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Abstract: Climate variability significantly impacts plant growth, making it crucial to monitor ecosys-
tem performance for optimal carbon sequestration, especially in the context of rising atmospheric
CO2 levels. Net Primary Productivity (NPP), which measures the net carbon flux between the atmo-
sphere and plants, serves as a key indicator. This study uses the CASA (Carnegie–Ames–Stanford
Approach) model, a radiation use efficiency method, to assess the spatio-temporal dynamics of
NPP in Togo from 1987 to 2022 and its climatic drivers. The average annual NPP over 36 years is
4565.31 Kg C ha−1, with notable extremes in 2017 (6312.26 Kg C ha−1) and 1996 (3394.29 Kg C ha−1).
Productivity in natural formations increased between 2000 and 2022. While climate change and
land use negatively affect Total Production (PT) from 2000 to 2022, they individually enhance NPP
variation (58.28% and 188.63%, respectively). NPP shows a strong positive correlation with light use
efficiency (r2 = 0.75) and a moderate one with actual evapotranspiration (r2 = 0.43). Precipitation and
potential evapotranspiration have weaker correlations (r2 = 0.20; 0.10), and temperature shows almost
none (r2 = 0.05). These findings contribute to understanding ecosystem performance, supporting
Togo’s climate commitments.

Keywords: net primary productivity; remote sensing; CASA model; plant production; climatic
variables; Togo

1. Introduction

Vegetation is of great importance in the interaction between the biosphere and the
atmosphere as it helps modulate regional and global climate [1–4]. From 1980 to today,
Earth has experienced dramatic environmental changes, particularly in terms of climate [5].
Human activities, such as slash-and-burn agriculture, logging, grazing, fishing, intensive
livestock farming, urbanization coupled with climate change, directly alter the struc-
ture and functioning of ecosystems. This situation has led to an increase in the number
of protected areas worldwide in recent decades [6,7] to create biodiversity refuges and
unique ecosystems.

Monitoring forest cover and related changes over time has become essential in many
environmental management strategies, particularly to reduce emissions resulting from
deforestation and forest degradation [8]. Indeed, variations in atmospheric CO2 concentra-
tions and global climate change have heightened the need to better understand ecosystem
carbon cycle responses to environmental changes [9].
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Recent research on the terrestrial carbon cycle has aimed to improve estimates of
carbon storage and fluxes and to deepen the examination of variations between regions
and continents [10]. NPP, representing the net carbon flux from the atmosphere to green
plants per unit time, is a key parameter of the carbon cycle and an important indicator
of ecosystem status [11–13]. Estimating this key parameter is very useful for modeling
regional and global carbon cycles and is performed using several models, including those
based on radiation use efficiency (LUE) [14–23], empirical models [24,25], and enzymatic
kinetic models [26–28].

The usefulness of NPP estimates from MODIS satellite data in various ecosystem
studies is well-established [19,29–32] with the increase, availability, and free access to
these quality data. These NPP estimation methods are especially important for developing
countries as many lack the technology for on-ground estimation of this key parameter.
According to Bradford, Hicke [33], regional and global NPP studies using a LUE-based
model require accurate estimates of the photosynthetically active radiation absorbed by
vegetation (APAR) and LUE.

Togo, a country in West Africa, faces significant degradation of its forest ecosystems,
leading to a substantial loss of vegetation cover, biodiversity, and soil quality [34]. Land use
dynamics, primarily driven by agriculture and deforestation, contribute to greenhouse gas
(GHG) emissions and exacerbate the negative impacts of climate change [35–37]. As a sig-
natory to the United Nations Framework Convention on Climate Change (UNFCCC), the
Kyoto Protocol, and the Paris Agreement (COP 21), the country has undertaken efforts to
combat climate change. It has committed to reducing greenhouse gas emissions by 50.57%
by 2030, contributing to the global effort to limit global warming below 2 ◦C by 2030 [38].
Togo’s government roadmap for 2020–2025, in its Section 3, aims to promote sustainable de-
velopment and anticipate future crises as a priority, addressing major climate risks (Project
35), the green mobility program (Project 36), and the reform of environmental legislation
(Project 37). These projects aim to increase the country’s forest cover to 25% to achieve
a 10% increase in carbon sequestration by 2030, including continued afforestation efforts
to plant one billion trees by 2030. Given these actions to mitigate climate change effects,
monitoring ecosystem performance is necessary. According to Xie, Ma [39], vegetation
NPP is a commonly used measure to assess carbon storage levels in ecosystem restoration
projects. Climate change and human activities are the factors influencing NPP [40–42]. This
study aims to contribute to a better understanding of the spatio-temporal dimensions of
ecosystem productivity in relation to climatic variables. Specifically, it involves estimating
NPP in a time series, assessing NPP dynamics of ecosystems, evaluating the impact of
climate change and land use change on total production (PT) variation, analyzing the
correlation between mean NPP and climatic variables. The research questions raised are:
what is the performance of Togo’s ecosystems over the past three decades? What are the
spatio-temporal distribution and trends of NPP in the study area? Which ecosystems
sequester more carbon? What are the impacts of climate change and land use change on PT
variation? What are the climatic variables that have determined and influenced the NPP of
ecosystems in Togo during this time leap?

