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Abstract: Background: Advancements in genomic technologies are rapidly evolving, with the
potential to transform laboratory diagnostics by enabling high-throughput analysis of complex
biological data, such as microbiome data. Large Language Models (LLMs) have shown significant
promise in extracting actionable insights from vast datasets, but their application in generating
microbiome findings reports with clinical interpretations and lifestyle recommendations has not
been explored yet. Methods: This article introduces an innovative framework that utilizes LLMs to
automate the generation of findings reports in the context of microbiome diagnostics. The proposed
model integrates LLMs within an event-driven, workflow-based architecture, designed to enhance
scalability and adaptability in clinical laboratory environments. Special focus is given to aligning the
model with clinical standards and regulatory guidelines such as the In-Vitro Diagnostic Regulation
(IVDR) and the guidelines published by the High-Level Expert Group on Artificial Intelligence (HLEG
AI). The implementation of this model was demonstrated through a prototype called “MicroFlow”.
Results: The implementation of MicroFlow indicates the viability of automating findings report
generation using LLMs. Initial evaluation by laboratory expert users indicated that the integration of
LLMs is promising, with the generated reports being plausible and useful, although further testing
on real-world data is necessary to assess the model’s accuracy and reliability. Conclusions: This
work presents a potential approach for using LLMs to support the generation of findings reports in
microbiome diagnostics. While the initial results seem promising, further evaluation and refinement
are needed to ensure the model’s effectiveness and adherence to clinical standards. Future efforts
will focus on improvements based on feedback from laboratory experts and comprehensive testing
on real patient data.
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1. Introduction, Motivation, Problem Statement, Research Question, and Approach

Laboratory diagnostics are one of the foundations of modern healthcare, enabling
the identification and management of diseases. With the advent of genomics, the scope of
laboratory diagnostics has expanded drastically, shifting towards a data-intensive envi-
ronment. One example is the analysis of human microbiomes. Microbiomes are complex
communities of microorganisms residing in various environments including the human
body. Microbiomes in or on the human body are important for health, but can also cause
diseases when imbalanced [1]. The gut microbiome, is a promising target for diagnostic
tests, with changes in its composition linked to cancer, inflammatory bowel disease, and
cardiovascular diseases, among others [1]. The study of microbiomes using data obtained
from genetic material is called metagenomics.
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The analysis of genomics-based diagnostic data such as microbiome data in medical
laboratories is a challenge due to the complexity of the data, the need for reliable, repro-
ducible, and efficient processes, as well as legal requirements [2]. The GenDAI project [3]
tries to address these challenges by providing a platform that combines the capabilities of
bioinformatics platforms with the requirements of laboratory diagnostics. GenDAI offers
automated workflows for various diagnostic tasks such as gene expression analysis [3] and
mtDNA dysfunction analysis [4], including result visualization. However, it has not yet
addressed the challenge of creating laboratory findings reports, which could further reduce
the workload of laboratory staff.

The findings gained from microbiome analysis require expert interpretation to be
actionable, as the interactions between different microorganism often necessitate a deeper
understanding beyond simple ranges for individual groups of microorganism. The genera-
tion of findings reports, i.e., providing natural language clinical interpretations and lifestyle
recommendations, is a critical step in the diagnostic process, as it provides clinicians and
patients with the information they need to make informed decisions. While some aspects
of this creation process can be automated, findings reports have to be carefully revised by
clinical pathologist to ensure accuracy and clinical relevance. This is especially true for
cases, where the patient’s medical history or other factors need special consideration.

Large Language Models (LLMs), trained on vast corpora of texts, including medi-
cal literature, have demonstrated remarkable capabilities in numerous natural language
processing tasks including medical exams and clinical decision support [5,6]. To our knowl-
edge, however, they have not been applied to the generation of findings reports in the
context of laboratory diagnostics. Applying AI methods in the context of laboratory di-
agnostics raises several ethical and regulatory challenges. Any integration of AI methods
into the laboratory workflow must ensure compliance with clinical standards and regula-
tory requirements, emphasizing data privacy, technical robustness, reliability, and human
oversight. Automating the generation of findings reports in laboratory diagnostics while
considering these challenges is an unsolved problem.

This paper thus addresses the research question on if and how LLMs can be used to
automate the generation of findings reports in the context of microbiome diagnostics while
considering the ethical and regulatory challenges. To answer this question, the research
framework by Nunamaker et al. [7] was applied. Using this approach, the research question
can be broken down into research goals of type “observation”, “theory building”, “systems
development”, and “experimentation”. The structure of this paper follows this approach
as follows: Section 2 provides an overview of the state of the art in laboratory diagnostics,
metagenomics, AI methods and regulation, thus addressing the observation goals. Section 3
proposes a model for automating the generation of findings reports in the context of
microbiome diagnostics, which is aligned with the theory building goals. Section 4 describes
the implementation of this model through a prototype called “MicroFlow”, addressing
the systems development goals. Then, Section 5 provides an initial evaluation of the
prototype by laboratory expert users, focusing on usability and feasibility, using a cognitive
walkthrough to address the experimentation goals. Finally, Section 6 briefly discusses the
results and planned future work.

2. State of the Art in Science and Technology

In order to find out how LLMs can support clinical diagnostics, it is helpful to first
consider the current state of the art in science and technology. In accordance to the research
question and the stated goals, it seems reasonable to start such an observation with an
overview of metagenomics data analysis in laboratory diagnostics (Observation Goal 1).
Then, an overview of existing bioinformatics tools and platforms that support metage-
nomics analyses will be given, including a discussion of their limitations in relation to the
research question (Observation Goal 2). This will be followed by an overview of current
AI methods and specifically LLMs to understand the capabilities and limitations of these
methods (Observation Goal 3). Finally, the legal and ethical aspects of these findings will
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be discussed, including considerations like data privacy, algorithmic bias, transparency,
explainability, and accountability, to ensure the research complies with current regulations
and ethical standards (Observation Goal 4).

2.1. Metagenomic Data Analysis in Laboratory Diagnostics

Metagenomics is the study of nucleotide sequences obtained from the genetic material
of microbiome samples. As such, it is a data-intensive process that involves multiple
processing and analysis steps. This subsection focuses on the data-centric aspects of
metagenomics analysis in laboratory diagnostics.

For cost efficiency reasons, the genetic material of microbiome samples is often not
sequenced entirely. Instead, a specific region of the genome is targeted that contains
both highly conserved and hypervariable parts, which are affected by evolution and
mutations [8,9], such as subregions within the 16S ribosomal RNA (rRNA) gene in bac-
teria and archaea. By aligning the partially sequenced 16S regions to microbial genomic
databases, a precise identification of microorganisms in a sample can be achieved. 16S
rRNA sequencing is thus commonly used for detecting predefined microbes in patient
samples for diagnostic purposes.

