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Abstract: Background: Intracranial neoplasm, often referred to as a brain tumor, is an abnormal
growth or mass of tissues in the brain. The complexity of the brain and the associated diagnostic de-
lays cause significant stress for patients. This study aims to enhance the efficiency of MRI analysis for
brain tumors using deep transfer learning. Methods: We developed and evaluated the performance
of five pre-trained deep learning models—ResNet50, Xception, EfficientNetV2-S, ResNet152V2, and
VGG16—using a publicly available MRI scan dataset to classify images as glioma, meningioma,
pituitary, or no tumor. Various classification metrics were used for evaluation. Results: Our findings
indicate that these models can improve the accuracy of MRI analysis for brain tumor classification,
with the Xception model achieving the highest performance with a test F1 score of 0.9817, followed by
EfficientNetV2-S with a test F1 score of 0.9629. Conclusions: Implementing pre-trained deep learning
models can enhance MRI accuracy for detecting brain tumors.

Keywords: brain tumor classification; intracranial neoplasm; MRI analysis; pre-trained models;
transfer learning; ResNet50; Xception; EfficientNetV2-S; ResNet152V2; VGG16

1. Introduction

It can be anxiety-inducing when patients must wait for a medical diagnosis, espe-
cially regarding intracranial neoplasms (or brain tumors). Brain tumors are uncontrolled
and abnormal growths of cells in the brain, classified into primary tumors, which orig-
inate in brain tissue, and secondary tumors, which spread from other parts of the body
to the brain tissue via the bloodstream [1]. Given the intricate nature of the brain—an
enormous and complex organ that controls the nervous system and contains around
100 billion nerve cells—the uncertainty surrounding a potential brain tumor diagnosis in-
tensifies the anxiety experienced by patients awaiting medical assessments [2]. Patients are
concerned about the impact of brain tumors on their cognitive functions, treatment options,
and overall quality of life, amplifying the emotional strain they face in this situation.

Among brain tumors, glioma and meningioma stand out as lethal primary tumor
types, with glioma ranking as the most prevalent brain tumor in humans [3]. The World
Health Organization (WHO) classifies brain tumors into four grades: grades 1 and 2
represent less severe tumors like meningioma, and grades 3 and 4 indicate more serious
types such as glioma. In clinical practice, meningioma, pituitary, and glioma tumors
account for approximately 15%, 15%, and 45% of cases, respectively [4]. Understanding the
differences between these tumor types and their grades is important for accurate diagnosis
and effective treatment.

The median medical wait time for specialists across hospital providers in the US state
of Vermont is 41 days, but it varies significantly by location. The wait time range for
radiologists in Vermont is between 7 and 112 days. Additionally, the average wait time for
a primary physician in the United States overall is 20.6 days [5]. However, the challenges
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do not end there; after completing the MRI scan, patients often must wait several weeks or
months for their next appointment to receive their MRI results [6]. This prolonged wait time
for diagnoses causes stress and anxiety for many patients. Integrating artificial intelligence
into the medical diagnosis process can reduce the wait time for a brain tumor diagnosis [7].

Convolutional neural networks (CNNs) are popular deep learning models designed
for image classification tasks [8], making them particularly adept at determining intricate
patterns within medical images, such as those obtained from MRI scans [9]. Many CNN
models are already trained and available for image classification purposes; such models
are known as pre-trained models. Training models from scratch can be time-consuming
and computationally intensive, often requiring significant resources like GPUs. This can be
mitigated using pre-trained models, which significantly reduces the time and resources
needed for training. Transfer learning, a technique that involves utilizing knowledge
from pre-trained models on large datasets, enhances the efficiency and effectiveness of the
classification process by fine-tuning these models to adapt to new tasks or datasets [10].
This approach allows the model to build upon previously learned features and patterns,
accelerating the learning process and improving performance on new tasks.