2. Materials and Methods
2.1. Study Area

The study was conducted in Togo, a country on the West African coast (Figure 1)
located between 6 and 11◦ latitude North and 0 and 2◦ longitude East. Covering an area
of 56,600 km2, it is subdivided into 39 prefectures grouped from the coast inland into
five economic regions: the Maritime region, the Plateaux region, the Central region, the
Kara region, and the Savanes region. The terrain is mostly flat, except for the Atakora
chain that crosses the country diagonally from the Southwest to the Northeast, with peaks
reaching about 800 m in the south and 500 m in the north [43] with Mount Agou, the
highest peak in the country, rising over 900 m in the southwest. Located in the intertropical
zone, Togo enjoys a Guinean tropical climate with four seasons in the southern part and a
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Sudanese tropical climate with two seasons in the northern part. The Maritime and Savanes
regions receive less than 1000 mm of water per year. Togo’s water resources are quite
abundant. They consist of surface waters drained by the three main watersheds (Oti: 47.3%,
Mono: 37.5%, Lake Togo: 6%) and renewable groundwater contained in the two aquifers
of the basement and the coastal sedimentary. With a forest cover of 24.24% (IFN, 2016),
Togo’s biological resources are numerous and diverse. Vegetation formations consist of
semi-deciduous dense forests, Guinean savannas, Sudanese savannas interspersed with
dry forests or clear forests, gallery forests, and riparian forests. Phytogeographically, Togo
is divided into five ecological zones (Figure 1) [44]. Ecological zone I, which is the northern
plains zone, is predominantly Sudanese savanna. Ecological zone II corresponds to the
northern branch of the Togo Mountains. It is the domain of a savanna-forest mosaic with
Isoberlinia doka and dry dense forests (mainly sacred groves). Ecological zone III extends
across the central plain (Mono plain) from Sokodé to Notsé. The characteristic vegetation is
Guinean savanna, within which there are many fragments of dry dense forest. Ecological
zone IV corresponds to the southern part of the Togo Mountains. It is the only zone covered
with authentic semi-evergreen forests. Today, they are fragmented and reduced to patches
and strips of trees along watercourses [45]. Ecological zone V corresponds to the coastal
plain covered by a mosaic of semi-deciduous forests, savannas, thickets, and grasslands.
According to INSEED [46], Togo’s population was estimated at 8,095,498 inhabitants in
2022, with a density of 143 inhabitants/km² and a growth rate of 2.3% per year between
2010 and 2022.

Figure 1. Location of the study area.
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2.2. Data Collection
2.2.1. MODIS Data and Preprocessing

The global MOD13Q1 data with a spatial resolution of 250 m for the rainy months (June
to October) from a time series spanning 1987 to 2022 were downloaded for tile ID h28v07
from the USGS server using the MODIS Reverb tool https://lpdaac.usgs.gov/products/
mod13q1v006/ (accessed on 10 April 2023). Only the rainy months were considered
because several studies have shown that NPP varies significantly with the seasons [47].
Studies have demonstrated a positive relationship between NPP and precipitation, with
precipitation playing a crucial role in determining NPP levels, especially in the context of
the growing season [48]. Additionally, as indicated by research conducted by Sun, Yue [49],
focusing on rainy season NPP allows researchers to better understand the direct impact of
precipitation on vegetation productivity. This, in turn, facilitates more accurate predictions
and assessments of ecosystem dynamics in light of changing climatic conditions.

2.2.2. Meteorological Data

Monthly meteorological data for the period 1987 to 2022 were collected from the
National Meteorology Agency (ANAMET) of Togo. Existing gaps amounting to 6% in these
data were filled using data from the NASA site. The collected data include average temper-
ature (T, ◦C) and precipitation (P, mm). These data were gathered from nine meteorological
sites scattered across the entire territory (Figure 1).

