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Abstract: Introduction: Remote health monitoring plays a crucial role in telehealth services
and the effective management of patients, which can be enhanced by vital sign prediction
from facial videos. Facial videos are easily captured through various imaging devices
like phone cameras, webcams, or surveillance systems. Methods: This study introduces a
hybrid deep learning model aimed at estimating heart rate (HR), blood oxygen saturation
level (SpO2), and blood pressure (BP) from facial videos. The hybrid model integrates
convolutional neural network (CNN), convolutional long short-term memory (convLSTM),
and video vision transformer (ViViT) architectures to ensure comprehensive analysis. Given
the temporal variability of HR and BP, emphasis is placed on temporal resolution during
feature extraction. The CNN processes video frames one by one while convLSTM and
ViViT handle sequences of frames. These high-resolution temporal features are fused to
predict HR, BP, and SpO2, capturing their dynamic variations effectively. Results: The
dataset encompasses 891 subjects of diverse races and ages, and preprocessing includes
facial detection and data normalization. Experimental results demonstrate high accuracies
in predicting HR, SpO2, and BP using the proposed hybrid models. Discussion: Facial
images can be easily captured using smartphones, which offers an economical and conve-
nient solution for vital sign monitoring, particularly beneficial for elderly individuals or
during outbreaks of contagious diseases like COVID-19. The proposed models were only
validated on one dataset. However, the dataset (size, representation, diversity, balance, and
processing) plays an important role in any data-driven models including ours. Conclusions:
Through experiments, we observed the hybrid model’s efficacy in predicting vital signs
such as HR, SpO2, SBP, and DBP, along with demographic variables like sex and age. There
is potential for extending the hybrid model to estimate additional vital signs such as body
temperature and respiration rate.

Keywords: vital sign; facial video; convolutional neural network (CNN); convolutional
long short-term memory (convLSTM); video vision transformer (ViViT); deep learning;
telehealth

1. Introduction
1.1. Background Introduction

The primary vital signs, encompassing body temperature, heart rate (HR), respiration
rate (RR), blood pressure (BP), and blood oxygen saturation (SpO2), play pivotal roles
in identifying physiological decline, prompting additional scrutiny or intervention when
necessary. Vigilant monitoring of these vital signs is especially critical in acute care settings,
where patients are vulnerable to increased risks and require intensified surveillance. While
conventional contact-based monitoring devices are widely used and generally reliable, they
may be cumbersome or intrusive for patients. Non-contact, video-based methods present
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a versatile and information-rich alternative that could facilitate novel improvements in
patient care management.

Photoplethysmography (PPG) has emerged as a notable player in this field in the past
decade due to its cost-effectiveness and non-intrusive nature, enabling the detection of
subtle changes in reflected light caused by physiological activities. Remote PPG (rPPG),
a contactless variant, has become a practical and widely available solution, leveraging
cameras embedded in everyday devices such as smartphones or laptops. Since the inception
of the initial rPPG-based approach, researchers have made significant advancements in
evaluating cardiac functions, monitoring RR [1], gauging BP [2], and determining SpO2 [3].
Facial regions, being relatively unobstructed, are preferred for PPG signal extraction owing
to their visibility. Nonetheless, challenges persist in accurately estimating vital signs
through rPPG. Signal strength during video capture may be weak and prone to interference,
while subject movement, including head motions, changes in posture, and facial gestures,
remains a constant concern. Additionally, variations in indoor lighting and digital camera
noise further compound interference issues. Furthermore, the absence of suitable datasets
presents significant obstacles, particularly for deep learning approaches seeking end-to-
end solutions.

