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Abstract: Background: Amyotrophic Lateral Sclerosis (ALS) is a devastating neurological disorder
with increasing prevalence rates. Currently, only 8 FDA-approved drugs and 44 clinical trials exist for
ALS treatment specifying the lacuna in disease-specific treatment. Drug repurposing, an alternative
approach, is gaining huge importance. This study aims to identify potential repurposable compounds
using gene expression analysis and structural similarity approaches. Methods: GSE833 and GSE3307
were analysed to retrieve Differentially Expressed Genes (DEGs) which were utilized to identify
compounds reversing the gene signatures from LINCS. SMILES of ALS-specific FDA-approved and
clinical trial compounds were used to retrieve structurally similar drugs from DrugBank. Drug-
Target-Network (DTN) was constructed for the identified compounds to retrieve drug targets which
were further subjected to functional enrichment analysis. Results: GSE833 retrieved 13 & 5 whereas
GSE3307 retrieved 280 & 430 significant upregulated and downregulated DEGs respectively. Gene
expression similarity identified 213 approved drugs. Structural similarity analysis of 44 compounds
resulted in 411 approved and investigational compounds. DTN was constructed for 266 compounds
to identify drug targets. Functional enrichment analysis resulted in neuroinflammatory response,
cAMP signaling, PI3K-AKT signaling, and oxidative stress pathways. A preliminary relevancy check
identified previous association of 105 compounds in ALS research, validating the approach, with
172 potential repurposable compounds.

Keywords: Amyotrohpic Lateral Sclerosis; drug repurposing; structural similarity; gene expression
analysis; neuroinflammation

1. Introduction

Amyotrophic Lateral Sclerosis or Lou Gehrig disease is devastating neurological dis-
order characterized by loss of motor neurons and skeletal musculature paralysis mostly
affecting middle-aged people [1,2] Symptoms associated with ALS were found to be cogni-
tive and behavioral like dysarthria, dysphagia slurred speech, tripping, falling, trouble in
swallowing, untimely crying, laughing/yawning etc [3–5] As per the report in 2019, the inci-
dence rate for ALS was found to be 0.6–3.8 per 100,000 persons per year, however, in Europe,
incidence rate was found to be 2.1–3.8 per 100,000 persons per year which is at growing stage.
Similarly, prevalence rate was reported to be 4.1–8.4 per 100,000 persons globally. Age of on-
set of disease was found to be between 51–66 years [6]. Risk factors were found to be family
history, genetic (mutations in SOD1, TBK1, PFN1, TUBA4α, C9orf72 etc.), environmental
factors (smoking, exposure to toxins, radiation), viral infections (HIV and polio) [3,4].

ALS is majorly two types based on its genetic background: Familial and Sporadic.
Familial ALS corresponds to very less number of patients (~5–10%) which might be due to
family history and inheritance, whereas, the majority of patients fall under sporadic cate-
gory which lack family history but the disease was seen due to genetic alterations or other
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risk factors [2,4]. ALS is mainly have four clinical representations based on symptoms:
(1) Primary Lateral Sclerosis, (2) Limb onset ALS, (3) Progressive muscular atrophy and
(4) Bulbar-onset ALS [3,4]. It was reported that ALS pathophysiology was mainly involved
in loss-of-function or gain-of-function of genes and it was associated with mitochondrial
dysfunction, impaired RNA metabolism, cytoskeletal trafficking defects and altered pro-
teostasis. So far around 40 genes were found to be associated with ALS progression [2,3,7],
however there is a dearth in identification of disease specific genes, as there were less num-
ber of gene reported to far. So far only eight drugs namely, Riluzole, Edavarone, Sodium
phenylbutyrate, Taurursodiol, Tofersen, Dextromethorphan hydromide, Quinidine sulfate
and Rimabotulinum toxin B were approved by FDA for ALS treatment [8]. However, all
these compounds were found to be symptomatic rather than disease specific which opens
an opportunity for drug discovery or drug repurposing. As the drug discovery process
involved around 15–20 years, there is an increase in demand for drug repurposing.

In this study, we designed a drug repurposing approach which retrieves the com-
pounds based on gene expression similarity and structural similarity. Initially, GEO datasets
corresponding to ALS were identified and Differentially Expressed Genes (DEGs) were
retrieved and used as input to retrieved the compounds that can reverse the gene signatures.
Parallelly, the FDA approved small molecules and compounds which were in clinical trials
for ALS were retrieved and performed a structural similarity analysis to retrieve the similar
drugs. Thus, obtained compounds from both approaches were collated and constructed
a drug-target-network to identify the targets that selected drugs were interacting with.
Finally functional enrichment analysis was performed for the identified drugs to retrieve
KEGG pathways and GO terms. Additionally, a preliminary search was performed to
identify the compounds that were explored in ALS research.