2.2.3. Land Use Data

Global Land Use and Land Cover (GLULC) data, freely accessible, were obtained from
the Earthmap.org platform https://earthmap.org/ (accessed on 12 June 2023) developed in
collaboration with the FAO. These data were preferred due to their international validation
and the absence of reference land use data over a significant time span in Togo; the first na-
tional forest inventory (IFN 1) coupled with land use mapping only dates back to 2016. The
Global Land Use and Land Cover (GLULC) data for the years 2000 and 2020 were reclassi-
fied into six land use units: Forests, Savanna Mosaics, Croplands/Agroforestry/Pastures,
Swamp Vegetation, Water Bodies, and Habitations/Infrastructure/Quarries. The 2020 data
were reclassified to reflect the Land Use and Land Cover of 2022. An intersection between
NPP data and vegetation data from 2000 and 2022 was carried out to estimate the NPP of
different ecosystems on a national scale.

2.3. Methods
2.3.1. Estimation of NPP

The model built on the basis of NDVI, SR, and NPP, along with the light use effi-
ciency method [50], was used to assess carbon sequestration over the time series. The
model evaluation was primarily based on the CASA algorithm (Carnegie–Ames–Stanford
approach) [23]. NDVI and SR were applied to calculate the fraction of incident photo-
synthetically active radiation (FPAR) and the absorbed incident photosynthetically active
radiation (APAR), which allowed for the estimation of NPP [51].

NPP = APAR × UE (1)

NPP = FPAR × PAR × LUE (2)

LUE = εmax×f(T1, T2, W) (3)

The light use efficiency factor (LUE) is a function of T1, T2, and W, which are limits im-
posed by two temperatures and water stress on the energy use rate. εmax is the maximum
light use efficiency under ideal conditions, with a value adopted of 0.389 g C/MJ [23].

According to Hatfield, Asrar [52] and Los, Justice [53], FPAR has a linear relationship
with NDVI or SR. Thus, FPAR can be calculated from NDVI and SR using the following
equations [43]:

https://lpdaac.usgs.gov/products/mod13q1v006/
https://lpdaac.usgs.gov/products/mod13q1v006/
https://earthmap.org/
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FPARndvi(x, t) =
(NDVI(x, t)− NDVIi, min)× (FPARmax − FPARmin)

(NDVIi, max − NDVIi, min)
+ FPARmin (4)

FPARsr(x, t) =
(SR(x, t)− SRi, min)× (FPARmax − FPARmin)

(SRi, max − SRi, min)
+ FPARmin (5)

FPARmax and FPARmin are assumed to be 0.95 and 0.001, respectively.
FPAR estimates based on NDVI are generally higher than actual values, while esti-

mates based on SR tend to be lower than actual values [53]. To reduce errors in FPAR eval-
uation, averaging the results derived from NDVI and SR has been strongly suggested [54].
In this regard, the following equation was applied:

FPAR(x, t) =∝ FPARndvi + (1− ∝)FPARsr (6)

∝ = 0.5 is the adjustment factor for NDVI and SR [55].
According to [56], for clear skies and tropical countries, PAR is 0.51.
The light use efficiency factor (LUE) T1 reflects the limitation imposed by the biochem-

ical action of plants on photosynthesis at low and high temperatures [23,57].

T1 = 0.8 + 0.02 × Topt − 0.0005 × Topt
2 (7)

where Topt is the average monthly temperature in the month when NDVI reaches its
maximum in a given year. T2 shows the declining trend of effective light use as ambient
temperature increases or decreases relative to the optimal temperature value (Topt). It can
be calculated using the following formula:

T2 = 1.1814/(1 + e0.2×(Topt−10−T))/(1 + e0.3(−Topt−10−T)) (8)

The water stress factor reflects the influence of water effectively used by plants for an
optimal energy conversion rate. As the available water in the environment increases, W
also increases, ranging from 0.5 (extremely arid condition) to 1 (very humid condition).

W = 0.5 +
(

0.5 × ETR
ETP

)
(9)

Potential evapotranspiration (ETP) corresponds to moist soil and plants with enough
water. For this study, the method proposed by [58] which is based primarily on air temper-
atures, was used.

ETP = 16
(

10
t
I

)a
.K i = (

t
5
)1.5 et I = ∑ 12

I
i a =

1.6
100

I + 0.5 (10)

ETP is the potential evapotranspiration for the considered month t;
t = average monthly temperature for the considered month;
a = 6.75·10−7 × I3 − 7.71·10−5 × I2 + 1.79·10−2·I + 0.49239;
K = monthly adjustment coefficient, which depends on the latitude of the area (Table 1);
i = monthly heat index calculated from average monthly temperatures;
I = annual heat index, which is the sum of monthly heat indices.

Table 1. Monthly values of the K coefficient.

