in the set S, having S! possible orders.
Similarly, players who succeed i have (p − |S| − 1)! possible orders. Normalizing with all
possible p! permutations results in the factor in Equation (1).

It is important to note that the Shapley value is the only attribution score for coopera-
tive games that satisfies the four game-theoretic properties of efficiency (i.e., the sum of the
Shapley values of all players equals the value of the grand coalition), symmetry (i.e., equal
scoring of players that contribute equally to all possible coalitions), dummy variables
(i.e., the score of a non-relevant player is zero), and additivity (i.e., combined predictions
(e.g., by a random forest R) result from adding (and averaging) the individual scores (e.g.,
of the trees of R).
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Shapley values are further leveraged to obtain explanations in machine learning
models. We assume that a dataset X ∈ Rn×m with targets y ∈ Rm is divided into data for
training and testing a machine learning model M. In this context, we interpret the set of
players P and the value function v for feature attributions. The definition of the players P
is simple, as we want to attribute a score to each feature f1, . . . , fn, so P = { f1, . . . fn}. The
value function v will be defined for a model M and a data point x that we want to explain,
so we will write vM,x. The input of the function will be a set of features S ⊆ P.

In general, two families of value functions are considered in the literature, conditional
value functions and interventional value functions. Conditional value functions define the
expected conditional output of the model at a data point, assuming that only the features
of S are known to the model, as follows:

vM,x(S) = E[M(X) | XS = xS]. (2)

Interventional value functions are motivated by causal inference. They simulate an
intervention on the features not in S, denoted as S̄, by modeling a distribution D from the
product of the marginal distributions of the features in S̄, as follows:

vM,x(S) = ED [M(xS, X S̄)]. (3)

We note that this definition of a value function allows the simulated features of S̄
to break with the correlations with the features of S, finally leading to unpredictable
model behavior.

When looking at applications of Shapley value feature attributions, the value function
is used to determine the prediction of the model when only a subset of features can
be accessed.

For a simple example, we can look at a problem where the feature space consists
of two temperature measures of the same day, and we try to predict the temperature of
the following day. Naturally, in this scenario, the two features are somehow correlated,
as the temperature can only vary so much during one day. The question of choosing a
value function now becomes the question of giving estimates of the model behavior when
one of the measurements is missing. When choosing a conditional value function, we
need to estimate the model output directly without missing information. Although there
is no general solution to this problem, we propose a solution for the concept of random
forests in Section 2.4. For an interventional value function, we do not estimate the model
output, but estimate the feature value and then use the new fully reconstructed data point
to obtain a model prediction. From an application-driven point of view of feature selection,
interventional value functions are problematic because of the difficulties of modeling
distributions, as it has to be done to estimate the missing feature value from the remaining
features of a subset. In our example, when one of the measurements is unknown, for an
interventional value function, we need to simulate its value. That could, for example,
result in merging measurements that are taken from different seasons and show a wider
difference than naturally possible in our dataset, breaking the natural correlations of the
data. Finally, this leads us to evaluating the model at a data point that is not in the training
distribution, where, especially for random forests, the model behavior is unpredictable.

2.3. Selecting a Value Function

The selected value function is integral in the successful use of the Shapley values for
feature selection. We define conditions to define a value function that enables Shapley
value feature attributions to be well suited for feature selection. The conditions are based
on a recent criticism of the Shapley values [45–48] and avoid problems that the respective
works have uncovered. While the four mentioned works [45–48] regarding this topic focus
on defining a value function for Shapley values that will cause negative examples when
applied as a tool for feature selection, we take learnings from their counterexamples and
extract necessary conditions for defining the Shapley value in a way that they can be used
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for feature selection. A detailed description of the problems and solutions will be given
below. Following the presented conditions will result in a value function well suited for
feature selection and explainability on regression trees. The conditions are as follows:

C1: The value function must not be interventional. The negative effects of interven-
tional value functions for the Shapley values in explainability and feature selection are
examined by Kumar et al. [45]. As explained above, an interventional value function will
break down with the correlations within the dataset. This will force the value function to
evaluate the model M at data points outside the distribution of training data. This can lead
to unexpected model behavior, especially for random forests.

C2: The value function should correctly attribute relevant and irrelevant features.
Huang and Marques-Silva [46] create a value function that allows a Shapley value feature
attribution to attribute no value to features that are important for model prediction. In
the same scenario, features that are not important to the model output receive a non-zero
attribution value. The choice of a value function to utilize Shapley values for feature
selection should avoid these problems.

C3: The value function should consider multiple different training data points when
estimating the expected conditional answer of the model. This property is important,
since it prevents the evaluation of the value function vM,x(S) to only consider data points
where the values of the features in the set S match the values of x. As Sundararajan and
Najmi [47] point out, this can cause problems when the data point x is unique within the
dataset. This leads to the value function always estimating the model output based on
the output of a singular data point and, subsequently, vM,x(S) = vM,x(T) for all S, T ⊆ P,
making it impossible to distinguish important features.

C4: The value function should allow the calculation of Shapley value feature
attributions in polynomial time. The problem of Shapley value calculation is known
to be NP-hard. As the number of features can be high, especially when we consider
the task of feature selection, the calculation should be feasible in a moderate time frame.
Although there exist approximation techniques for the Shapley value calculation [49,50]
that can improve the computational complexity, they add a layer of uncertainty that needs
to be considered.

2.4. A Value Function for Random Forests

To define the value function, we want to evaluate the conditional expected answer of
a random forest for a data point x. Generally, a random forest is built from multiple binary
regression trees.

For simplicity, we will describe the conditional value function vM,x(S) for the model
M to be just one singular binary regression tree given access to only a limited number of
features S. For a random forest consisting of multiple trees, we just have to repeat the
procedure and to add the results.