The sequences obtained from the sequencer are commonly stored in FASTQ format.
FASTQ is a text file comprising of sequences with a unique ID, an optional description,
nucleotide sequence, and quality scores. These text files have a .fq or .fastq extension and
are often compressed into .gz files.

The raw data contains many duplicate or nearly duplicate sequences. The Amplicon
Sequence Variant (ASV) approach for clustering of 16S rRNA sequences identifies exact
sequences and their read counts, taking into account sequencing quality and error probabili-
ties. This method can differentiate between variation due to sequencing error and biological
variation [10], resulting in a pool of exact sequences with high statistical confidence. Fol-
lowing the identification of ASVs, the sequences are assigned to known taxonomies using
tools like BLAST [11] or the q2-feature-classifier plugin [12] of the QIIME 2 toolkit, which
utilize reference databases. The selection of a suitable reference database is crucial, as it
can create bias in the identification of taxa. Popular reference databases include SILVA,
Greengenes, and RDP [13,14]. After taxonomy assignment, the relative abundance of each
microorganism in the sample is calculated based on the number of copies of each sequence.

Within the context of laboratory diagnostics, the metagenomics analysis process is
embedded in a larger workflow that includes order entry and sample registration, sam-
ple preparation, measurement, data analysis, and findings reporting. To map out this
process, several prestudies [15–17] involving interviews with laboratory partners have
been conducted at the University of Hagen, with the most important results published in
Krause et al. [2,4]. Based on these results, Figure 1 shows a high-level overview of the most
important actors and actions in a laboratory diagnostic context. Physicians order laboratory
tests for their patients and receive a laboratory report with results and interpretation upon
completion of the tests. Lab Scientists perform tests using a predetermined test protocol
and assist in the development of new test protocols. Measurement Devices are used by Lab
Scientists to perform testing. Data Analysts analyze test results and prepare patient findings
reports. Clinical Pathologists review the patient findings reports, make changes as needed,
and approve them. They also approve newly developed test protocols. Compliance Officers
ensure compliance with relevant regulations, including quality assurance and perform
Post-Marketing Surveillance (PMS). A Laboratory Information Management System (LIMS)
manages specimens, tests, results, and reports.

Focussing on the individual steps of the laboratory workflow, the order entry and
sample registration step includes entering all relevant information about the sample and the
requested tests order into the LIMS. The measurement step involves the actual measurement
of the sample including all necessary preparations. This can involve multiple tests and
multiple measurement devices. The data analysis step consists of the analysis of the
measurement data including any calculations of derived values and the comparison of
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the results with reference values. The clinical reporting step comprises of the creation of
a report for the requesting physician. This report contains the results of the analysis and
any additional information that might be relevant to the physician. The findings reports
are often created by laboratory staff, but must be approved and adjusted if necessary
by a clinical pathologist. Providing this findings report in the context of an automated
laboratory diagnostic workflow is the focus and remaining challenge to be addressed in
the remainder of this paper.

Measurement
Devices Laboratory

Physicians

Lab Scientists

LIMS

Clinical Pathologists

Order Tests for Patients,
Receive Reports

Design & Execute
Test Protocols

Release Findings Reports,
Approve Test Protocols

Perform Test
Measurements

Manages
Laboratory Data

Analyze Test Results,
Prepare Findings Report

Data Analysts

Compliance Officer

Ensure Quality,
PMS

Figure 1. High-Level Overview of Laboratory Diagnostic Context.

2.2. Bioinformatics and Diagnostics Platforms

Multiple bioinformatics platforms and tools are available for analyzing microbiome
data. QIIME 2 is an open-source, modular software pipeline capable of performing all
steps of microbiome analysis, such as identifying ASVs, aligning sequences, or creating
visualizations. Its modular architecture allows for adjustments to fit specific data and
questions. Other comprehensive toolsets for microbiome analysis include the ASaiM
extension of the Galaxy platform. Further tools are discussed in Krause et al. [18]. These
bioinformatics platforms provide both flexibility and ease of use for microbiome data
analysis. However, they are not optimized for laboratory use cases, as they do not provide
features for repeated, automatic processing of many samples and prioritize flexibility over
reproducible, fixed, reliable, and clinically validated laboratory workflows. In addition,
these tools only cover the data analysis phase of the data and do not provide support for
the complete laboratory workflow, including order entry, sample preparation, and clinical
result reporting, among others.

To address these limitations and explore the potential of AI in the context of Genomics-
Based Diagnostic Data (GBDD) processing, a new diagnostic platform called GenDAI was
proposed in Krause et al. [3] and further refined and implemented in Krause et al. [13].
GenDAI is a platform combining the capabilities of bioinformatics platforms with the
requirements of laboratory diagnostics. The platform is designed to be highly scalable using
container technologies and microservices. With its focus on laboratory diagnostics and AI,
GenDAI seems well suited to address the challenges of microbiome data analysis and the
generation of findings reports. The model and implementation described in this paper are
based on and extend the GenDAI platform. As GenDAI currently does not support the
creation of diagnostic findings reports in an automated manner, the model, implementation,
and evaluation for such a solution are remaining challenges to be addressed within the
remainder of this paper.
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2.3. AI Methods

AI is a broad term that encompasses various methods and techniques that enable
machines to perform tasks that normally require human intelligence. Large Language
Models (LLMs) are a class of pretrained models that are primarily used for natural lan-
guage processing tasks such as text generation. For text generation tasks, an input text,
measured in tokens, is used to predict the next probable token. This method is applied
repeatedly to generate longer texts. The initial input text given to the LLM is called the
“prompt”. This prompt can be used to guide the model by providing context, instructions,
background knowledge, examples, or other information that the model should consider
when generating text.

LLaMA is a collection of LLMs developed by Meta AI. LLaMA is available in various
sizes ranging from seven billion to 65 billion parameters. While the smallest-sized models
can be run on consumer-grade hardware, allowing access to powerful LLMs to a broad
audience, the larger sizes offer increased performance. LLaMA was followed by Llama 2
and Llama 3, also available in several sizes of up to 70 billion parameters, providing
improved performance over the original LLaMA models. All Llama models are free to
download and use, making them good candidates for research and development purposes.