North Latitude J F M A M J J A S O N D

5 1.02 0.93 1.03 1.02 1.06 1.03 1.06 1.05 1.01 1.03 0.99 1.02

10 1 0.91 1.03 1.03 1.08 1.06 1.08 1.07 1.02 1.02 0.98 0.99
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The actual evapotranspiration or runoff deficit was calculated using Turc’s formula:

ETR = P

[(
0.9 +

P2

l2

)]−0.5

(11)

where P is the average annual rainfall (in mm) and ETR represents the actual evapotranspi-
ration (in mm/year). The parameter L, a function of the average annual temperature t (in
◦C), is expressed as follows:

L = 300 + 25t + 0.05t3 (12)

2.3.2. Validation of NPP Estimation

The 500 m resolution MODA17A3HGF v006 reference data from the year 2022 for Togo
were acquired to validate the estimated NPP of Togo using the model applied in this study.
The absence of ground-measured data at the scale of Togo explains the choice of the widely
used MODA17 reference data by other authors to validate NPP estimation [59]. When
ground reference data are lacking, the use of satellite-derived datasets such as MODIS can
serve as an alternative for validation [60]. However, it is essential to account for potential
biases and uncertainties associated with using these reference data. The correlation between
NPP and the MODA17 reference NPP was used to validate the results. Figure 2 clearly
shows that the estimated NPP corresponds to the simulated NPP (r2 = 0.8).

Figure 2. Comparison between the estimated NPP and the reference NPP MODA17.

2.3.3. Impacts of Climate Change and Land Use

The NPP of vegetation is the production per unit of land area. Therefore, the total
production (PT) is calculated as follows:

PT = Sup × NPP (13)

where Sup = area of the study zone.
The change in PT between two different dates (2000 and 2022) will be estimated as:

∆PT = PT2022 − PT2000 = Sup2022 × NPP2022 − Sup2000 × NPP2000 (14)
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Since Sup2022 = Sup2000 + ∆Sup and NPP2022 = NPP2000 + ∆NPP, we have:

∆PT =
(
Sup2000 + ∆Sup

)
× (NPP2000 + ∆NPP)− Sup2000 − NPP2000 (15)

∆PT = Sup2000 × ∆NPP + ∆Sup × NPP2000 + ∆Sup × ∆NPP (16)

The work of [61] linked this to three parameters: climate change, land use changes,
and the interaction between climate change and land use. Indeed, the variation of PT
according to the last equation is a function of the induced change in NPP (Sup2000 × ∆NPP),
the change in area (∆Sup × NPP2000), and the interactions (∆Sup × ∆NPP).

The relative contribution of the three parameters to the change in PT (∆PT) can be
estimated as follows:
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2.3.4. Correlation Analysis between NPP and Climatic Variables

The correlation analysis was conducted to evaluate the relationships between NPP
and climatic variables. Several studies have demonstrated the necessity of this relationship
in studies on ecosystem performance. Using Pearson’s correlation coefficient R, the linear
relationship between two variables (NPP and a climatic variable, an input parameter of the
CASA model in conjunction with the Thornthwaite model) was evaluated. This coefficient
measures the strength of the association and ranges from −1 to +1 [62]. The correlation
coefficient was calculated between the climatic parameters (precipitation, temperature,
actual evapotranspiration, potential evapotranspiration, effective light use factor) and
the NPP.
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where R is the correlation coefficient between variables X and Y. Xi and Yi indicate X and Y
of year i, and represent the multi-year average of X and Y, respectively. n is the number
of years of the study. The t-test method is used to test the significance of the correlation
coefficient R, and p < 0.05 is considered statistically significant.

3. Results
3.1. Temporal Dynamics of NPP in Togo
3.1.1. Distribution and Temporal Evolution of NPP in Togo

The NPP from 1987 to 2022 was estimated using the CASA model. The average annual
NPP over the 36 years of the study is 4565.31 kg C.ha−1. The NPP accumulated the most
in 2017 with a value of 6312.26 kg C.ha−1, while 1996 was the least productive year with
3394.29 kg C.ha−1 (Figure 3). As for the total NPP, it ranges from 19.21 Pg C in 1996 to
35.72 Pg C in 2017, with an annual average established at 25.83 Pg C.
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Figure 3. Dynamics of average annual NPP from 1987 to 2022.

3.1.2. Monthly Variation of NPP

The NPP for the rainy months has been estimated. The most productive month on av-
erage is September (Figure 4) with an average of 1095.22 Kg C.ha−1, followed by the months
of October, August, July, and June with, respectively, 895.92 Kg C.ha−1, 893.08 Kg C.ha−1,
859.02 Kg C.ha−1, and 822.05 Kg C.ha−1.

Figure 4. Average monthly NPP (1987–2022).

A variability in monthly NPP is observed over the years. Figure 5 illustrates the
variability of the monthly Net Primary Production (NPP) from June to October over the
period from 1986 to 2022. It is observed that the NPP varies significantly from year to year
for each of these months, with notable fluctuations.