This research presents a comparative analysis of five widely used pre-trained deep
learning models—ResNet50, Xception, EfficientNetV2-S, ResNet152V2, and VGG16—on
the task of brain tumor classification using MRI images. While extensive research exists
on individual models for MRI-based brain tumor classification, our study stands out by
providing a direct comparison of these five specific models on a single dataset. The key
contributions of this study include: (1) a systematic evaluation of these models’ perfor-
mance on a publicly available MRI dataset using metrics such as accuracy, F1 score, and
precision; and (2) the identification of the most effective pre-trained model for brain tumor
classification. We hope that this study provides a robust framework for future research in
the medical diagnostics field.

The rest of the paper is structured as follows: Section 2 describes the methodology,
including the dataset and image augmentation, pre-trained model descriptions, model
architecture, and model fine-tuning. Section 3 presents the results of the performance anal-
ysis of individual models and a comparison of model performance. The paper concludes
with Section 4, which discusses the conclusions and future work.

2. Methodology
2.1. Dataset and Image Augmentation

The Brain Tumor MRI dataset used in this research is a publicly available dataset con-
taining a total of 7023 MRI images: 5712 training images and 1311 testing images [11]. The
data are grouped into four distinct categories: pituitary, meningioma, glioma, and no tumor.
Specifically, the testing subset comprises 300 pituitary images, 306 meningioma images,
300 glioma images, and 405 no-tumor images, while the training subset includes 1457 pitu-
itary images, 1339 meningioma images, 1321 glioma images, and 1595 no-tumor images.

The MRI images were split into training and validation sets with a split ratio of 50%,
ensuring stratification based on class labels to maintain class balance. Before being used for
training, the images were preprocessed and augmented to ensure the model could handle
a diverse range of images, such as those with low brightness and various orientations [12].
Table 1 shows the set values for the parameters. The images were rescaled to a value of
1/255, and brightness was set to a range from 0.8 to 1. Rotation, zoom, shift, and flip shear
were adjusted as depicted in the table. These parameter settings increase the diversity of
the training data and improve the model’s ability to generalize to a wide range of MRI
images [13]. Figure 1 provides a visualization of the brain tumor image dataset.
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Table 1. Data Augmentation Parameters.

Parameter Value

Rescale 1/255

Brightness Range (0.8, 1)

Samplewise Center True

Rotation Range 20

Zoom Range 0.2

Width Shift Range 0.2

Height Shift Range 0.2

Horizontal Flip True

Vertical Flip True

Shear Range 0.2

Fill Mode “nearest”

Figure 1. Brain MRI Data Sample.

2.2. Pre-Trained Models Description
2.2.1. ResNet50

Residual Network 50 (ResNet50) is a pre-trained convolutional neural network archi-
tecture consisting of 50 layers, developed by Microsoft Research in 2015. In deep neural
networks, as networks grow deeper, the gradients in the earlier layers diminish significantly,
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a problem known as the vanishing gradient problem. ResNet50 tackles this challenge by
introducing residual connections, enabling the network to learn residual functions [14].
This architecture was chosen for its deep structure and ability to handle complex image
recognition tasks [15].

2.2.2. Xception

Extreme Inception (Xception) is an extension of the inception architecture, using depth-
wise separable convolutions to reduce the number of parameters while maintaining high
performance. This model performs well in complex image recognition tasks due to its
unique architecture, which effectively captures intricate patterns [16,17].

2.2.3. EfficientNetV2-S

Efficient Network Version 2 Small (EfficientNetV2-S) is optimized for resource-con-
strained environments without compromising performance. This variant, denoted as “S”,
strikes a balance between model size and computational efficiency [18]. Its selection was based
on the need for a model that could deliver accuracy while being computationally efficient.

2.2.4. ResNet152V2

Residual Network 152 Version 2 (ResNet152V2) is an improved version of ResNet with
152 layers. It retains the skip connections from the original ResNet architecture, making
it adept at training deep networks. This model’s robustness and accuracy in handling
complex image classification tasks make it a reliable choice for applications requiring
high-level feature extraction [19].

2.2.5. VGG16

Visual Geometry Group 16 (VGG16) is a 16-weight-layer deep learning model devel-
oped by the Visual Geometry Group. Known for its simplicity and effectiveness, VGG16
consists of many convolutional layers followed by fully connected layers. Its ability to
precisely capture complex characteristics in images makes it valuable for a variety of image
classification applications [20].