While LLMs are powerful, they suffer from several limitations, including so-called
“hallucinations”. Hallucinations are outputs that are not grounded in facts. These are
problematic in the medical domain where they could lead to potentially harmful advice.
While hallucinations are a big problem, their probability and impact can be reduced.
As an example, injecting domain specific knowledge into the prompts can be used to
improve outputs [19,20]. Another technique to reduce hallucinations is the use of “prompt
engineering” [20] where the LLM input is carefully designed and evaluated to improve
model output performance.Even with these mitigations, hallucinations can not be avoided
with complete certaincy. Human oversight and approval of model outputs is hence strongly
advisable when used in applications such as medical diagnostics support.

In the context of laboratory findings reports, the interpretation of results is a domain re-
served for trained and qualified humans (board-certified clinical pathologists) as it requires
a deep understanding of the data and its context, as well as the ability to reason about it.
While there are currently no AI methods that can completely replace humans in this task,
an approach using LLMs could support humans. A cursory search on scientific publication
search engines using the keywords “LLM metagenomics”, “LLM laboratory diagnostics”,
and “LLM diagnostics reporting” did not reveal any publications that use LLMs for the
purpose of diagnostic result interpretation in laboratory diagnostics or for the interpretation
of qPCR or metagenomics results in general. There are however examples of LLM usage
for differential diagnostics [21] or treatment recommendations [22,23], which are focused
on other domains, providing promising results. Using LLMs for result interpretation in
findings reports is thus another remaining challenge for the remainder of this paper.

2.4. Regulatory Landscape and Responsible AI

The increasing adoption of AI in various sectors has led to growing concerns about its
ethical, legal, and social implications. Regulation of AI aims to ensure the development
and deployment of safe, ethical, and trustworthy AI systems. This is particularly impor-
tant in laboratory diagnostics and healthcare in general as the consequences of incorrect
decisions can be severe. Regulation not only tries to minimize these risks but also targets
broader issues such as data privacy, algorithmic bias, transparency, explainability, and
accountability [24,25]. Regulation in the context of laboratory diagnostics is not new. The
In-Vitro Diagnostic Regulation (IVDR) is a European Union regulation that aims to ensure
the safety and reliability of in-vitro diagnostic devices which includes software used for
diagnostic purposes. The IVDR requires, e.g., ensuring adequate risk management, using
state-of-the-art technology, and taking into account the complete software lifecycle from
conception to deployment and beyond.
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Achieving effective regulation in AI is challenging due to multiple reasons. First,
the definition of AI is not clear and can vary between experts and over time [24,25]. This
lack of a clear definition makes it difficult to determine which systems are subject to
regulation [24,25]. Regulation targeting AI but not other technologies with similar risks
could favor or disfavor the use of AI which could lead to market distortions [25]. Additional
challenges arise from the rapid pace of AI development and the complex interplay between
stakeholders like government agencies, industry, and the public. Notwithstanding, several
attempts have been made to create guidelines, standards, and legal frameworks for the
responsible development and use of AI.

The HLEG AI has published a report on the ethical guidelines for trustworthy AI [26].
The report identifies seven key requirements for trustworthy AI: (i) Human Agency & Over-
sight, (ii) Technical Robustness & Safety, (iii) Privacy & Data Governance, (iv) Transparency,
(v) Diversity, Non-discrimination & Fairness, (vi) Societal & Environmental Well-being,
and (vii) Accountability. The report is accompanied by various documents, including a self-
assessment list [27] for the development and deployment of AI systems and sector-specific
policy recommendations, such as for the healthcare sector [28]. Notably, the sector-specific
report recognizes the importance of AI in healthcare and proposes a nuanced approach to
regulation and to promote and enable the use of AI [28].

The AI Act is a European Union legislation aiming to regulate the usage and de-
velopment of AI by differentiating between various risk levels associated with AI ap-
plications [29]. The legislation primarily focuses on high-risk applications but also has
provisions for unacceptable AI uses and limited-risk applications [29]. Unacceptable AI
uses are defined as those that may cause physical or psychological harm such as social
scoring systems [29]. High-risk applications entail critical domains such as medical devices
and safety components, while limited and low-risk applications involve technologies like
chatbots, content generation systems, or spam filters [29]. Low-risk applications are subject
to the least stringent regulations. The AI Act encompasses a broad range of AI technolo-
gies, including ML, logic and knowledge-based approaches, and statistical or Bayesian
methodologies [29]. It applies not only to users within the EU but also to providers offering
services in the region, ensuring compliance across borders [29]. In order to ensure the safety
and reliability of high-risk AI applications, the AI Act mandates that providers employ
a comprehensive Risk Management System (RMS) and a Quality Management System
(QMS) [29]. Furthermore, PMS is required for high-risk AI systems to continually evaluate
their performance and identify potential issues in real-world scenarios [29]. Violations
of the AI Act can result in significant financial penalties, emphasizing the importance of
adherence to the stipulated regulations [29].

One aspect of AI that has so far been under-examined is trustworthiness. A KPMG
survey found that citizens have low trust in AI systems [30] and that “trust strongly influences
AI acceptance, and hence is critical to the sustained societal adoption and support of AI” [30].
Motivated by this finding, Bornschlegl [31] recently introduced the TAI-BDM Reference
Model that aims to address trustworthiness in AI-supported big data applications. The
model describes Reproducibility, Validity, and Capability as the three key dimensions of
trustworthiness in human-AI interactions. While these are similar to some of the principles
outlined in the beforementioned frameworks, the TAI-BDM Reference Model notes that
trust is a process that is built over time and thus emphasizes the trust building process in
AI applications [31].

While the AI act is legally binding within the EU, it does not provide direct guidelines
on how to develop trustworthy AI systems. The guidelines provided by the HLEG AI
together with their self-assessment checklist and the sector-specific guidelines for healthcare
on the other hand provide a solid basis for the development and evaluation of models such
as GenDAI. The guidelines and requirements of HLEG AI will thus be discussed in more
detail in the following paragraphs.

The first criteria for trustworthy AI in the HLEG AI is respecting and enabling human
agency and oversight. AI systems need to be designed to support human autonomy and
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decision-making instead of replacing it. They should respect fundamental human rights
and should not deceive or manipulate humans, but help them to make informed decisions.
Lastly, they should be designed for human oversight.

Technical robustness and safety refers to the requirement that AI systems should be
dependable and resilient, even in the face of challenges or adversarial attacks. Fallbacks
and safeguards must be implemented to ensure that the system runs within its designed
parameters and can be shut down if necessary. AI systems should aim for high accuracy in
their predictions. Results should be reproducible, meaning that the system demonstrates
the same behavior when executed repeatedly with the same data. Lastly, AI systems should
be reliable, meaning that they operate correctly with different inputs and situations. Similar
requirements can also be found in the IVDR [32].