The month of September shows the highest NPP values, indicating particularly strong
productivity. However, some years deviate from this trend, with months like August, July,
or June showing higher NPP peaks. The month of October presents more moderate but
also variable values from year to year.
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Figure 5. Monthly NPP variability.

3.2. Spatial Dynamics of Natural Productivity in Togo
3.2.1. Characteristics and Spatial Distribution of Natural Productivity in Togo

Figure 6 shows graphically the distribution of NPP in 2022. According to the figure, NPP
in that year varies from 452.08 to 11,510.9 kg C.ha−1, with a total annual NPP of 28.51 Pg C.

Figure 6. Spatial distribution of NPP in 2022.
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The distribution of NPP from the South to the northeast is unevenly distributed
(Figure 4). The Atakora mountain range, which crosses the country diagonally, remains the
most productive area of the country. In contrast, the landscapes of the Bombouaka Cuesta,
the Kara River basin, and the coastal area remain the least productive areas of the country.

3.2.2. Detection of NPP Changes in Togo

Between 2000 and 2022, productivity changes were detected at the pixel level (Figure 7).
Some areas, such as the savanna region, the central-eastern zone, the Nangbéto dam
area, and the lagoon area, sequester less carbon in 2022 than in 2000 (Figure 6). These
landscapes have experienced a loss of NPP up to 2417.65 Kg C.ha−1. Gains in terms of
carbon sequestration are mainly observed in the dense semi-deciduous forest areas of the
southwestern mountains. In these areas, the increase in NPP of the pixels between 2000
and 2022 goes up to 5177.24 Kg.C.ha−1.

Figure 7. Detection of NPP change at the pixel level between 2000 and 2022.

3.2.3. Spatio-Temporal Dynamics of Ecosystem NPP

The analysis of land use types from 2000 and 2022 derived from the post-classification
of GLCLU images showed that the present land cover units are Forests, Savanna Mosaics,
and Crops/Agroforestry Parks/Fallow, Swamp Vegetation, Water Bodies, and Habita-
tions/Infrastructure/Quarries (Figure 8). The statistics for the areas occupied by each land
cover unit are recorded in Table 2.
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Figure 8. Land use map of Togo in 2000 and 2022.

Table 2. Area Statistics of Land Cover Units in 2000 and 2022.

Land Use Units
Year 2000 Year 2022 Trends

km2 ha % km2 ha % ha %

Forests 25,464 2,546,445 44.99 19,469 1,946,876 34.40 −599,569 −23.55
Savanna Mosaic 19,527 1,952,739 34.50 13,972 1,397,218 24.69 −555,521 −28.45
Crops/Agroforestry
Parks/Fallow 9360 936,003 16.54 20,014 2,001,382 35.36 1,065,379 113.82

Swamp Vegetation 708 70,802 1.25 679 67,893 1.20 −2909 −4.11
Water Bodies 247 24,658 0.44 266 26,563 0.47 1905 7.73
Dwellings/Infrastructure/Quarries 1294 129,400 2.29 2201 220,114 3.89 90,713 70.10

56,600 5,660,047 100 56,600 5,660,046 100
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The highest average annual NPP observed in 2000 was in forests, which was
4813.79 kg C.ha−1.year−1. It increased to 7050.33 kg C.ha−1.year−1 by 2022 (Table 3). Some
ecosystems such as Forests, Savanna Mosaic, Swamp Vegetation, and Water Bodies saw their
average annual NPP increase between 2000 and 2022, while Croplands/Agroforestry/Pastures
and Residential/Infrastructure/Quarries became less productive in terms of NPP accumulation.

Table 3. Annual NPP values in different land use units.

Land Use Units NPP in 2000 (kg C.ha−1.year−1) NPP in 2022 (kg C.ha−1.year−1)

Forests 4813.79 7050.33
Savanna Mosaic 4336.64 6786.72
Crops/Agroforestry
Parks/Fallow 4127.76 2161.66

Swamp Vegetation 4208.68 4914.66
Water Bodies 2685.50 2791.45
Dwellings/Infrastructure/Quarries 3956.09 2604.24

In general, it appears that all land use units have improved their performance in terms
of NPP accumulation despite land use changes. In 2000, forests had a total annual NPP
value of 12.25 Pg C.yr−1, representing 48.13% of the country’s total annual NPP. Twenty-
two years later, these ecosystems saw their performance increase to 13.73 Pg C.yr−1 despite
a 23.55% reduction in forest area. It is noteworthy that despite the increase in the amount
of accumulated NPP, forests have lost their share, decreasing from 48.13% in 2000 to 37.95%
in 2022 (Table 4).

Table 4. Dynamics of NPP by Ecosystems in 2000 and 2022.