2.3. Model Architecture and Fine-Tuning

The sequential model configuration serves as a foundational structure that remains
consistent across all variations of the model architecture. This standardized setup includes
essential components such as Flatten layers for reshaping data, Dropout layers for regular-
ization to prevent overfitting [21], and Dense layers with activation functions for feature
transformation and classification.

The Dense layer with 256 units is regularized using L2 regularization with a coefficient
of 0.015, L1 activity regularization with a coefficient of 0.005, and L1 bias regularization with
a coefficient of 0.005 [22]. The activation function used for this Dense layer is ReLU [23].
Additionally, BatchNormalization layers are applied to stabilize training by normalizing
the input to each layer. The batch normalization layer is configured with a momentum
of 0.99 and an epsilon value of 0.001 [24–26]. The final Dense layer, or output layer,
consists of 4 units with a Softmax activation function for multi-class classification, providing
the probability distribution of the input belonging to each of the four classes: pituitary,
meningioma, glioma, and no tumor [27].

In the model compilation step, the Adam optimizer (Adaptive Moment Estimation)
with a learning rate of 0.0001 is used to minimize the loss function during neural network
training [28]. Categorical cross-entropy, a suitable loss function for multi-class classification
tasks, measures the error rate between the actual and predicted labels [29]. Metrics such
as recall, precision, accuracy, and F1 score are set to comprehensively assess the model,
providing deep insights into its classification performance.

The model is fine-tuned using the fit method for 10 epochs with the training dataset.
To prevent overfitting, the EarlyStopping callback with a patience of 2 is utilized to monitor
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validation loss and save the best weights throughout the training process [30]. The evalua-
tion of the model’s performance is conducted based on training, validation, and testing
datasets, where metrics such as loss, accuracy, and F1 scores are computed. The confusion
matrix is used to visualize the model’s classification performance, providing a detailed
breakdown of the predicted versus actual labels, including true positives, true negatives,
false positives, and false negatives. Table 2 illustrates the model architecture layers.

Table 2. Model Architecture.

Layer Description

1 Pre-trained Model

2 Flatten

3 Dropout (0.3)

4 Dense (256, ReLU, Kernel Regularizer (L2 = 0.015), Activity Regularizer (L1 = 0.005), Bias
Regularizer (L1 = 0.005))

5 Batch Normalization (Axis = −1, Momentum = 0.99, Epsilon = 0.001)

6 Dropout (0.3)

7 Dense (4, Softmax)

3. Results
3.1. Performance Analysis of Individual Models

Table 3 summarizes the various training, validation, and testing metrics for all five
models that we evaluated.

Table 3. Training, Validation, and Testing Metrics for all models (best model in green).

Metric ResNet50 Xception EfficientNetV2-S ResNet152V2 VGG16
Train Loss 3.4093 0.5046 3.0644 2.9106 0.9147

Train Accuracy 94.73% 99.49% 96.69% 88.45% 87.96%

Train F1 Score 0.9347 0.9949 0.9673 0.8747 0.8850

Validation Loss 3.4513 0.5079 3.0861 2.9141 0.9948

Validation Accuracy 91.60% 99.39% 95.27% 88.09% 86.11%

Validation F1 Score 0.9074 0.9933 0.9586 0.8707 0.8654

Test Loss 3.6171 0.5265 3.0673 2.9849 1.1323

Test Accuracy 87.96% 98.17% 96.19% 78.51% 76.83%

Test F1 Score 0.7963 0.9817 0.9629 0.7998 0.7756

3.1.1. ResNet50

During the training phase of the model with ResNet50, the model achieved a Training
Accuracy of 94.73% and a Training F1 Score of 0.9347, corresponding to a Train Loss of 3.4093.
Nevertheless, the Validation Accuracy was 91.60%, accompanied by a Validation Loss of
3.4513 with an F1 score of 0.9074. In the testing phase, the ResNet-50 Testing Accuracy
reached 87.96%, and the Testing F1 Score reached 0.7963, with a Test Loss of 3.6171.