Privacy and data governance must be guaranteed during the complete lifecycle of AI
systems. This includes the collection, transfer, storage, and processing of data. Access
to sensitive data such as patient data must be strictly regulated. These requirements can
also be found in specific regulations such as the EU General Data Protection Regulation
(GDPR), which is mandatory for the use of patient data in the EU. Transparency refers to the
requirement that AI systems should be explainable or at least understandable, making the
reasoning behind decisions taken by automated algorithms, such as ML methods, more
transparent [33]. In the absence of explainability, transparency can be achieved using data
provenance and clear communication. Data provenance allows decisions made by an AI
system to be linked back to the data and algorithms used, while communication involves
informing users and stakeholders about the system’s limitations. Understanding and
sharing risks is a key aspect of risk management, which is also required by the IVDR [32].

AI systems should be designed to ensure diversity, non-discrimination, and fairness. As
an example, sex and gender biases have long been a problem in medicine [34]. Historically,
women have often been excluded from clinical trials, which means that text books and
other medical resources are often biased towards male physiology and symptoms. This
exclusion has led to a significant gap in medical knowledge and treatment effectiveness for
women, resulting in misdiagnoses, delayed treatment, and overall poorer health outcomes.

AI systems should be designed for the societal and environmental well-being. The impact
of AI systems on the environment, work force, and society as whole needs to be considered.
Accountability requires mechanisms to be put in place that ensure that AI systems can
be audited and that risks are managed by carefully identifying, assessing, documenting,
and minimizing them. This requirement is similar to the requirements for diagnostic
devices and software as stipulated in the In-Vitro Diagnostic Regulation [32] and other
domain-specific regulations.

Meeting these requirements is another remaining challenge for the solution proposed
in the remainder of this paper.

3. Design and Conceptual Modeling

Based on the research by Norman and Draper on User Centered System Design
(UCSD) [35] and in line with the TAI-BDM reference model, it is important to consider the
user’s needs when designing a system. UCSD puts the user and the tasks that the user
wants to perform at the center of the design process.

In accordance to our stated research approach, several theory building goals can thus
be defined. The results of these goals are used to structure this section. First, the relevant
use cases within the GenDAI system need to be identified and described (Theory Bulding
Goal 1). Then, the existing GenDAI conceptual model needs to be extended to include the
use of AI for the interpretation of microbiome analysis results (Theory Building Goal 2).
As a next step, the AI integration needs to be modelled in detail (Theory Building Goal
3). Finally, a conceptual architecture can be created that will be used as the basis for the
implementation of the system (Theory Building Goal 4).
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3.1. Use Cases

The research question stated in this paper addresses microbiome analyses and the
interpretation of their results in findings reports. As such, the use cases for the execution
of test protocols, the analysis of test results, and the preparation of findings reports are of
particular interest. These use cases will be discussed in more detail.

Test protocol execution as detailed in Figure 2 is performed according to the estab-
lished test protocols by the lab scientist and is triggered by the order of a physician who
fills out an order form and submits patient samples. Test protocol execution consists of
preparing samples, performing measurements, and documenting results. The preparation
and measurements are associated with quality control procedures. At the end of a test
protocol execution, test results are obtained. For microbiome analysis, sample preparation
consists of 16S rRNA region extraction and quality control, which includes testing for DNA
purity. The measurement is performed on an NGS instrument that allows sequencing of
relevant 16S rRNA subregions. Following quality control of the sequence data obtained,
the taxonomy of the microorganisms contained in the sample is determined. The results of
the taxonomy determination are then used for further analysis.

Lab Scientist

<<include>>Execute Test
Protocol

Document
Protocol Steps

Prepare
Samples

Perform
Measurements

Measurement
Result QCSample QC

Submit
Measurement

Results

Figure 2. Use Case Diagram for Test Protocol Execution.

The analysis and preliminary interpretation of the test results is performed by the data
analyst. The associated use cases are detailed in Figure 3. In the case of microbiome analysis,
the analysis consists of determining relevant microbiome parameters, often indicated by
the presence or absence of specific groups of microorganisms. The data analyst creates a
lab report summarizing the results, their interpretation, and lifestyle recommendations.
This lab report must be reviewed and approved by the clinical pathologist. The laboratory
report is then sent to the physician who ordered the test.

Figure 4 shows the UML activity diagram of the general diagnostic workflow for
patient samples. The sample- and patient-centric workflow starts with the arrival of one or
more patient samples at the laboratory. The samples are registered in the LIMS together
with the order and patient data. Tests are scheduled for the samples as ordered. After
tests have been executed, a findings report is prepared and finally released to the ordering
physician. If the test execution was not successful, additional samples might be requested
to repeat the test execution.

Figure 5 shows the specific workflow for microbiome analysis. After gathering all
samples for the sequencer run of the specific microbiome analysis test protocol, the samples
are prepared for sequencing. If the quality for a sample is below expectation, the process
is repeated using an additional sample from the same patient. If there are no additional
samples, they can be requested to be collected again. The measurement is performed on
a sequencing platform. This platform produces a large quantity of data which is then
processed by bioinformatics tools to check the sequencing quality and filter bad-quality
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sequences. If the quality is sufficient, the sequences are mapped to a reference database
to determine the taxonomic composition of the samples. Assuming the quality control
steps are successful, the measurement results are saved and the analysis is performed by
determining relevant microbiome parameters which can be used to create a microbiome
profile. These analysis results are checked for plausibility and then saved to complete the
test. If any of the quality control steps fails, the test is repeated if possible or additional
samples are requested.

Having identified and described the relevant use cases for microbiome analysis and
the interpretation of their results in findings reports (Theory Building Goal 1), the next
step is to extend the existing GenDAI conceptual model to include the use of AI for the
interpretation of microbiome analysis results (Theory Building Goal 2).

Analysis
Result QC

Submit Analysis
Results

Prepare
Findings Report

Apply
Calculations

<<include>>

Summarize Results Summarize
Interpretation

<<include>>

Analyze Results

Release Findings
Report
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Receive Findings
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Figure 3. Use Case Diagram for Analysis and Reporting.
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Figure 4. Patient Samples General Diagnostic Workflow Activity Diagram.
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Figure 5. Microbiome Analysis Workflow Activity Diagram.

3.2. Conceptual Model

After introducing and describing the use cases, the next step in UCSD is to derive
a conceptual reference model that describes the user’s goals and the system’s interface
mechanisms in a common language. A graphical representation of the resulting conceptual
reference model is shown in Figure 6. Due to the need for GenDAI to support a wide
range of clinical diagnostic tests, the model is kept abstract. While a conceptual model for
GenDAI was previously published in Krause et al. [3], the model presented here has been
significantly updated to incorporate the developments described in this paper.