Therefore, we now assume the following:

• The model M is a singular binary random tree given access to only a limited amount
of features S.

• Each interior node of M consists of a feature f that is used for the test, a threshold t
that indicates at what threshold to split for the feature F at the according node into the
left or right child node.

• Each leaf node shows its output value val.
• Each node also shows its cover C, i.e., the number of training data points that reach

this node when traversing the tree.

To evaluate vM,x(S), we have to traverse the tree, starting at the root node. At each
interior node, we check whether the feature f is in the set S. If this is the case, we continue
to traverse the tree, according to the value of feature f from the data point x. This is since
we assume that the features of x in S are known. If the feature f is not in S, we need
to estimate the expected model output according to the distribution of the training data.
In this case, we will continue to traverse the tree down both child nodes, with the final
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evaluation of vM,x(S) being the weighted sum of both continuations. The weights are
determined by the fractions of training data points that flow down the regarding paths,
calculated by the cover values of the nodes.

This traversal procedure was first described by Lundberg et al. [12] and can be calcu-
lated using the recursive Algorithm 1. For the algorithm, we assume the model M to be a
single binary tree.

Algorithm 1: Conditional value function vM,x(S) for a regression tree M.
Input : S, a subset of features

x, a data point
M = {val, l, r, f , t, c}, the tree model consisting of values, left children,

right children, split feature,
threshold, and cover

Output : vM,x(S) = E[M(X) | XS = xS], the expected model output for the data
point x

1 Function traverse(node):
2 if node is internal then
3 if f [node] ∈ S then
4 nextnode = next node according to x
5 return traverse(nextnode)
6 else
7 leftpath = traverse(l[node]) ∗ c[l[node]]
8 rightpath = traverse(r[node]) ∗ c[r[node]]
9 return (leftpath+rightpath)\ c[node]

10 end
11 else
12 return val[node];
13 end
14 EndFunction

15 return traverse(0)

The defined value function has all the properties explained above.

• C1: The function is conditional and not interventional.
• C2: When considering features relevant to the model, we can define a relevant feature

as a feature capable of altering the model output. When a feature f is capable of
altering the model output, there exists at least one node within the tree that splits on
the value of f . Therefore, our value function will give a different result when evaluated
on the sets S ⊆ P\{ f } and S ∪ { f }, giving a non-zero marginal contribution and,
finally, a non-zero attribution of the feature. Similarly, features that are not relevant
and are not considered as split feature in any node within the tree will never obtain a
non-zero marginal contribution and will receive no feature attribution.

• C3: The value function will consider multiple training instances when estimating the
conditional expected answer of the model, as long as at least one relevant feature f
is missing from the set S. If a relevant feature is missing, at least two branches of the
tree are followed during the estimation of the expected answer of the model M. Both
branches represent at least one data point in the training data following the path, as
otherwise, no split at the feature f would have been possible.

• C4: The calculation of the Shapley value feature importance is possible in polynomial
time, as stated by Lundberg et al. [12] for the classical definition of Shapley values and
extended by Huber et al. [51] for groups of features.
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3. The Problem of Model Averaging

In the previous section, we explain how Shapley values must be utilized for a success-
ful feature selection. In this section, we discuss a weakness of Shapley values for feature
selection, which cannot be fixed by the choice of the value function. To evaluate the impact
of model averaging, we give an algorithm that uses the conditional value function defined
above to perform feature selection without suffering from model averaging.

3.1. Axiomatic Problems of the Shapley Value for Feature Selection

Even with a carefully selected value function, a feature selection based on Shapley
values cannot be optimal. The nature of Shapley values for feature selection as a model
averaging procedure includes measuring the impact of a feature on every possible subset
of features, as can be seen in Equation (1). What is model averaging?

In feature selection for prediction models, it is uncertain which features should be
considered for the final feature selection. Model averaging is the process of quantifying the
influence of all features with respect to the predictions [52,53]. Shapley value feature selec-
tions are a model averaging procedure by definition, as Shapley value feature attributions
are calculated by considering all possible subsets of features during the calculation of the
Shapley value of every singular feature. This results in features that are not in the optimal
feature selection that can alter the feature selection process.

For example, we can assume a scenario with two features, f 1 and f 2, that explain
the data well when selected together but poorly when selected alone. When calculating
the feature attribution for the feature f 1, the importance will not be correctly reflected,
since, for every set S within Equation (1) that does not include the feature f 2, the marginal
contribution when adding f 1 will be low! This results in a Shapley value feature selection
that might not select the features f 1 and f 2, even though their actual prediction capabilities
are high, leading to a non-optimal selection. A real-world example of this behavior is
explained in Section 4.2.

3.2. Conditional Feature Selection

As a solution to the above problem, we present an algorithm called Conditional
Feature Selection(CFS) that allows us to evaluate a feature selection S without considering
the features not in S, by simply traversing the decision tree, once. A visual summary of
the procedure is shown in Figure 2. Since we will update the estimated model answer for
all possible subsets simultaneously, we start by allocating memory for the output of all
possible 2n sets S by creating a vector out ∈ R2n