Another crucial part of the evaluation process is the analysis of the model’s classifica-
tion outcomes over different tumor classes. The data shows the F1 scores between 0.82 and
0.92, precision results from 0.81 to 0.94, and recall rates from 0.74 to 0.99. Table 3 shows the
model performance metrics, Table 4 shows the classification metrics, and Figure 2 shows
the confusion matrix for ResNet50.
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Table 4. ResNet50 Model: Classification Metrics.

Precision Recall F1-Score Support

0 0.94 0.90 0.92 150

1 0.91 0.74 0.82 153

2 0.81 0.99 0.89 203

3 0.91 0.85 0.88 150

Accuracy - - 0.88 656

Macro Avg 0.89 0.87 0.88 656

Weighted Avg 0.89 0.88 0.88 656

Figure 2. ResNet50 Model: Confusion Matrix.

3.1.2. Xception

During the training phase of the model with Xception, the model achieved an excellent
Training Accuracy of 99.49%, with an F1 score of 0.9949 and a training loss as low as 0.5046.
Overall, the minimum F1 score found across all the classes is 0.97, and the maximum is 0.99.
Additionally, Recall reached the maximum possible value of 1 for class 2, an overall average
of 0.98, and an average precision of 0.98. Upon validation, the accuracy reached 99.39%
and an F1 score of 0.9933 with a validation loss of 0.5079; these metrics are very close to the
training metrics, which shows that the model learned exceptionally well. Upon testing, the
model had a test accuracy of 98.17%, which is the highest test accuracy across the 5 pre-
trained models. It also had a higher test F1 score of 0.9817, with the test loss being 0.5265.
The model’s classification outcomes over different tumor types had an average of 0.98
across precision, recall, and F1-score. Table 3 shows the model performance metrics, Table 5
shows the classification metrics, and Figure 3 shows the confusion matrix for Xception.
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Table 5. Xception Model: Classification Metrics.

Precision Recall F1-Score Support

0 0.96 0.99 0.98 150

1 0.99 0.95 0.97 153

2 0.98 1.00 0.99 203

3 0.99 0.98 0.99 150

Accuracy - - 0.98 656

Macro Avg 0.98 0.98 0.98 656

Weighted Avg 0.98 0.98 0.98 656

Figure 3. Xception Model: Confusion Matrix.

3.1.3. EfficientNetV2-S

The evaluation of EfficientNetV2-S has presented the precision values from 0.94 up
to 1.00 and the recall rates between 0.91 and 0.99. The F1 scores ranged from 0.94 to 1.00
in different tumor cases as a result. During training, the model achieved an accuracy of
96.69 and an F1 score of 0.9673, with a training loss as low as 3.0644. Upon testing, the
test accuracy went down to 96.19% and an F1 score of 0.9629 with a test loss of 3.0673. In
the validation phase, accuracy was 95.27, and the F1 score was 0.9586, with a validation
loss of 3.0861. Overall, the loss was approximately the same across the training, validating,
and testing phases. Overall, the model’s performance was average. Table 3 shows the
model performance metrics, Table 6 shows the classification metrics, and Figure 4 shows
the confusion matrix for EfficientNetV2-S.
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Table 6. EfficientNetV2-S Model: Classification Metrics.

Precision Recall F1-Score Support

0 0.94 0.96 0.95 150

1 0.97 0.91 0.94 153

2 1.00 0.99 1.00 203

3 0.93 0.98 0.95 150

Accuracy - - 0.96 656

Macro Avg 0.96 0.96 0.96 656

Weighted Avg 0.96 0.96 0.96 656

Figure 4. EfficientNetV2-S Model: Confusion Matrix.