Figure 6 shows the test protocol development process on the top and the test execu-
tion process at the bottom. From left to right, the model uses the phases Data Collection,
Management & Curation, Analytics, Interaction & Perception, and Insight & Effectuation.

The Data Collection, Management & Curation phase of the test protocol development pro-
cess starts with Business & Data Understanding tasks, which are used to gather the necessary
information to develop new or improved tests. The required information and knowledge is
gathered from various sources. As part of the research process, the laboratoy screens scien-
tific publications for new findings and methods that can be utilized in a diagnostic setting.
These findings have to be confirmed and adapted to laboratory diagnostics by performing
experiments. The regulatory requirements necessary for compliance form an important
part of the business understanding. These regulatory requirements are used to define the
necessary quality controls and validation steps for the development of test protocols.

Continuing with the test protocol development, the Analytics phase is used to identify or
confirm possible biomarkers by analyzing the experiment and reference data gathered in the
previous phase. These biomarkers can be combined and, together with additional knowledge,
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integrated into models. These mathematical or statistical models provide a compressed but
comprehensive view of biological processes that are relevant to a particular disease or health
condition. Finally, scoring and interpretation systems are developed that link the model results
to concrete diagnostic interpretations. These scoring systems usually require the establishment
of reference values based on a population of healthy and diseased individuals. Regulatory
policies define requirements on how to establish these reference values. Biomarker discovery,
model development, and the establishment of scoring systems and interpretations can be
grouped in the Modeling task.
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Figure 6. GenDAI Conceptual Reference Model.

The Interaction & Perception phase during test protocol development is concerned with
the deployment of the developed models and scoring systems into the productive process.
This involves the development of suitable report templates including visualizations that can
be used to present the results of the analysis in an understandable way. Finally, the Insight &
Effectuation phase of test protocol development contains tasks related to continuous product
and service improvements such as risk and quality management, and post-marketing
surveillance. New information gathered in this phase is fed back to the beginning of the
process to raise business understanding and to develop new and improved test protocols.

Continuing with the test execution process, the Data Collection, Management & Curation
phase is used to execute measurements and retrieve the associated data. The phase also
includes any necessary data preprocessing and quality assurance. The Analytics phase is
used to perform the actual analysis of the measurement data. This includes the application
of models developed in the test protocol development process, the application of scoring
systems, and the interpretation of the results. It also includes additional quality assurance
steps. In the Interaction & Perception phase, the results of the analysis are rendered into
a findings report which is approved by the clinical pathologist. Finally, in the Insight & Effec-
tuation phase the findings reports are released to the ordering physician. Customer feedback
or other insights from the test execution are fed back into the continuous improvement task
of the test protocol development process.

This conceptual model addressed Theory Building Goal 2 by extending the existing
GenDAI conceptual model to include the use of AI for the interpretation of microbiome analysis
results. The next step is to model the AI integration in detail (Theory Building Goal 3).
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3.3. AI Integration

In order to create findings reports, it is necessary to interpret the analysis results
and derive recommendations for action. Ultimately, these tasks are the responsibility
of the trained medical expert, the clinical pathologist. As certain interpretations and
recommendations for action can be repeated depending on the test, text modules are
sometimes used in practice, which can be individually adapted if necessary. In addition,
the creation of draft findings can be delegated as long as the final review, editing, and
approval is carried out by a doctor. In principle, the creation of draft findings is thus a task
that is suitable for automation. However, if text modules are not to be used exclusively, the
automation requires a high degree of domain competence, as the interpretation of the results
and the derivation of recommendations for action require a high level of medical expertise.

An LLM will be used for the automated creation of findings, which receives patient
data, the results of the analyses, as well as further background/expert knowledge and
instructions as input and delivers a draft findings report as output. While the instructions
can be used to adjust the expected format of the output, background knowledge can be
used to add specific domain knowledge that the laboratory posesses and that was not part
of the model training or that should receive special attention.

The process of creating a draft report is shown in Figure 7. The Electronic Health
Record (EHR) containing patient data is first pseudonymized. The patient data relevant to
the findings, such as age, gender and additional medical information, is then extracted and
converted into a text format together with the analysis results of the tests performed. The
additional medical background knowledge, as well as text templates and instructions, are
also converted into text format. Together, these texts are concatenated as input for the LLM.
The LLM is usually called via its own API, which is mapped in Figure 7 using request and
response messages. The response of the LLM is evaluated and returned as a draft finding.
This draft report must then be checked and approved by the clinical pathologist.

As previously discussed, the legal and ethical aspects for integrating AI into a clinical
diagnostic workflow must be carefully considered. While a legal opinion is beyond the
scope of this paper, the guidelines of the HLEG AI provide a good basis for the development
of GenDAI. GenDAI should thus be designed to respect user privacy, be technically robust
and safe, allow transparency, ensure diversity, non-discrimination and fairness, allow
accountability, enable human agency and oversight, and be beneficial to society and the
environment. The integration of AI into GenDAI must fulfil these guidelines. For the
purpose of this paper, it will be assumed that providing improved and efficient diagnostic
services to patients is beneficial to society and the environment. The following sections will
discuss how GenDAI can be designed to meet the other guidelines.

Patient privacy and data protection must be considered when integrating LLMs for
clinical interpretation and recommendation. This applies in particular if the models are
not run locally within the laboratory. The assessment and interpretation of test results may
depend on patient data such as age, gender or medical history, which may allow individual
patients to be identified and are therefore particularly worthy of protection. In order to meet
the requirements of these guidelines and the principle of data minimization, GenDAI uses
anonymized or pseudonymized data as far as possible. GenDAI also supports both local
and cloud-based implementations of LLMs for clinical interpretation and recommendation,
whereby only local implementations are used by default in productive use. Thid party
providers are available for testing and evaluation purposes.

Technical Robustness and Safetey in the context of LLMs entails various aspects. While
adversarial attacks are not a concern for the planned use cases, including safeguards and
fallbacks are nonetheless essential to ensure that the models do not produce wrong or
misleading results. In the GenDAI use cases, all LLM outputs, namely the clinical reports
including recommendations are subject to human review by the clinical pathologist, who
can decide to adjust or rewrite the report if necessary, thereby providing a safeguard. If the
system is unavailable, laboratory staff can prepare the findings report, which the clinical
pathologist must approve, as done in the existing laboratory workflow. If the system is only
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temporarily unavailable or failed to produce sensical output, the report generation task
can be restarted. As discussed in the previous section, the review, editing, and approval
process is already part of the laboratory workflow and is not changed by the introduction
of LLMs. Technical robustness also includes achieving high quality and accuracy of the
results produced by the LLM. This is a key requirement for the planned GenDAI use
cases, as inaccurate results would diminish the usefulness of the system and thus the
level of automation. GenDAI thus implements interfaces to multiple LLMs, including
both commercial and open-source solutions. The interface to hugging face allows the
configuration of any model available in the hugging face model hub.

act Generate Textual Report
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: Findings Report Text

Build LLM Input

Call LLM Request
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Extract Test
Analysis Results
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Figure 7. LLM for Clinical Interpretation and Recommendations Activity Diagram.