. Each set S corresponds to exactly one
entry in out, and the vector will be used to synchronize the results of multiple recursive
calls of the traverse method, each ending in a different leaf. A possible correspondence of
the feature subsets with an ordering in the vector can be found in Figure 3. Furthermore, we
use a vector weights ∈ R2n

with the same correspondence to the sets S to store weights that
are unique for every path of the tree. The weights determine to what extent the value of the
path leaf contributes to vM,x(S). Following a path and splitting at a node n with a feature f ,
for a set S, we observe three cases to update the weight. First, when f ∈ S and we follow
the path according to the value of f in x, the weights remain the same. Second, when f ∈ S
and we follow the path not according to the value of f in x, the weights are multiplied by 0.
Third, when f /∈ S, we need to estimate the behavior of the model based on the fraction
of training data points that follow both branches of the path, determined by the cover of
the node n and both children. For the following algorithm, we assume pre-processing to
generate the lists setswith f and setswithout f for each feature f . setswith f has the value 1
when f ∈ S for the set S that corresponds to the same spot in out and the value 0 otherwise.
setswithout f has the value 1 when setswith f has the value 0 at the same spot and the value
0 otherwise. An example of the two vectors is shown in Figure 3. When working with
vectors, ∗ is the scalar multiplication and ⊙ is the element-wise multiplication.
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Validation Data

E[M(X) | XS = xS]Random Forest

Feature Subsets S

Full model output

RMSE

Feature
Selection

select min

evaluate

Calculated
for all Feature Subsets S

(Algorithm 2)

CFS Overview

Figure 2. Overview of the Conditional Feature Selection (CFS) process to evaluate the problem of
model averaging for Shapley value feature selection. Algorithm 2 is used to evaluate the conditional
model output for all possible subsets of features on the validation data. A comparison by RMSE with
the full output of the full model is used to find the optimal feature selection.

All Feature Subsets f1 f2 f3 f1 f2 f1 f3 f2 f3 f1 f2 f3 ∅

1 0 0 1 1 0 1 0setswith f1

0 1 1 0 0 1 0 1setswithout f1

Figure 3. Explanation of the vectors used for the calculation of CFS for an example with three features.
Each subset is associated with a fixed position within a vector to store the weights and the output
value in Algorithm 2. The vectors setswith f and setswithout f are calculated for each feature and used
to update the weights and output values.

We can now use this algorithm to find the best selection of features S for a given
criterion. This can be a maximum number of features k to be selected or a maximum
deviation allowed from the model output given the full set of features. To find the best
feature selection, we divide a validation set V ∈ Rn×mv from our training data X ∈ Rn×m

with targets y_val ∈ Rmv . The goal of our feature selection will be to find the selection S
that minimizes the error between the output of the full model M and the expected output
of the model vM,x(S) for the data points in the validation set. To measure this error, we use
the Root Mean Squared Error (RMSE) as follows:

RMSE(ŷ, ỹ(S)) =
√

MSE(ŷ, ỹ(S)) =

√
1

mv

mv

∑
i=1

(ŷi − ỹi(S))
2, (4)

where ŷ is the output of the full model M on the validation set and ỹ(S) is the expected
answer of the model M when only the features in S are known, as it is calculated in
Algorithm 2. The whole process is shown in Figure 2.



Geomatics 2024, 4 297

Algorithm 2: Conditional value function for all S.
Input : x, a data point,

M = {val, l, r, f, t, c }, the model consisting of values, left children, right
children, split feature, threshold, and cover

Output : out ∈ R2n
, a vector storing the expected model output for every S ∈ 2P

1 out = zeros(2P)
2 weights = ones(2P)

3 Function traverse(weights, node):
4 if node is internal then
5 setswithf = vector of length 2P

6 setswithoutf = vector of length 2P // see Figure 3

7 childrenx = next children according to x
8 childrenother = children not according to x

/* fractions to update weights for setswithoutf : */

9 wx = c[childrenx] \ c[node]
10 wother = c[childrenother] \ c[node]

/* recursive call following x: */

11 traverse(setswithf + setswithoutf ∗ wx) ⊙ weights, childrenx)
/* recursive call not following x: */

12 traverse(setswithoutf ∗ wother) ⊙ weights, childrenother)
13 else

/* Update output on leaf nodes: */

14 out = out + weights ∗ val[node]
15 end
16 EndFunction

17 return traverse(weights, 0)

3.3. Runtime Analysis

The runtime of Algorithm 1 is analyzed in [12]. The complexity of a single execution
of the algorithm is proportional to the number of leaves l in the respective tree. For our use
case, we need to analyze every individual feature subset of the 2P possible feature subsets.
For an ensemble of k trees, we need to repeat this procedure k times, leaving us with a
runtime of O(kl2P). Although this runtime is still exponential in the number of features,
Lundberg et al. [12] propose an algorithm for Shapley value calculation in polynomial time
for random forests.

Algorithm 2 only needs one execution per tree, since every subset value is updated
simultaneously. In this algorithm, the element-wise multiplication in lines 12 and 13 to
update the weights is the most costly part, since all 2P subsets are updated. The number of
updates is again proportional to the number of leaves in a tree, and we need to perform
this procedure for every tree in the ensemble, again leaving us with a runtime of O(kl2P).
For practical applications, it is beneficial that the most expensive part of the algorithm is
the element-wise multiplication of two vectors, as this is a common problem and offers
multiple ways of efficient implementation using GPU acceleration [54,55].

It is not possible to improve the runtime of CFS by applying the same idea as for
the fast calculation of the Shapley values. The main concept is to iteratively update the
calculated Shapley values when traversing the tree, removing the need to track the value
function for every existing subset of players. However, for CFS, we are relying on tracking
the change in every subset, making a runtime of O(kl2P) the best we can reach.