2. Materials and Methods:
2.1. Part-1: Selection of Microarray Datasets and Gene Expression Analysis

Microarray datasets pertaining to Amyotrophic Lateral Sclerosis (ALS) were retrieved
from the Gene Expression Omnibus (GEO) database [9] and were screened through a set of
inclusion and exclusion criteria.

2.1.1. Inclusion Criteria

• Datasets satisfying all the following criteria were selected
• Datasets with controls and ALS
• Datasets with expressional arrays
• Datasets studied in “Homo sapiens”
• Datasets with minimum of 2 samples in each category i.e., control and ALS
• Datasets with blood/brain samples

2.1.2. Exclusion Criteria

• Datasets with following criteria were excluded.
• Drug treated datasets.
• Datasets from other organisms
• Datasets with no details about controls
• Mutation studies

2.1.3. Gene Expression Analysis

The selected datasets were preprocessed, curated and analyzed individually for re-
trieval of Differentially Expressed Genes (DEGs) (both upregulated and downregulated)
through Limma in Bioconductor package [10] in R. The datasets which revealed DEGs with
False Discovery Rate (FDR) p-value (adjusted p-value according to Benjamin-Hochberg
method) <0.05 were selected and segregated into up (log FC >1) and down regulated
(logFC <1) and are utilized to retrieve the compounds that can reverse the gene signatures.
The volcano plots were generated using EnhancedVolcano package [11] in R.
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2.2. Part-2: Creation of Drug Library Based on Structurally and Gene Expression Similarity

SMILES of both FDA approved ALS drugs and clinical trial compounds (only Phase2
and above) were retrieved from DrugBank [12]. The smiles were utilized through DrugBank
data to retrieve structurally similar compounds with cut-off Tanimoto similarity (0.7 and
above were selected). RDkit [13] was utilized to convert the smiles into Morgan fingerprints
and calculate the structural similarity. Thus, retrieved compounds through structural simi-
larity and gene expression similarity approach were mapped to their developmental stage
and only compounds under “approved” and “Investigational” categories were selected for
further analysis. Similarly, the obtained DEGs were utilized to retrieve the compounds that
can reverse signatures from L1000CDS2, SIGCOM and L1000_FWD tools of LINCS [14].

2.3. Part-3: Construction of Drug-Target-Network (DTN) and Functional Enrichment Analysis

The obtained drugs from structural similarity and gene expression similarity in the
above step were subjected to construction of DTN through STITCH database [15] with con-
fidence score of 0.7 and above to retrieve the targets associated with identified compounds.
The interacting proteins were subjected to functional enrichment analysis through ClueGO
app [16] in Cytoscape to retrieve GO terms and KEGG pathways [17]. The compounds that
were interacting only with proteins/drug targets were subjected to preliminary search for
their exploration in ALS research.

3. Results
3.1. Part 1: Gene Expression Analysis

Around five GEO datasets corresponding to ALS belonging to “Homo sapiens” were
obtained, out of which only 2 (GSE833 [18] and GSE3307 [19,20]) (Figure 1) were found to
be meeting inclusion & exclusion criteria (Table 1). The datasets were analyzed through
Limma package in Bioconductor [10] package in R. 13 upregulated and 5 downregulated
DEGs were retrieved from GSE833 (Figure 2 and Supplementary Materials Table S1).
280 upregulated and 430 downregulated DEGs were obtained from GSE3307 (Figure 3 and
Supplementary Materials Table S2).
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Table 1. List of GEO datasets selected for the study.

Dataset
Accession
Number

Pubmed
Reference

Number of
Cases

Number of
Controls Genetic Source Genotyping

Platform
Genotyping
Method

GSE833 [18] 14645737 7 4 Brain tissue GPL80 QRT-PCR

GSE3307 [19,20] 16478798,
25313409 9 7 Brain tissue GPL97 RT-PCR
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3.2. Part 2: Creation of Drug Library Based on Structural and Gene Expression Similarity

Two FDA approved drugs (small molecules) namely Riluzole and Edavarone [8,12]
were found for ALS. However, 44 clinical trials (Phase 2 and above) were found for ALS
in clinicaltrials.gov [21], which revealed around 20 molecules (Table 2). Structural sim-
ilarity analysis through RDkit resulted in a total of 569 compounds, out of which only
397 compounds were belonging to approved and investigational categories
(Supplementary Materials Table S3). Similarity, the DEGs retrieved from GEO datasets
were used as input to retrieve the compounds that can reverse the signatures in LINCS
database [14]. This revealed 213 compounds belonging to approved category
(Supplementary Materials Table S4).