One of the strengths of LLMs is to adapt to a variety of contexts without needing
explicit (re-)training. This improves the reliability as defined by HLEG AI. On the downside,
the reproducibility achieved by LLM is limited. While there are some techniques to force
LLM to produce the exact same output for the same input, they have disadvantages and
only work for the exact version of the LLM running in a specific environment.

However, rather than comparing the exact output of LLMs when using the same
input, it seems appropriate to reinterpret the reproducibility requirement to mean that the
same input should result in outputs that are consistent with each other, i.e., they should
not contradictory. This definition aligns with the expectations of human experts. It is
also compatible with the definition of trustworthiness in the TAI-BDM reference model
which defines reproducibility as the ability to obtain consistent results when the same
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input is provided to the system. While this is a weaker requirement, it is still hard to
achieve with current LLMs which are prone to hallucinations, meaning that sometimes they
produce false outputs. To reduce hallucinations, GenDAI uses carefully designed prompts
to limit the possible outputs to those that are consistent with the context. For example, the
prompt can include a list of possible diagnoses and interventions. The prompt can also
include a list of criteria that must be met for a diagnosis or intervention to be valid. This
expert knowledge that is added as part of the prompt can be configured in the system and
continuously updated as needed based on the latest scientific findings and feedback from
the clinical pathologist.

The explainability of AI models is an important requirement for use in medical diag-
nostics. As described in Section 2.4, this aspect is also part of the regulatory efforts for AI.
Explainability is a continuous spectrum and not a binary value. In general, explainability
decreases as the complexity of the models increases. The requirements for explainability
are generally not binary either. Instead, they depend on what the models are used for and
what risk exists in the event of misconduct. The regulatory efforts discussed in Section 2.4
also do not place any hard requirements on explainability, but rather view explainability as
a sub-area of transparency, which is elementary for trustworthy AI.

The LLMs planned for use in GenDAI belong to the so-called black box models
where explainability is very low. However, such models are not prohibited in current and
upcoming regulation, even for high-risk applications, as long as there is transparency about
the functioning and limits of the models and appropriate risk management is in place. In
order to minimize the risk in GenDAI, the LLM models should only be used for the creation
of draft findings, which must always be checked and approved by a clinical pathologist.
In addition, the models should be designed in such a way that they provide their own
verifiable justifications for the diagnoses and recommendations for action. Since current
LLMs are prone to so-called hallucinations in which false information can be generated,
but which is convincingly reproduced and even provided with supposed sources, it is
important to sensitize the clinical pathologists to the problem and to train them accordingly.
The risk of hallucinations can also be significantly reduced if a fixed framework for possible
diagnoses, suitable criteria and interventions is already specified in LLM prompt.

When using LLMs for clinical interpretation and recommendation, it is to be expected
that the outputs reflect existing biases in society and science. For example, sex is an impor-
tant biologic variable, but women have historically been underrepresented in studies [34].
Clinical diagnostics based on these biased studies can thus also be biased to male patients,
and LLMs trained on this data will likely reproduce the same bias. In this example, the
LLM reflects a gap in knowledge in the scientific literature. There is no easy way to improve
the outputs except by improving the underlying knowledge.

LLM training data often also contains a large amount of non-scientific training data
including text from social media and the internet in general. This data includes text
with discriminatory language and stereotypes, which can influence LLM output. Sig-
nificant effort has been spent on identifying and mitigating these problems in LLM
with some success [36].

GenDAI tries to mitigate this risk using multiple strategies. First, data minimization
is used to reduce the amount of data that is fed into the LLM. While age and sex can be
important for the interpretation of microbiome analysis results, other data such as name or
addresses could increase the risk of biases and are thus omitted from the prompt. Second,
the LLM is guided in its output by expert knowledge and instructions that is added to
the prompt and can be used to correct biases if necessary. Given the narrow context of
microbiome diagnostics and the use of carefully designed prompts, the risk of the LLM to
output discriminatory language or biases beyond the underlying scientific knowledge is
expected to be low. Nonetheless, the outputs of the LLM will also be carefully reviewed by
the clinical pathologist to ensure that they are free of discriminatory language and biases.

To ensure accountability, the implementation must ensure that all input data and the
resulting findings can be audited. For this purpose, the input data and the results of the
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analysis are persisted in such a way that a later review is possible. As many laboratories
do not yet have fully digital archive systems, GenDAI also makes all relevant input data,
interim results and results available as a printable report. In addition to auditability, the
management of risks is also an important component of accountability. Risks must be
identified, assessed, documented and minimized. Such an RMS is already required by
ISO 14971 [37] and ISO 22367 [38] for all medical laboratories and therefore does not need
to be newly developed for GenDAI.

The responsible use of AI requires human agency and oversight, especially in crit-
ical areas such as medicine. Human agency and oversight are already ensured by the
requirement for the clinical pathologist to approve all reports. It is only necessary to
ensure that the reports contain the necessary information for decision support, which is
already ensured as part of accountability. Due to the still insufficiently researched risk
of hallucinations in LLMs in the field of diagnostics, it is however necessary to sensitize
the clinical pathologists to the problem and to train them accordingly in order to ensure
effective agency and oversight.

After this description of the integration of AI into the GenDAI conceptual model
(Theory Building Goal 3), the next step is to provide a conceptual architecture that describes
the principal components of the system.

3.4. Conceptual Architecture

As an intermediate step before the implementation, the conceptual model can be
extended by a conceptual architecture. The conceptual architecture describes the principal
components of a system in a logical grouping based on their functionality. The conceptual
architecture for GenDAI is shown in Figure 8. As GenDAI supports several use cases
that have previously been modelled and implemented, the architecture encompasses
both existing components and new components. The new components are related to the
microbiome analysis and the integration of LLMs for the creation of draft findings reports.
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The conceptual architecture is divided into five principal areas arranged in three layers.
The bottom layer contains the Persistence area, which shows the most important data stores
required for the solution. These data stores are derived from the artifacts identified in the
GenDAI conceptual model. The top layer represents the principal input and output of
GenDAI and the laboratory as a whole. On the left side, the Order & Sample Data Collection
area, consists of the components necessary for order entry, sample data collection, and
preparation. It also shows the main input artifacts based on the measurement technologies
and diagnostic methods currently supported by GenDAI. On the right side, the Reporting
area, shows the components necessary for the creation of findings reports. This includes
the LLM for result interpretation, the approval process, and all other required components
for the creation of a findings report.