3.4. CFS Example

To further increase the understanding of the differences between the CFS algorithm
as an exhaustive feature selection tool and the Shapley values as a heuristic approach,
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we present an example. We use Algorithm 2 to compare CFS and Shapley value feature
selection for the example shown in Figure 4. For better readability, we omit the brackets for
the feature sets and write F12 for {F1, F2}. After the first call of traverse, we will only track
the next recursive function calls for the internal nodes or the update of the output for leaf
nodes. First, we initialize the following:

all subsets = [∅, F1, F2, F12]
setsWithF1 = [0, 1, 0, 1]
setsWithoutF1 = [1, 0, 1, 0]
out = [0, 0, 0, 0]
weights = [1, 1, 1, 1]

K1
F1 > 0

100

K2
F2 > 10

20 K3
F1 < 10

80

K4
v = 1

10 K5
v = 2

10 K6
v = 3

30 K7
v = 4

50

Model M

F = {F1, F2}

x = [5, 15]

Figure 4. An example model for a prediction problem consisting of two features F = {F1, F2}. The
first row in each node shows its name; the second shows the split condition for internal nodes and the
output value for leaf nodes. Meeting the condition of an internal question node (i.e., “yes”) means
following the right-hand path. Otherwise, the left-hand path is chosen. The example data point
x = [5, 15] follows the right path in each node, as indicated by the orange arrows. Lastly, the red
number shows the cover for each node.

Algorithm 2 starts with traverse([1,1,1,1], K1). According to the data point x, we would
follow the right path in the tree towards node K3. This determines childrenx and chil-
drenother in lines 7 and 8 of Algorithm 2. The two weights are then updated according to
the cover of the two nodes in lines 9 and 10. For both children, we start the next recursive
call of the algorithm.

split feature = F1
childrenx = K3
childrenother = K2
wx = 80/100
wother = 20/100
recursive call : traverse(([0, 1, 0, 1] + [ 8

10 , 0, 8
10 , 0])⊙ [1, 1, 1, 1], K3) [1]

Update with full weight when F1 is known and partial weights when not
recursive call : traverse([ 2

10 , 0, 2
10 , 0]⊙ [1, 1, 1, 1], K2) [2]

Update with zero weight when F1 is known and partial weights when not

[1] traverse(([ 8
10 , 1, 8

10 , 1]), K3)

recursive call : traverse(([0, 1, 0, 1] + [ 5
8 , 0, 5

8 , 0])⊙ [ 8
10 , 1, 8

10 , 1], K7)[3]
recursive call : traverse([ 3

8 , 0, 3
8 , 0]⊙ [ 8

10 , 1, 8
10 , 1], K6) [4]
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[3] traverse(([ 1
2 , 1, 1

2 , 1]), K7)

out = [0, 0, 0, 0] + [ 1
2 , 1, 1

2 , 1]∗4 = [2,4,2,4]
The value 4 of leaf K7 is added to the output
The weights reflect that the value is added fully for sets including F1
For sets not including F1 1

2 of training examples reach K7

[4] traverse(([ 3
10 , 0, 3

10 , 0]), K6)

out = [4, 2, 4, 2] + [ 3
10 , 0, 3

10 , 0] ∗ 3 = [ 29
10 , 4, 29

10 , 4]
The value 3 of leaf K6 is added to the output
The weights reflect that no value is added for sets including F1
For sets not including F1 3

10 of training examples reach K6

[2] traverse(([ 2
10 , 1, 2

10 , 1]), K2)

recursive call : traverse(([0, 0, 1, 1] + [ 1
2 , 0, 1

2 , 0])⊙ [ 2
10 , 0, 2

10 , 0], K5) [6]
recursive call : traverse([ 1

2 , 1
2 , 0, 0]⊙ [ 2

10 , 0, 2
10 , 0], K4) [7]

[6] traverse(([ 1
10 , 0, 2

2 , 0]), K5)

out = [ 29
10 , 4, 29

10 , 4] + [ 1
10 , 0, 2

10 , 0] ∗ 2 = [ 31
10 , 4, 33

10 , 4]
The value 2 of leaf K5 is added to the output
When F1 is known, K5 is never reached and no value is added

[7] traverse(([ 1
10 , 0, 0, 0]), K5)

out = [ 31
10 , 4, 33

10 , 4] + [ 1
10 , 0, 0, 0] ∗ 1 = [ 32

10 ,4, 33
10 ,4]

The value 1 of leaf K4 is added to the output
Only when F1 and F2 are unknown the path is followed to add value

The result [ 32
10 , 4, 33

10 , 4] can now be directly interpreted as the expected output of the
model M for the data point x when we only assume access to the information in the subsets
of features [∅, F1, F2, F12]. In the case of this model, we see that the answer when only
F1 is known is the same as when both F1 and F2 are known. In general, the idea of CFS
is to find the combination of features that minimizes the difference between the expected
model answer for the feature subset and the output of the full model. We see that the main
contribution to the runtime comes from the element-wise multiplication ⊙. For n features,
the operation adds 2n multiplications per weight update, growing exponentially in the
number of features. We can now use the obtained values to calculate the following Shapley
values ϕF1 and ϕF2:

φF1(v) = 1
2 (4 −

33
10 ) +

1
2 (4 −

32
10 ) = 0.75

φF2(v) = 1
2 (4 − 4) + 1

2 (
33
10 − 32

10 ) = 0.05

In this case, the Shapley values hint towards the same selection as CFS, as ϕ1(v) reveals
the higher impact of feature F1 on the model output. We saw in the previous example that
the evaluation of the expected model output for decision trees makes it necessary to track
2n weights for every path in the tree. Shapley values can be calculated by only tracking
2 ∗ n values for every path, since each path has a positive and a negative contribution to
the calculation of the Shapley value according to Lundberg et al. [12]. The contribution
is positive for every occurrence of the path in the calculation of v(S ∪ i) in Equation (1).
To occur in this calculation, the path must be as indicated by the example x on every split
that includes the feature Fi. First, we calculate φF1. We do so by listing the positive and
negative impacts on the final Shapley value of every path of the model, represented by the
leaf node the path ends in as follows:
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K4: pos = 0

neg = 1
2 ∗ 2

10 ∗ 1
2

φF1 = 0 − 1
20 ∗ 1

K6: pos = 0

neg = 3
10

φF1 = − 7
20 − 3

10 ∗ 3

K5: pos = 0

neg = 1
2 ∗ 20

100 ∗ 10
20 + 1

2 ∗ 2
10

φF1 = − 1
20 − 3

20 ∗ 2

K7: pos = 1

neg = 5
10

φF1 = − 25
20 + (1 − 1

2 ) ∗ 4 = 0.75

Now for φF2, first, we note that the paths ending in K6 and K7 have no impact on φF2,
as the feature does not appear within the paths, and thus the positive and negative contri-
butions on the Shapley value will always be equal. We note the following remaining paths:

K4: pos = 0

neg = 1
2 ∗ 1

10 + 1
2 ∗ 0

φF2 = 0 − 1
20 ∗ 1

K5: pos = 1
2 ∗ 0 + 1

2 ∗ 2
10

neg = 1
2 ∗ 2

10 ∗ 10
20 + 1

2 * 0

φF2 = − 1
20 + ( 1

10 − 1
20 ) ∗ 2 = 0.05

We note that, for the example, the amount of calculations needed for both problems
is roughly the same, as we have only two features. However, the Shapley value calcu-
lation for random forests will scale linearly in the number of features, while CFS will
scale exponentially.

In summary, we now discuss two different procedures for feature selection. On the
one hand, we have a heuristic feature selection approach by using Shapley values as a
model averaging procedure. On the other hand, we introduce CFS as an exhaustive feature
selection tool to avoid model averaging. However, with respect to runtime, we will see that
Shapley value feature selection outperforms CFS for random forests. We will now evaluate
both procedures in an experimental setting featuring real-world problems from the field
of geomatics.

4. Experiments

In this section, we evaluate three different options to select features to preserve model
performance in well-known real-world geomatics datasets. As a baseline and representation
of the state of the art, we use the internal Gini feature importances of random forests. We
show how a greedy selection of features by Shapley value feature importances improves
over the state of the art and evaluate the impact of model averaging by discussing the
results of the CFS algorithm. First, we give an in-depth explanation of a selected real-world
example that highlights the differences between CFS and greedy Shapley value feature
selection. Following this, we show the results of further experiments on different datasets.

4.1. Experimental Design

To evaluate the three different feature selection methods and to build our base model
M, we use the popular eXtreme Gradient Boosting (XGBoost) [43] to build a random forest.
XGBoost builds the trees sequentially, where each tree is designed to reduce the residual er-
ror of the already-existing ensemble. For hyperparameter tuning, a Tree-Structured Parzen
Estimation (TPE) [56] is applied. This is a sequential model-based optimization approach.
Models are constructed sequentially to approximate the performance of the model for a
set of hyperparameters based on historical measurements. TPE estimates the underlying
relations between a quality measure and the hyperparameters by exposing the underlying
expression graph of how a performance metric is influenced by the hyperparameters. For
this study, the Python implementation of TPE within the Optuna framework is used to
tune the hyperparameter for each selection of subsets [57] and run for 25 iterations without
any additional pruning involved to optimize accuracy in a fivefold cross-validation of the
training data.
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The three different feature selection methods evaluated are implemented as follows:
First, we use the internal Gini feature importances of the random forests as a baseline and
representation of the most used feature selection methods in practical applications. The
feature selection is performed by greedily selecting the highest scoring feature according
to the internal feature importance from XGBoost as a baseline selection. To calculate the
internal Gini feature importance for a feature, we evaluate all splits made with the help of
the features. The Gini entropy is calculated according to the amount of training data that
are divided by the split, and lastly, all are added up. As a second approach, we evaluate
the feature selection achieved by greedily selecting the feature with the highest absolute
Shapley value in each iteration. This method represents the core question of our manuscript,
whether Shapley values can be used for feature selection in such a fashion. Lastly, we have
our novel approach of CFS that can be seen as a way of using the idea of Shapley values
for feature selection, without suffering from model averaging, and thus can be used to
evaluate the impact of model averaging on different datasets and raise our understanding
of the problem. We perform our experiments by selecting a subset of every size with each
of the three feature selection methods. We then optimize and train a new model on the
subset of features to report the resulting accuracy on the testing data. With this procedure,
good feature selections should result in high accuracy and low prediction error, giving us a
ranking of the feature selection processes.

4.2. Explaining Model Averaging on a Real-World Problem

We start our experimental evaluation by taking a more in-depth look at a real-world
problem to understand the conditions that cause model averaging to be a problem for
Shapley value feature selection. We use the bike rental dataset from the UCI machine
learning repository [58]. The dataset is often investigated within the literature [59] and has
many advantages in explaining feature selection. Most importantly, we can understand
the problem and the features involved. The target variable is the number of bikes rented
in an hour through the Capital Bikeshare system in Washington DC, USA. The features
we use are described in Table 2. We choose this dataset to discuss model averaging since
its features have interesting relations. The feature year is important without considering
any other feature, since the values for 2013 are generally higher than those for 2012. The
mean for all data points in 2012 is 143 bikes rented, and for 2013, it is 234 bikes rented.
The features of holidays, weekdays, and workdays also have an interesting relationship
with each other. The weekday and holiday features can be used to reconstruct the workday
feature, since a workday is a day not on the weekend, where no holiday occurs. Finally, we
see a strong correlation between temperature and perceived temperature, with a Pearson
correlation coefficient of 0.988.