Table 2. List of compounds selected for structural similarity.

Name of the Compound Category Phase of Clinical Trial NCT Number

Riluzole Approved NA NA

Edavarone Approved NA NA

Ceftriaxone Clinical trials Phase 3 NCT00349622

TRO19622 Clinical trials Phase 2|3 NCT01285583

Escitalopram Clinical trials Phase 3 NCT00965497

Zilucoplan Clinical trials Phase 2|3 NCT04436497

Tirasemtiv Clinical trials Phase 3 NCT02496767,
NCT02936635

Vitamin E Clinical trials Phase 3 NCT00372879

Arimoclomol Clinical trials Phase 3 NCT00706147,
NCT03491462

Mexiletine Clinical trials Phase 4 NCT01811355

Dexpramipexole Clinical trials Phase 3 NCT01281189

Memantine (Ebixa) Clinical trials Phase 2|3 NCT00353665

Sodium Valproate Clinical trials Phase 3 NCT00136110

Levosimendan Clinical trials Phase 3 NCT03505021

MCI-186 Clinical trials Phase 3

NCT00424463,
NCT00415519,
NCT01492686,
NCT00330681

E0302 (mecobalamin) Clinical trials Phase 2|3 NCT00445172,
NCT00444613

Pridopidine Clinical trials Phase 2|3 NCT04615923

Minocycline Clinical trials Phase 3 NCT00047723

Verdiperstat Clinical trials Phase 2|3 NCT04436510

3.3. Part-3: Construction of DTN and Functional Enrichment Analysis

The list of unique compounds obtained by collating the compounds obtained from
structural and gene expression similarity were subjected to construction of drug-target-
network using STITCH database [15]. DTN resulted in 915 nodes with 7200 edges (Figure 4)
(Supplementary Materials Table S5. Among 915 nodes, 504 were found to be proteins
and were subjected to functional enrichment analysis using ClueGo [16] app in Cytoscape.
Functional enrichment analysis revealed 2339 significant GO_biological processes, out
of which 17 were found to be involved in inflammatory response and 162 in signalling
pathways (Supplementary Materials Table S6, Supplementary Materials Figure S1 and
Figure 5). Around, 111 terms were found to be significantly associated with cellular
response (Supplementary Materials Table S7, Supplementary Materials Figure S2 and
Figure 6). However, 344 and 10 terms related to Molecular function (Supplementary
Materials Table S8, Supplementary Materials Figure S3 and Figure 7) and immune response
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(Supplementary Materials Table S9, Supplementary Materials Figure S4 and Figure 8)
were found to be significantly associated with the proteins. KEGG analysis revealed
around 142 significant pathways (Supplementary Materials Table S10, Supplementary
Materials Figure S5 and Figure 9). Around 411 compounds were found to be significantly
involved in DTN, out of which 134 compounds were found to be as anti-cancer drugs and
antibiotics which were excluded from the study. The rest 266 compounds were explored
for their association in ALS studies which revealed around 172 compounds (Table 3) were
unexplored in ALS research, thus opening a gateway to explore these drugs for their
potential in ALS treatment.
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Figure 9. KEGG pathways associated with targets retrieved from DTN.
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Table 3. List of selected drugs which were unexplored in ALS research.

Compound Name Compound Name Compound Name

acitretin ethopropazine phenoxybenzamine

alfacalcidol etodolac pindolol

aliskiren fenoldopam piroxicam

alosetron fenoterol pitavastatin

alprazolam fludrocortisone prazosin

amiodarone flunisolide pregnenolone

amlexanox fluocinonide prochlorperazine

amodiaquine fluorometholone promazine

amoxapine flupenthixol propafenone

argatroban fluspirilene protriptyline

aripiprazole formoterol quetiapine

atomoxetine fostamatinib ranitidine

auranofin glimepiride remoxipride

azelastine halcinonide repaglinide

benazepril heroin rifabutin

bendrofluazide homatropine rifapentine

benperidol iloperidone rifaximin

bepridil ipratropium bromide ritodrine

betahistine irbesartan rizatriptan

biperiden ketoprofen ruxolitinib

budesonide ketorolac salbutamol

buprenorphine labetalol salmeterol

bupropion lansoprazole sulpiride

buserelin levonorgestrel sumatriptan

calcipotriol linagliptin tadalafil

cangrelor loperamide tegaserod

carvedilol loratadine telmisartan

chlorprothixene lornoxicam temsirolimus

cilostazol losartan terbutaline

cimetidine loxapine terfenadine

cinnarizine maprotiline thiothixene

citalopram meloxicam tibolone

cladribine mesoridazine ticagrelor

clofarabine mestranol timolol

clomiphene metergoline tirofiban

clomipramine methylnaltrexone tocainide

clopidogrel miglitol tolcapone

curare milnacipran tolmetin

dapsone minoxidil tramadol

desipramine mirtazapine triamcinolone

desoximetasone mitotane triamterene
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Table 3. Cont.