Land Use Units NPP in 2000
(Pg C.yr−1) % NPP in 20022

(Pg C.yr−1) % Evolution
(Pg C.yr−1)

Forests 12.26 48.13 13.73 37.95 1.47
Savanna Mosaic 8.47 33.25 9.48 24.48 1.01
Crops/Agroforestry
Parks/Fallow 3.86 15.17 4.33 32.81 0.46

Swamp Vegetation 0.30 1.17 0.33 1.10 0.04
Water Bodies 0.07 0.26 0.07 0.28 0.01
Dwellings/Infrastructure/Quarries 0.51 2.01 0.57 3.38 0.06

2547 100.00 28.52 100.00 3.05

3.3. Impacts of Climate Change and Land Use Change on Total Production

Between 2000 and 2022, 32.08% of Togo’s land area experienced changes in land
use. Table 5 summarizes the areas of land use units that remained unchanged and those
that underwent modifications. A significant change in the allocation of savanna mosaics
is observed. Specifically, 14.31% (199,945.41 ha) and 11.18% (156,129.21 ha) of savanna
mosaics have been converted, respectively, into Crops/Agroforestry Parks/Fallow Lands
and into Forests. Forests converted into agricultural land represent a large proportion,
with 15,689.06 ha, while the conversion of savanna mosaics into forests is also noted
(156,129.21 ha), indicating reforestation efforts or natural regeneration.

During the time span 2000–2022, the estimates of NPP indicate an increase in total
productivity (PT) of 3.05 Pg C. This variation in PT is influenced by climate change, which
has a positive impact (58.27%), as well as changes in land use (188.63%). The intersection
between these two parameters, however, negatively impacts (−146.90%) the variation in
PT (see Figure 9).
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Table 5. Areas of land use changes (ha) from 2000 to 2022.

Land Use Units Forests Savanna
Mosaic

Swamp
Vegetation

Water
Bodies

Crops/Agroforestry
Parks/Fallow

Dwellings/Infra-
structure/Quarries

Forests
1,912,269.22 18,691.92 49.07 9.29 15,689.06 339.05

98.21% 0.96% 0.00% 0.00% 0.81% 0.02%

Savanna mosaic
156,129.20 1,038,496.38 564.01 732.43 199,945.41 1257.08

11.18% 74.33% 0.04% 0.05% 14.31% 0.09%

Swamp Vegetation
112.71 691.17 64,832.85 1510.99 633.43 109.94

0.17% 1.02% 95.50% 2.23% 0.93% 0.16%

Water Bodies
29.94 316.01 3729.00 22,234.77 20.94 224.59

0.11% 1.19% 14.04% 83.73% 0.08% 0.85%

Crops/Agroforestry
Parks/Fallow

452,303.68 866,538.69 1235.72 56.06 679,920.61 1256.41

22.60% 43.30% 0.06% 0.00% 33.97% 0.06%

Dwellings/Infra-
structure/Quarries

19,983.75 31,549.03 516.98 159.25 41,527.15 126,362.74

9.08% 14.33% 0.23% 0.07% 18.87% 57.41%

Figure 9. Impacts of climate change, land use changes, and their intersection on the variation in
total production.

Between 2000 and 2022, climate change has had a more positive impact on the vari-
ation in the productivity of Savanna Mosaics (471.74%), whereas land use changes have
had a more positive impact on the variation in the productivity of Crops/Agroforestry
Parks/Fallow Lands (950.39%). The intersection of these two parameters has had a more
negative impact on the variation in the productivity of Settlements/Infrastructures/Quarries
(−200.02%) (Table 6).
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Table 6. Effects of climate change, land use changes, and their intersection on the variation in total
productivity of land use units.

Land Use Units
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coefficient R, and p < 0.05 is considered statistically significant. 

3. Results

3.1. Temporal Dynamics of NPP in Togo 

3.1.1. Distribution and Temporal Evolution of NPP in Togo 

The NPP from 1987 to 2022 was estimated using the CASA model. The average an-

nual NPP over the 36 years of the study is 4565.31 kg C.ha−1. The NPP accumulated the 

most in 2017 with a value of 6312.26 kg C.ha−1, while 1996 was the least productive year 

with 3394.29 kg C.ha−1 (Figure 3). As for the total NPP, it ranges from 19.21 Pg C in 1996 

to 35.72 Pg C in 2017, with an annual average established at 25.83 Pg C. 

intersect

Forests 387.94% −196.60% −91.34%
Savanna Mosaics 471.74% −237.54% −134.20%
Crops/Agroforestry Parks/Fallow −397.71% 950.39% −452.68%
Swamp Vegetation 140.06% −34.31% −5.75%
Water Bodies 32.94% 64.51% 2.55%
Dwellings/Infrastructure/Quarries −285.32% 585.35% −200.02%

3.4. Correlations between NPP and Climatic Parameters

The correlation coefficients (R) between NPP and climatic parameters reveal positive
links of varying intensities depending on the two types of coupled data (Figure 10). This
figure presents the relationships between NPP and various climatic parameters: Light Use
Efficiency (LUE), Actual Evapotranspiration (ETR), Potential Evapotranspiration (ETP),
precipitation, and mean temperature. The graphs show the linear regressions associated
with each relationship, with their equations and determination coefficients (R2).