For this dataset, we select subsets of all sizes from 1 to 11 with three different selection
procedures. In the analysis, we especially focus on the difference between the Shapley
value feature selection and CFS. The results are shown in the top-left graph of Figure 5.
Differences occur for selections of sizes 2, 3, and 4. The Shapley value feature selection for
size 2 consists of the features year and hour, while CFS selects temperature and hour. While
the hour is the same in both selections, we are able to see a problem with model averaging
for the Shapley value feature selection. This is because the feature year is important when
adding it to any subset of features, which is good for achieving a high Shapley value.
However, the feature temperature is more important to estimate the number of bikes rented.
This can be specified by training a simple linear regression on the features temperature
and year, exclusively. Although the regression for year has an RMSE of 176 bikes, the
temperature-based regression only has an error of 167 bikes. The temperature variable
is selected later by the Shapley value feature selection, since sets that already include
the highly correlated perceived temperature lower the Shapley value feature attribution
and delay the selection of an important feature. This shows how model averaging can
be problematic.



Geomatics 2024, 4 302

2 4 6 8 10
Feature subset size

50

100

150

R
M

SE
 in

 #
bi

ke
s

Feature Selection for Bike Rental Prediction

Gini
Shapley value
CFS

1 2 3 4 5 6 7 8 9 10 11
Feature subset size

0.25

0.30

R
M

SE
 in

 m
g/

m
3

Feature Selection for Air Quality Prediction

Gini
Shapley value
CFS

2 4 6 8 10 12
Feature subset size (number of selected groups)

4.5

5.0

5.5

6.0

6.5

R
M

SE
 in

 b
u/

ac

Feature Selection for Soybean Yield Prediction

Gini
Shapley value
CFS

1 2 3 4 5 6 7 8 9 10 11 12
Feature subset size

5.5

6.0

6.5

7.0

R
M

SE
 in

 1
00

0$

Feature Selection for Boston House Price Prediction

Gini
Shapley value
CFS

Figure 5. Further experiments on selecting features with the three different approaches. The experi-
ments indicate that both greedy feature selection according to Shapley values and the selection with
CFS constantly outperform the often-used greedy selection according to the internal Gini feature
importances from random forests. This is indicated by the blue line, which mainly shows the largest
prediction error for the different feature subset sizes.

Table 2. In-depth description of the features used to predict the amount of bikes rented within the
hour. This detailed table is the basis for explaining the impact of model averaging on using Shapley
values as a feature selection tool on a real-world example.

Feature Description

year The year the bike rental took place. Either 2012 or 2013.
month The month the bike rental took place. Values 1 to 12.
hour The hour during the day the bike rental took place. Values 1 to 24.
holiday Was the bike rented on a holiday? Values 0 or 1.
weekday Day of the week the bike rental took place. Values 1 to 7.
workday Was the bike rented on a regular working day? Values 0 or 1

weather situation Integer evaluation of the weather condition. Values from 1—good to
4—bad.

temperature Temperature when the bike rental took place. Normalized between 0
and 1.

perceived temperature Perceived temperature when the bike rental took place. Normalized
between 0 and 1.

humidity Humidity when the bike rental took place. Normalized between 0 and 1.

wind speed Wind speed when the bike rental took place. Normalized between
0 and 1.

rush hour Was the bike rented during rush hour (7:00 to 9:00 or 17:00 to 19:00)?
Values 0 or 1.

For the feature selection of size 3, the Shapley value feature selection method selects
the feature temperature next. The CFS algorithm adds the feature workday to the feature
selection. Again, due to model averaging, the Shapley value feature selection does not
select the best feature, as year again adds value to every possible subset, but the feature
workday is not yet chosen due to the relations to the other features weekday and holiday.
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Therefore, for a selection of size 3, both approaches include the features temperature and
hour. Understanding why adding the feature workday is advantageous only is possible
when considering the whole situation, including the feature relations, as a linear regression
model trained on workday alone has the highest error of all features with an RMSE of
182 bikes. However, CFS reveals that combining the three features in a random forest
allows the RMSE to drop from 106 to 83 bikes by including the feature. For subsets of size
4, both approaches add the feature rush hour to the selection, still inheriting the problems
of the previous selection. From now on, both approaches add the same features to the
selection. Furthermore, both approaches consistently beat the Gini feature importance in
terms of RMSE.

4.3. Further Experiments

We solidify our results by performing more experiments on two datasets taken from the
well-known UCI machine learning repository and an additional application from soybean
yield prediction with an extended feature space. The experimental setup is the same as
explained in Section 4.1. The first additional dataset we analyze is about the prediction of air
quality [60]. The dataset consists of 9358 instances consisting of 12 features that can be used
to estimate the hourly CO concentration measured in mg/m3 in an Italian city. The second
experiment carried out within our work is the prediction of house prices in Boston [61].
Here, the dataset consists of 505 data points from the year 1970, where 13 variables describe
features of the house and the corresponding neighborhood. The target price is the price
of the house in USD 1000. Lastly, we include a dataset with a more extensive feature
space to predict soybean yield in bu/ac within the United States. One bu/ac is the same as
0.0673 t/ha. The dataset is the same as described in [62], and we focus on the prediction
of the yields in the year 2022. The 1129 input features consist of different measurements
extracted from remote sensing satellite observations and handcrafted features. For our
analysis, the features are grouped according to the satellite sensors used for data acquisition,
together with one group for all hand-crafted features, resulting in 13 different groups that
can be selected during the feature selection process. To calculate the Shapley values, we
use the extension of Shapley values for groups of features as it is introduced in [51] and use
a similar extension for our CFS algorithm.