3.1.4. ResNet152V2

The detailed analysis of the ResNet152V2 model shows that the model demonstrated
precision values ranging from 0.54 to 1.00, recall rates between 0.20 and 0.97, and F1 scores
spanning from 0.33 to 0.96. The training accuracy of this model was 88.45% and a training
F1 score of 0.8747 with a training loss of 2.9106. The model had a validation accuracy of
88.09%, a validation F1 score of 0.8707, and a validation loss of 2.9141, which is very similar
to the validation and test loss. The F1 score for testing was 0.7998, a test loss of 2.9849, and
a test accuracy of 78.51%. The overall performance of this model was not good, given the
test metrics. Table 3 shows the model performance metrics, Table 7 shows the classification
metrics, and Figure 5 shows the confusion matrix for ResNet152V2.
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Table 7. ResNet152V2 Model: Classification Metrics.

Precision Recall F1-Score Support

0 0.97 0.93 0.95 150

1 0.54 0.97 0.69 153

2 0.96 0.97 0.96 203

3 1.00 0.20 0.33 150

Accuracy - - 0.79 656

Macro Avg 0.87 0.77 0.73 656

Weighted Avg 0.87 0.79 0.75 656

Figure 5. ResNet152V2 Model: Confusion Matrix.

3.1.5. VGG16

The VGG16 model exhibited varying performance metrics across different classes, with
precision ranging from 0.51 to 0.98, recall from 0.50 to 0.97, and F1-scores from 0.65 to 0.92.
The overall accuracy was 0.77, indicating moderate predictive capabilities. During training,
the model had a loss of 0.9147, an accuracy of 87.96%, and an F1-score of 0.8850. On the
validation set, the model maintained consistent performance with a loss of 0.9948, accuracy
of 86.11%, and F1-score of 0.8654. In the testing phase, the model showed a loss of 1.1323,
accuracy of 76.83%, and F1-score of 0.7756, providing insights into its classification abilities
on new datasets. However, based on the metrics, the performance of this model was not
good. During testing, it did not perform well. Table 3 shows the model performance
metrics, Table 8 shows the classification metrics, and Figure 6 shows the confusion matrix
for VGG16.
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Table 8. VGG16 Model: Classification Metrics.

Precision Recall F1-Score Support

0 0.97 0.69 0.81 150

1 0.51 0.97 0.67 153

2 0.98 0.87 0.92 203

3 0.94 0.50 0.65 150

Accuracy - - 0.77 656

Macro Avg 0.85 0.76 0.76 656

Weighted Avg 0.86 0.77 0.78 656

Figure 6. VGG16 Model: Confusion Matrix.

3.2. Comparison of Model Performances

The evaluation and comparison of the pre-trained models, ResNet50, Xception, Effi-
cientNetV2-S, ResNet152V2, and VGG16, in classifying brain tumors into glioma, menin-
gioma, pituitary, and no tumor reveal distinct performance characteristics that are crucial
for enhancing the precision and efficiency of Magnetic Resonance Imaging (MRI) analysis
in medical diagnostics. These models play a pivotal role in addressing the critical need
for accurate and expedited medical diagnostics in the realm of brain tumor classification.
Table 3 shows the performance of all five models, and the green highlighted (Xception)
values represent the model that performed best.

4. Conclusions and Future Work

This paper presented a comparative analysis of various pre-trained models for brain
tumor classification using MRI images. Xception stood out with a test F1 score of 0.9817.
EfficientNetV2-S showcased the second-highest test F1 score of 0.9629. ResNet152V2
achieved a test F1 score of 0.7998, followed by ResNet50 with a test F1 score of 0.7963.
VGG16 demonstrated a test F1 score of 0.7756. These results highlight Xception’s superior
F1 score in brain tumor classification, making it a highly effective model for MRI analysis.

We envision a software application using the Xception model that clinicians might use
to classify images of a patient’s brain after an MRI scan is taken to give an immediate (but
tentative) diagnosis. While a specialist should still evaluate such images for a conclusive
diagnosis, integrating with a well-developed model could potentially speed up the process
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and reduce the wait time by weeks. This could provide a patient with some initial indication
about whether or not the scans suggest evidence of a tumor rather than having to wait an
indeterminate amount of time to learn anything at all.

For future work, we will explore the integration of additional pre-trained models and
the application of ensemble learning techniques to further improve classification accuracy.
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