The middle layer is split into two areas. The Assay Development, Improvement, and
Compliance area on the left side shows the components necessary for the development and
improvement of the assays and the compliance with the relevant regulations. This includes
the training or fine-tuning of the AI models and their deployment. It also includes the
development and deployment of new diagnostic workflows or workflow configurations
and coresponding reporting templates. Finally it includes essential components for the
compliance with relevant regulations, such as the RMS or QMS.

The Diagnostics area within the middle layer shows the components necessary for the
productive analysis of the measurement data. This includes the Workflow Management
System (WMS) responsible for the execution of diagnostic workflows and all components
that are used within the workflow. These components include bioinformatics tools, en-
capsulated calculations, and the application of AI models for other GenDAI applications
beyond microbiome analysis.

Based on this conceptual architecture, which addresses Theory Building Goal 4, the
next step is to implement the conceptual model and architecture in a prototype.

4. Implementation

The conceptual model and architecture described in the previous section extend the
existing GenDAI conceptual model with additions for microbiome analysis and the integra-
tion of LLMs for the creation of draft findings reports. The existing model was previously
implemented as a prototype with the name “GenomicInsights” [13]. The microbiome diag-
nostic workflow with the finding report generation was implemented as an extension of this
prototype under the name “MicroFlow”. This section will reiterate the key aspects of the
GenomicInsights prototype and subsequently discuss the MicroFlow extension that is the
focus of this paper. This implementation addresses the System Development Goal within
our research approach. The code for the GenomicInsights prototype and the MicroFlow
extension is available on GitHub [39].

GenomicInsights is a web-based application that allows the execution of test protocols
as automated workflows using an event-driven architecture (EDA). EDA is a distributed
computing paradigm that is particularly suitable for systems that process large amounts
of data and require high scalability and reliability. By using asynchronous events as the
primary communication mechanism, EDAs decouple components, thus increasing fault
tolerance and scalability. The application of EDA to GenomicInsights is shown in Figure 9.

The core of the event communication in GenomicInsights is the Event Hub which is
responsible for receiving and distributing events that occur within the system. Individual
components can subscribe and react to events relevant to them. Components can also
publish to the event hub when relevant events occur. This can be, for example, the com-
pletion of a task or the availability of new data. To further decouple components and to
allow a flexible orchestration of components, GenomicInsights combines the event-driven
architecture with a WMS that allows the creation of workflows that react to events and
trigger new events.

Application-services are used as a backend-for-frontend to support the UI [40], while
backend services operate asynchronously and support long-running operations like the
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analysis tasks and the report generation. The WMS is provided by Apache Airflow (v2.9),
an open-source workflow automation tool. Airflow allows the definition of workflows as
directed acyclic graphs (DAGs) and the execution of them in a distributed manner. Apache
Kafka (v3.7) is used for the event hub to provide communication between all components of
the system.
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Trigger Execution

Backend Services

User Interface (Modular Web App)

Event Bus

Figure 9. EDA & Microservice-Based Technical Architecture Diagram.

Using these components, the MicroFlow extension includes a workflow for micro-
biome analysis. As soon as the workflow is started, the Apache Airflow workflow engine
sends an event to the Kafka event hub, indicating the arrival of new data. The event is
received by the microbiome analysis microservice which utilizes the QIIME 2 toolset to
analyze 16S rRNA sequencing data, yielding a taxonomic profile of the microbiome as
previously modelled in Figure 5. After successful analysis, the microservice sends an event
to the event hub, signaling the workflow to progress to the next step. As a next step the
workflow triggers the creation of a draft findings report by sending a request event to the
event hub, which is received by the reporting microservice.

The reporting microservice calls the underlying LLM as visualized in Figure 7 in the
previous section. This call includes a prompt that contains the patient data, the analysis
results, additional expert knowledge, and instructions. The instructions tell the LLM to act
as a clinical pathologist and to create a draft findings report for microbiome analysis results.
They also tell the LLM to format these findings in the form of a letter and to include both
an interpretation of the results and recommendations for action. Listing 1 shows the used
prompt template with the placeholders for the analysis results, patient data, and expert
knowledge, translated into English.

The LLM to be used can be freely configured. During development, the meta-
llama/Llama-2-70b-chat-hf model in the Hugging Face repository was used. To simplify
the prototype implementation and evaluation of other LLMs in the future, an API for the
cloud-based HuggingChat was used [41]. After the creation of the draft findings report, the
microservice sends an event to the event hub, which is received by the WMS and triggers
the finalization of the workflow, allowing the user to download the draft findings report.

Figure 10 shows the start screen of the GenomicInsights prototype with the MicroFlow
extension. The user can manually select a workflow to execute from the list of available
workflows. It should be noted that the manual triggering of workflows is only intended
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for testing and evaluation purposes. In productive use, the workflows would be triggered
automatically by the system based on the arrival of new data files in a drop folder.

Listing 1. MicroFlow Prompt Template (Translated).

You are a doctor in a medical diagnostic laboratory and are
creating a detailed medical diagnostic report for a patient. The
patient has submitted a stool sample and the composition of the
intestinal microbiome was examined using 16S rRNA sequencing. The
microbiome composition is as follows: {microbiome percentages }.

The microbiome composition should be presented as a table in the
letter. Please also consider the following additional information
about the patient in the report: {patient information }.

The information about the patient should also be presented in
tabular form above the text , i.e., in the letterhead.
In addition , I provide you with the following expert knowledge:
{expert knowledge }.

Please use this expert knowledge only if the corresponding
bacteria are mentioned in the microbiome composition.
If a bacterium is not listed in the microbiome composition , this
does not mean that it is not present.
If it is not listed , no statement can be made about this bacterium.
Please do not list the expert knowledge separately in the letter.
This is only intended for you as background knowledge.

And please write a paragraph about the analysis and the comparison
to healthy donors and a paragraph with recommendations for action
to address any deficiencies in the microbiome composition.
The letter should also address the patient directly and sound
professional. Please write the letter in German. Thank you very
much!

Figure 10. MicroFlow Start Screen.

After selecting the workflow and corresponding data files, the execution of the work-
flow starts and the user is redirected to the workflow progress screen shown in Figure 11.
This screen allows the user to monitor the progress of the workflow execution.

For more detailed information and for debugging purposes, the user can also use the
Apache Airflow UI to view the list of workflow runs other details as shown in Figure 12.
Individual instances of the workflow can also be monitored in the Airflow UI.