We can use the results of the experiments to gain more insight about the model av-
eraging problem and the connected strength to mitigate model averaging with CFS. For
model averaging to become problematic in Shapley value feature selection, we need two
conditions to be met. First, we need to find two or more features that are correlated or
contain similar information. Second, we need a different feature that has fewer capabilities
when used within a prediction model but is mostly unrelated to the rest of the dataset. Due
to the Shapley value feature importance being averaged over the marginal contribution to
every feature subset, the Shapley value of the features with similar information is lowered
every time they are added to a subset where the other features are already present. This
finally results in the feature that is mostly unrelated to the rest of the dataset but with lower
prediction capabilities to be selected first. Taking this insight, we can analyze the results in
the air prediction dataset on the top-right corner of Figure 5. The selection from Shapley
value feature selection and CFS is mostly the same, with the first distinction being made
for feature subsets of size 8. This is because the seven most important features for the pre-
diction problem are all highly correlated with each other, with absolute Pearson correlation
coefficients above 0.9. The first difference in selection occurs when the previously described
conditions are met. The features relative humidity and temperature are highly correlated
with a Pearson correlation coefficient of −0.77, while the feature absolute humidity is
left to select with all correlations within the dataset being lower. CFS is able to correctly
attribute higher prediction capabilities of relative humidity, while the correlation with the
temperature hinders the Shapley value feature selection from doing so. For soybean yield
prediction, we see that CFS and Shapley value feature selection produce identical feature
subsets. This can be explained by using groups of features in this example, where highly
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correlated features can only be selected as a whole group. In this scenario, it is very unlikely
that the remaining feature groups contain similar information, and model averaging is
not a real issue for this dataset, resulting in CFS and Shapley value feature selection being
equally potent. Lastly, we have the Boston house price prediction dataset where, again,
the first feature selections are the same. A change occurs for the fourth selected feature
where CFS selects a feature describing the amount of nitrogen oxides in the air that is highly
correlated with two other features, the amount of industry in the area and the average
distance to the next Boston employment centers, finally leading to Shapley value feature
selection providing different results. In summary, the experiments show how different
correlations within the dataset can hinder Shapley values to find the optimal selection of
features based on features that are not part of the optimal selection of a given size.

Throughout all experiments, we observe similar behavior of the three different feature
selection approaches. Looking at the averaged RMSE values for all possible subset sizes
in Table 3, we see that the Shapley value feature selection approach and CFS are always
very close together in terms of accuracy, with the CFS algorithm having a small advantage
for every dataset but for the soybean yield prediction, where the two approaches produce
identical feature subsets. On the same note, we see greedy feature selection according to the
internal Gini feature importances, which performs significantly worse for all our datasets,
when compared with the other approaches. A detailed illustration of the results in Figure 5
shows the same picture as the table. The green and orange lines, showing the results for
CFS and Shapley value feature selection, respectively, are always very close together, with
the blue line showing the results of the internal Gini feature importances mostly lying
above the other two approaches.

Table 3. The averaged accuracy of the models trained on the feature subsets selected with the three
different feature selection approaches, with the best values in each row highlighted in blue. The
regarding units are explained in Section 4.3. We see a general tendency for the CFS algorithm to
outperform the competition. However, the differences between the greedy Shapley value selection
and the CFS algorithm stemming from the problem of model averaging within the Shapley value
feature selection are rather small. The best value is highlighted in blue.

Average RMSE over All Subset Sizes (Runtime)
Dataset Shapley Value CFS Gini

Bike Rental 71.38 bikes (1.02 s) 66.79 bikes (21 m) 81.68 bikes
Air Quality 0.27 mg/m3 (0.42 s) 0.26 mg/m3 (7 m) 0.28 mg/m3

Soybean Yield 4.76 bu/ac (3 s) 4.76 bu/ac (18 m) 5.29 bu/ac
Boston House Price 5.63 k$ (0.27 s) 5.55 k$ (11 m) 5.64 k$

4.4. Runtime Experiments

The computational complexity and subsequent runtimes are a crucial consideration
when choosing which feature selection method to apply. After we have established a slight
advantage in accuracy of the models trained on feature subsets selected by CFS, when
compared with greedy Shapley value feature selection, we can take a deeper look into the
runtimes. For real-life examples, we add the runtimes in Table 3 to calculate all Shapley
values and to calculate the expected model output for every possible feature subset with
CFS, given 1000 reference data points and 500 trees within our random forest. For the
Boston house price dataset, we time the procedure for 500 reference data points and double
the results for a fair comparison, as the dataset does not contain 1000 data points. We note
that the Shapley value calculation with the algorithm in [12] can be performed in a matter
of seconds, while we need multiple minutes to calculate CFS. The calculation times for the
internal Gini importances are omitted, as they are calculated immediately after creating the
trees. To further analyze the matter, we conduct another experiment. Without grouping
features, our soybean dataset consists of 1129 features. We gradually restrict the dataset to
contain only f features, with f ∈ [5, 15]. As the performance of the prediction model is the
first priority in this experiment, we use XGBoost to build a random forest with 100 trees,
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using the default parameters. In Figure 6, we plot the elapsed time in seconds as a function
of the number of features and observe that the elapsed time grows exponentially in the
number of features, which is indicated by the runtime in O(kl2P). Further experiments
indicate that the number of reference data points and the number of trees provide a linear
scaling of the problem. Meanwhile, the runtime to calculate Shapley values on random
forests remains at a few seconds, even for the entire dataset of 1129 features.
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Figure 6. The elapsed runtime in seconds as a function of the features within the dataset. We see that
the CFS algorithm scales exponentially in the number of features.