Compound Name Compound Name Compound Name

diazoxide mitoxantrone trifluoperazine

diclofenac moclobemide triflupromazine

digitoxin nadolol trimeprazine

dihydroergocryptine nalbuphine trimipramine

dihydroergotamine nalmefene tripelennamine

diltiazem nalorphine triprolidine

diphenoxylate nefazodone troglitazone

diprenorphine nisoldipine tropisetron

disopyramide orlistat umeclidinium

domperidone oxycodone valdecoxib

droperidol oxymorphone yohimbine

duloxetine papaverine zafirlukast

elagolix parecoxib zileuton

ephedrine parthenolide ziprasidone

eplerenone perhexiline zuclopenthixol

ergotamine perindopril

estrone phenelzine

4. Discussion

ALS is a progressive neurological disorder affecting the motor nerves and inducing
cognitive and behavioural deficits mainly affecting middle aged. It is reported that inci-
dence and prevalence is being increased year by year. Mutations in genes like SOD1, TBK1,
PFN1, TUBA4α, C9orf72 etc., were known possess huge risk factor for ALS [2,3]. ALS
pathogenesis is associated with Currently, there are only eight FDA approved drugs and
20 compounds in clinical trials for ALS [8,12]. SOD1, a characteristic gene for ALS was
known to be involved in mitochondrial dysfunction and increase oxidative stress, whereas,
TUBA4A was reported to induce cytoskeletal and axonal trafficking defects. TDP-43 was
known to be involved in autophagy and dysregulated proteostasis. Several proteins like
SOD1 and TUBA4A were known to form prion like aggregates which initiates inflammation.
Due to this, there is increase in microglial activation in neuromuscular junctions before
disease onset leading to axonal death [1,7]. Although there were many reports exploring the
role of inflammation in disease progression, none of the studies reported the compounds
which can target inflammatory pathways. Our study identified the potential repurposable
compounds in two different approaches (1) gene expression similarity wherein, compounds
which can reverse the genetic signature obtained by analysing the gene expression data
and (2) structural similarity approach in which, compounds which possess structural simi-
larity with the FDA approved compounds and clinical trial compounds. Thus, obtained
compounds were subjected for drug-target-network construction. Functional enrichment
analysis was performed for the protein that were interacting with selected compounds.
Proteins were associated with GO terms like “Chronic inflammatory response”, “neuroin-
flammatory response”, “acute inflammatory response” were found to be inflammatory
responses in ALS. KEGG analysis of proteins revealed their association with “calcium
signalling”, “cAMP signalling pathway”, “AMPK signalling”, “PI3K-AKT signalling”,
“Rap1 signalling pathway” etc., which were enriched in ALS progression. Additionally,
277 compounds from our analysis were previously explored for their potential in ALS re-
search which validates our approach. The rest 172 compounds were found to be unexplored
in ALS research which have potential repurposable capacity in ALS. Thomas et al. 20, iden-
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tified potential compounds which can reverse the gene expression by utilizing differentially
expressed genes through LINCS databases. A study by Giulia et al. 21 integrated human
interactome network and ALS disease associated genes to retrieve similar diseases by
Random Walk with Restart algorithm, which then the retrieved drugs based on the diseases
identified. Furthermore, a study by Jing-Jing Zhang et al. [22], retrieved repurposable
potential of Carbamezepine (an anticonvulsant) for ALS by reducing motor neuron loss
in SOD1-G93A ALS mouse model. Recently Helena Chaytow et al. [23], evaluated repur-
posable Terazosin (an anti-hypertensive agent) increased PGK1 activity which resulted in
extended survival, increased motor neuron number in Thy1-hTDP-43 ALS mice model.
Preclinical and clinical studies on Primidone (RIPK1 inhibitor) improved exhibited positive
correlation with severe bulbar symptoms [24].

5. Conclusions

Inflammatory pathways play a major role in ALS disease progression. Retrieval
of compounds by gene expression similarity and structural similarity identified around
266 compounds that were previously explored for their research in ALS and 172 compounds
which were unexplored so far. This study opened a new research avenue in which the
compounds can be further explored for their repurposable potential for ALS through
virtual screening studies and experimental validation for their potential in ALS, which is
our futuristic studies.
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