Figure 10. Results of the correlation analysis between NPP and climatic variables.

NPP also shows a significant positive correlation with ETR, with an R2 of 0.44. This
means that 44% of the variance in NPP is explained by actual evapotranspiration. This
relationship indicates that higher levels of ETR are linked to increased productivity. A
moderate positive correlation is observed between NPP and ETP, with an R2 of 0.11.
Although this relationship is statistically significant (p = 0.049), it is weaker than those
observed with ETR and LUE.

Precipitation shows a positive correlation with NPP, with an R2 of 0.21. This means
that 21% of the variance in NPP can be explained by precipitation. This relationship
suggests that precipitation influences primary productivity, but not as much as LUE or ETR.
Temperature shows the weakest relationship with NPP, with an R2 of 0.052, indicating that
about 5% of the variance in NPP is explained by temperature. This correlation is weak and
not statistically significant (p = 0.18), suggesting that mean temperature has little direct
impact on NPP compared to the other factors studied.
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Figure 11 highlights the interannual variability of net primary production (NPP) and
precipitation. Generally, there seems to be some correlation between variations in NPP and
precipitation. For instance, peaks in precipitation in 1994 and 2016 coincide with peaks in
NPP, suggesting that rainy years tend to be associated with higher net primary production.
However, this relationship is not perfect. For example, in 1998, a peak in precipitation did
not correspond to a peak in NPP, and in 2011, a peak in NPP is not associated with a peak
in rainfall. This indicates that factors other than precipitation also influence NPP.

Figure 11. Evolution of NPP and annual precipitation from 1986 to 2022.

4. Discussion

This study has described the dynamics of NPP in Togo over a 36-year period and iden-
tified the climatic factors influencing this dynamic to varying degrees. The average annual
NPP value from 1987 to 2022 is 4565.31 kg C ha−1. This value, simulated using the CASA
model, falls within the range obtained by other studies using the same model, such as
349.20 g m−2 by Ogbue, Igboeli [63] in the Niger River basin; 3401.55 kg C ha−1 by Folega,
Atakpama [59] in southern Togo near the Donomadé eco-village; and 462.63 g m−2 by Liu,
Yang [64]. NPP exhibits variability with observed peaks. Spatial variability is noted in the
performance of ecosystems (Figure 4). Performances range from 452.08 kg C ha−1 year−1

in areas with low assimilation to 11,510.9 kg C ha−1 year−1 in high-performance zones.
This observation, also noted by Ogbue, Igboeli [63], is related to the nature of forest
ecosystems present in these areas and their level of degradation. High-productivity
zones such as Ecological Zone IV, the Atakora Chain, and certain protected areas are
relatively well-preserved. They have a production ranging between 7603.38 kg C ha−1

year−1 and 11,510.9 kg C ha−1 year−1. Ecological Zone IV, an extension of the humid and
semi-deciduous forests of Ghana [65], is among the high forest cover areas in Togo, while
the Atakora Chain, dominated by mountainous relief and a diversity of ecosystems [43]
and with its difficult access, is less disturbed. Low-productivity zones have an NPP ranging
between 452.08 kg C ha−1 year−1 and 5986.45 kg C ha−1 year−1 in 2022. These include the
Savannas region, the Kara River basin, the coastal zone, and some large water bodies such
as the Nangbéto Dam. The detection of changes at the pixel level between the 2000 and
2022 rasters highlighted these areas as having experienced the greatest loss in productivity
during this time span. These zones face environmental challenges [66] and significant
human pressures. According to the results of the latest general population and housing
census (5th RGPH), these areas have the highest population density in the country, reaching
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up to 6600 inhabitants/km2 [46]. The Savannas region, which includes the Bombouaka
Cuesta, the Eburnean Shield, and many protected areas such as the Oti-Mandouri wildlife
reserves, Fosse aux Lions, and Galangashi, is facing alarming degradation of forest ecosys-
tems [67–70]. The increased anthropization of these ecosystems, especially the protected
areas, has been driven by the demand for exploitable land to meet the needs of a continu-
ally growing population [71]. This result confirms the country’s achievements in terms of
restoring degraded ecosystems and sustainable land management efforts undertaken by
Togo with support from its technical and financial partners.