5. Discussion

Given a machine learning problem with a dataset and an existing model M, the subject
of this article is the research question of whether Shapley values can be used as a tool to
select a subset of features in a way that reduces the amount of input features and, therefore,
the overhead in data acquisition, while the accuracy of the model M is conserved as much
as possible. When approaching this question from a theoretical standpoint, we are able
to formulate five possible challenges for Shapley value feature selection. Four of these
challenges are exposed by related literature to the topic and are focused on constructing
counter-exemplified examples for Shapley values as a feature selection tool by defining
value functions that lead to the Shapley value feature selection to violate certain desired
properties. The first contribution of our work is defining four conditions, C1 to C4, that
need to be fulfilled by the value function, when Shapley values should be used for feature
selection. We find that the conditional value function as defined in Algorithm 1 can satisfy
all the conditions. The experiments carried out within Section 4 show that the resulting
definition of Shapley values is indeed suitable for feature selection and outperforms the
internal Gini feature importances of random forests as a benchmark, when both are used
within a greedy feature selection algorithm. This is in line with other related works on
the topic as presented in Section 1.2. The Shapley value feature importances are a better
heuristic for the greedy feature selection, as the Gini importances focus only on the amount
of training examples that are divided by a feature, but not directly on the impact on the
target variable, when the feature is changed. This is the strength of Shapley values in
machine learning and leads to a better quantification of the importance of a feature to
the model and, therefore, to an importance score, well suited to select the most important
feature to preserve the models’ performance on a subset.

However, we further analyze that there is a problem with Shapley values for feature
selection that cannot be solved through the choice of the right value function. Shapley
values, by definition, suffer from the problem of model averaging when they should be
applied for feature selection. This means that the Shapley value of an individual feature is
influenced by features that are not in the desired final selection, and the greedy selection
according to Shapley values will be suboptimal. We introduce a novel approach, CFS,
to isolate the impact of unselected features and measure the impact of model averaging
in several real-world problems. The experiments, in general, support the existence of
model averaging as a problem, where CFS outperforms Shapley value feature selection
on all selected datasets, as shown in Table 3. An in-depth analysis of the different feature
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selections in the bike rental dataset in Section 4.2 shows that the correlation between features
and, in particular, the possibility of reconstructing the feature values from one another is a
crucial factor when model averaging hinders Shapley value feature importances to indicate
the optimal selection of features. This conclusion is also supported by the soybean dataset,
where similar features can only be selected as groups, and therefore, the respective groups
cannot be reconstructed from the remaining ones. That being said, we need to note that
the CFS algorithm is computationally expensive, when compared with Shapley values, at
least for random forests, where Shapley values can be calculated in polynomial time. This
suggests a research direction where the use of CFS is further explored.

Compared with other feature selection methods within the literature, first and fore-
most, we have to compare CFS with the Gini importance [22] as one of the most used feature
importance measures for random forests. Its use comes from the integration into popular
machine learning frameworks [63] together with the fast runtime, which allows constant
evaluation within a machine learning project. However, we see that the fast runtime comes
at the cost of accuracy, when we compare the reached accuracies for feature selections
from greedy Gini feature selection with Shapley values and CFS within our experiments.
On the other side of the spectrum of the trade-off from runtime and accuracy, we have a
selection by a mean decrease in accuracy [64], where the random forest is retrained without
a feature present, and the decrease in accuracy is attributed to the importance of the feature.
While the evaluation for a singular feature with this method is very precise, it fails to
acknowledge feature interactions. Here, Shapley value feature importances and CFS are
advantageous, as they evaluate subsets of features and can therefore account for feature
interactions. Lastly, we have to look at other approaches of using Shapley values for feature
selection, like we established in the related work section of this manuscript. The biggest
problem here is again the runtime of the approaches and the shortcomings regarding our
defined necessary conditions for Shapley value feature selection, when we have to use a
sample-based method to estimate the value function within Shapley value calculation, like
it has to be performed for SHAP [8] or SAGE [14].

However, although CFS is formulated for random forests, the idea of evaluating the
same value function as used in Shapley value calculation to minimize the error for feature
selection can be transferred to other machine learning algorithms. For example, there
exist Shapley value calculation procedures for deep learning applications. When exploring
these options, the Shapley value calculation loses its advantage of fast calculations, as
calculating Shapley values on arbitrary models remains NP-hard. Furthermore, restricting
the number of subsets that should be considered for feature selection can further improve
computational complexity and allow the evaluation of problems that include a larger
feature space with CFS.

However, for the applications at hand, the improvements in accuracy that we were able
to find with our experiments indicate that the trade-off between computational complexity
and gained accuracy when circumventing the problem of model averaging hints at using
Shapley values for feature selection for applied problems. Finally, the best solution is to be
picked individually by deciding on a trade-off between accuracy and runtime, between
CFS and Shapley values for feature selection, while both approaches are to be preferred
over using the internal Gini importances of random forests for feature selection.

6. Conclusions

This study provides an in-depth analysis of the Shapley values for the selection
of features for datasets from the field of geomatics. The topic of feature selection with
Shapley values has been widely discussed within the field. On the one hand, we find many
successful applications of the Shapley value for feature selection; on the other hand, we can
find works describing the theoretical boundaries of the approach. Our contributions to the
discussion with an application-driven study of Shapley values for feature selection can be
summarized as follows:
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• The definition of four necessary conditions helps to define a Shapley value that can be
used for selecting relevant features.

• The model averaging problem is intrinsic to the definition of Shapley values. We
provide CFS as an algorithm for feature selection without model averaging to allow
for a quantitative evaluation of the impact of the problem.

• The evaluation of CFS and Shapley values for feature selection in multiple real-world
applications reveals a trade-off between runtime and accuracy when calculated on
random forests.

In the future, we will build on our previous work [51] and further explore feature
selection for predefined groups of features. This is crucial in contexts where multiple
features are extracted from the same source, making it suboptimal to select only a subset
from a single source. We will investigate more use cases for this approach, such as yield
prediction. Another interesting research direction will be to improve the runtime of CFS,
by either limiting the search space or applying sampling strategies. Additionally, we aim
to explore a CFS approach motivated by the Shapley value definition within the SHAP
framework. Using sampling of similar data points could estimate the model’s performance
on a feature subset, thus removing the restriction of CFS to random forests, where Shapley
value feature importance benefits from fast computing times.
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