After successful execution, the draft findings report can be downloaded from the
MicroFlow prototype. An example draft report will be discussed in the next section, which
describes the initial evaluation of the MicroFlow prototype.
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Figure 11. MicroFlow Workflow Progress Screen.

Figure 12. Apache Airflow UI.

5. Evaluation

One of the main challenges in evaluating the usability and feasibility of MicroFlow was
to ensure that the evaluation is based on the actual needs of the users. Following the UCSD
and TAI-BDM approaches, it is thus important to involve actual users in the evaluation,
so that the system can be iteratively improved based on user needs. A suitable method
for this is the cognitive walkthrough [42] in which one or more evaluators work through
a series of tasks while identifying potential issues. To evaluate MicroFlow, a cognitive
walkthrough with two expert users has been performed. This subsection describes the
results of this qualitative evaluation and provides conclusions and future work. Within the
selected research approach, this section addresses the Experimentation Goal, concluding
the research goals of this paper.

The two expert users that participated in the cognitive walkthrough were Prof. Michael
Kramer (M.D.) and Patrick Newels (M.Sc.). Michael Kramer is a clinical pathologist, head
of a clinical pathology lab, and head of a laboratory consulting firm, the ImmBioMed
Business Consultants GmbH & Co. KG, Pfungstadt, Germany focusing on the translational
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development of laboratory diagnostic procedures. Patrick Newels is the head of the medical
science department at biovis Diagnostik MVZ GmbH, Limburg-Eschhofen, Germany.

The goal of the cognitive walkthrough was to identify usability issues in MicroFlow
and to evaluate the general feasibility of the proposed LLM integration. The evaluation
was formative in nature, focusing on qualitative insights rather than quantitative metrics.
For testing, the biovis laboratory provided sequencing data of a control sample with
known concentrations of microorganisms to be processed by MicroFlow. The sequencing
data was in paired-end FASTQ format. The participants were shown the user interface
of MicroFlow and how to manually execute a microbiome analysis workflow for the
sample data. The participants were shown how the execution can be monitored within
MicroFlow. Finally, a finished draft report produced by MicroFlow was presented to the
participants. The participants were asked to give feedback on the MicroFlow prototype
and the generated report.

MicroFlow received positive feedback during the cognitive walkthrough, supporting
the idea that the integration of LLMs into the diagnostic workflow is worth pursuing.
The prototype was found to be easy to use and intuitive. Minor suggestions included the
possibility to easily add workflows with different configurations to support different test
protocols. The integration of the LLM was also well received, with the LLM providing
plausible and useful drafts. The format of the cognitive walkthrough did not allow for
a detailed evaluation of the LLM output however to determine if the LLM output was
free of hallucinations. The participants suggested that the LLM output should include
literature references that support its findings, so that the clinical pathologist can verify the
information more easily.

To address this feedback in future work, the use of enhanced prompt engineering to
instruct the LLM on the exact desired output format seems most promising. While this
initial MicroFlow prototype used the Llama 2 model, future work should also evaluate
the use of the recently released Llama 3 model and other LLMs. The evaluation of the
LLM output should also be extended to include a more detailed analysis of the output
for hallucinations and other errors. To test the ability of the LLM using additional expert
background knowledge provided by the laboratory, the draft report generation was tested
with an example of such background knowledge. Specifically, the LLM was told that lower
concentrations of Akkermansia are associated with type 2 diabetes.

Figure 13 show the relevant excerpts of the generated draft report. The draft reports
are in german as the laboratory and the participants are both located in Germany. For
this paper, we translated the draft report to english using DeepL [43]. The report starts
with a generic introduction to the patient and the test results as a list of the detected
microorganisms and their abundance (not included in Figure 13). The report then continues
with an interpretation of this composition. Specifically, as desired, the report notes the
absence of Akkermansia in the sample and suggests that this could be a risk factor for type
2 diabetes. The next paragraph in the report recommends a diet rich in fiber to increase
the abundance of healthy gut bacteria such as Akkermansia. The report concludes with a
disclaimer that each gut microbiome is unique and that as such no recommendation will be
suitable for all patients.

In conclusion we find that the integration of LLMs into the diagnostic workflow
is possible and can support the automatization of the findings report creation without
sacrificing human oversight. The use of expert knowledge as part of the LLM prompt was
validated to extend the capabilities of the LLM without requiring custom training. Further
evaluation is however necessary to determine the effectiveness and accuracy of LLMs in
the context of microbiome diagnostics.
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We compared your results with those of healthy donors and found some differences. In 

particular, we found a lower concentration of Akkermansia, which may be associated with a 

higher risk of type 2 diabetes. However, it is important to note that this is not a definitive finding 

and further investigations may be necessary to make an accurate diagnosis. 

To address potential deficiencies in your microbiome composition, we recommend adhering to 

a balanced diet that includes plenty of fiber-rich foods such as fruits, vegetables and whole 

grains. These foods promote the growth of bacteria such as Akkermansia and other beneficial 

microorganisms. It is also important to drink enough water to hydrate your gut and promote the 

movement of your gut flora. 

It is important to note that everyone has a unique microbiome composition and there are no 

one-size-fits-all recommendations. However, we encourage you to reach out to us if you have 

further questions or concerns, or if you need help optimizing your health 

Figure 13. MicroFlow Draft Report Excerpt

6. Conclusions and Future Work

This paper presented a conceptual model and implementation for the integration of
LLMs in laboratory diagnostics, enabling the creation of draft findings reports in micro-
biome diagnostics. Based on a structured research approach, several research goals in
the area of observation, theory building, system development, and experimentation were
outlined and subsequently addressed. The conceptual model and architecture extend the
existing GenDAI conceptual model, while the implementation of the MicroFlow prototype
demonstrates the general feasibility of the proposed LLM integration. The evaluation
of the prototype showed that the integration of LLMs is possible and could support the
automatization of the findings report creation. A limitation of this paper is the lack of
a detailed evaluation of the LLM output on a larger, real-world patient dataset to determine
the accuracy and reliability of the LLMs and to determine the risk of hallucinations. Future
work will focus on evaluating additional LLMs, systematically assessing the accuracy of the
AI models in a real-world clinical setting, improving the verifiability of LLM outputs, and
employing enhanced prompt engineering to refine the LLM’s output. As a next step, and as
part of a recently awarded EU MCSA research grant, these and other improvements will be
integrated into the further development of the GenDAI model and MicroFlow prototype,
which will be evaluated on real patient data to enhance diagnostics and management of
Inflammatory Bowel Disease (IBD).
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