Global Land Use and Land Cover (GLULC) data from the Earthmap platform were
used in this study. These publicly accessible data are globally validated and are reference
information from FAO. Between 2000 and 2022, a regressive dynamic of natural formations
in favor of anthropogenic formations was observed. Several studies on the spatio-temporal
dynamics of vegetation in Togo have reached the same conclusion [34,43,65,69,72–75]. The
distribution of NPP (Figure 4) for the year 2022 corresponds to the land cover units of the
same year. These results, similar to those of [13], indicate that high forest cover areas are
the zones of high productivity in Togo. The absence of primary forests leads to the growth
of all ecosystems, resulting in high carbon sequestration and storage. The increase in the
area of anthropogenic formations in 2022 compared to 2000 did not hinder the high average
annual productivity. The promotion and adoption of good sustainable land management
practices, such as agroforestry, which combines trees and crops, and endogenous protection
benefiting certain species, make cultivable plot ecosystems that sequester a lot of carbon.

The increase in NPP in Togo is more influenced by changes in land use (188.63%).
Studies have shown that changes in land use, such as the conversion of grasslands and
mosaics of crops and natural vegetation into forests and cultivated lands, can lead to
increased NPP due to the expansion of cultivated and forested lands [61,76]. Land use
changes are marked by urbanization, agricultural expansion, and ecological restoration
operations undertaken by the state and its partners. The increase in performance of certain
land use units is responsible for these results.

Climate parameters have all shown positive correlations of varying intensities. Light
Use Efficiency (LUE) (r2 = 0.75), actual evapotranspiration (r2 = 0.43), precipitation
(r2 = 0.20), potential evapotranspiration (r2 = 0.10), and temperature (r2 = 0.05) contribute to
the variation in NPP. These results align with those of other studies [77–80]. These authors
have demonstrated that vegetation is affected by climatic variables. This influence will be-
come even more pronounced in the coming years due to increasing climate variability [81].
The effect of precipitation and temperature on vegetation growth, and thus on productivity,
justifies its positive correlation with NPP [39]. This study reveals a stronger correlation
with Light Use Efficiency (LUE). LUE and actual evapotranspiration appear as the most
determining factors, while temperature shows little direct influence on NPP. These results
underscore the importance of light and water in ecosystem productivity. Togo’s location
near the equator results in negligible temperature variation. Additionally, LUE is a key
indicator providing important information on how vegetation productivity responds to
environmental conditions [82].

5. Limitations and Outlook of the Study

This research focuses specifically on Togo, which may limit the generalizability of
the findings to regions with different climatic and ecological conditions. While the CASA
model is effective, it relies on certain assumptions regarding vegetation dynamics and
may not capture the full complexity of ecosystems, potentially leading to oversimplified
conclusions about ecosystem productivity. Additionally, the study covers a specific time
frame (1987 to 2022), which may not fully account for long-term ecological changes or
trends influencing NPP beyond this period. The lack of field data on NPP in Togo also
limited our ability to validate the findings.

Future work should aim to improve data collection methods to fill existing gaps
and enhance the temporal resolution of the data, enabling more robust analyses of NPP
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dynamics. Expanding the research to include comparative studies across different regions in
West Africa could provide valuable insights into regional variations in ecosystem responses
to climate change. Further refinement of the CASA model or the integration of additional
ecological models could improve the accuracy of NPP estimations, better accounting for
complex interactions within ecosystems. Establishing a long-term monitoring framework
for Togo’s ecosystems would facilitate ongoing assessments of NPP and its relationship
with climate variables, supporting the development of effective conservation strategies.

These steps will contribute to a more comprehensive understanding of ecosystem
dynamics in the context of climate change and support Togo’s commitments to reducing
greenhouse gas emissions.

6. Conclusions

This study analyzed the spatio-temporal dynamics, trends, and variations of Net
Primary Productivity (NPP) in Togo over the last 36 years. It also detected changes in NPP,
examined the dynamics within ecosystems, and investigated the climatic factors influencing
NPP. The average annual NPP is 4565.31 Kg C ha−1. A variability in productivity is
observed with peaks. High production areas, mainly represented by ecological zone IV
and the Atakora range, are dense and relatively protected forest formations. The Savannas
region, the Kara River basin, the central east, and the coastal zone, which face enormous
anthropogenic pressures, accumulate less carbon. Forest formations are the land cover unit
that accumulated the most carbon in 2000. They see their productivity increase in 2022
despite a decrease in their areas. Climatic parameters all showed positive relationships of
varying intensities. Light use efficiency, with its highest correlation (r2 = 0.75), demonstrates
the overall influence of climatic parameters. The influence of climatic factors on NPP is
crucial to anticipate ecosystem behavior in the context of climate change.
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