Traditional analytical techniques such as independent component analysis (ICA), prin-
cipal component analysis (PCA) [4,5], and wavelet analysis [1] encounter difficulties in
handling unstable conditions like motion, changes in facial expressions, and variations in
environmental lighting. In contrast, deep learning, which employs neural networks to di-
rectly predict vital signs, offers a promising alternative. Chen [6] proposed a convolutional
attention network, integrating attention mechanisms into video-based vital sign assessment.
This network automatically identifies and prioritizes regions of interest (ROIs) in videos,
enabling accurate measurement of HR and RR, even in scenarios involving significant
head movement.

To address the challenge of redundant spatial information in facial video data, Hu [7]
introduced a model for extracting spatiotemporal facial features using short segments. They
also introduced a Spatial-Temporal Attention Module to mitigate the effects of head motion
and improve the reliability of HR estimation. In tackling noise from facial expressions
across various facial regions, Lokendra [8] proposed a novel denoising-rPPG method for HR
estimation. This method utilized a Temporal Convolution Network and integrated action
units to filter noise from the temporal signal, thereby enhancing HR estimation accuracy.
Yin [9] presented an HR estimation model incorporating an attention mechanism module
to focus on the skin area, suppressing background noise, along with a spatiotemporal
convolution module to improve estimation accuracy across different environments. Li [10]
introduced an HR estimation approach based on a multi-level convolutional neural network
comprising stages such as low-level face feature generation, 3D spatiotemporal stack
convolution, multi-hierarchical feature fusion, and signal prediction.

Recent advancements in deep learning have significantly improved BP measurement
via video analysis. Luo [11] devised a method for BP estimation utilizing smartphone
cameras to capture facial videos with a focus on the subject’s forehead. This approach
employed Transdermal Optical Imaging for facial region selection and feature extraction.
Subsequently, a Multilayer Perceptron was trained on 30 features obtained post-PCA
dimensionality reduction to construct a BP prediction model. The Joint Approximation
Diagonalization of Eigen-matrices (JADE) algorithm separated blind source signals from the
green channel in the ROI, followed by PPG signal denoising and extraction of systolic and
diastolic pressure peaks. Wu [12] introduced an end-to-end BP estimation model leveraging
multichannel remote PPG input, incorporating a Generative Adversarial Network (GAN)
called infoGAN to enhance data augmentation. Iuchi [13] explored a method for remotely
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estimating continuous BP by utilizing pulse waves and spatial information. This involved
transforming spatial pulse wave signals into spatial signals for each ROI contour. A ResNet
was then trained on these contours to estimate continuous BP.

1.2. Related Work

Deep neural networks (DNNs) [14] and skin reflection models [15] have emerged as
promising avenues to enhance remote physiological measurement. Methods grounded in
skin reflection models explore diverse techniques to translate images from the RGB space
to alternative color spaces, aiming to refine rPPG estimation. For instance, Haan et al. [15]
proposed projecting images into the chrominance space to mitigate motion artifacts and
improve rPPG estimation accuracy. In recent years, DNN approaches have shown remark-
able efficacy in remote physiological measurement [14,16,17]. Hu et al. [18] developed a
time-domain attention network to extract and fuse temporal information from multiple
video segments for rPPG estimation. Song et al. [14] utilized a conditional GAN to translate
chrominance signals from [15] into precise rPPG waveforms. Yu et al. [16] addressed rPPG
estimation from highly compressed and low-resolution facial videos by integrating video
enhancement networks, while Yu et al. [17] employed transformer blocks to capture the
relationship among video frame features.

Despite their significant achievements, these methodologies require substantial
amounts of facial videos paired with synchronously recorded PPG signals for effec-
tive model training. However, curating such annotated datasets poses challenges.
Gideon et al. [19] tackled this issue by training the DNN in a self-supervised manner
using unlabeled data: they resampled the input video to generate its negative counter-
part and applied a contrastive loss between rPPG signals extracted from the input and
resampled videos.

Hsu et al. [20] proposed a method for heart rate (HR) estimation from facial videos,
where a 2D Time-Frequency Representation extracted from facial frames, captured
over short time intervals, served as the input image (feature map) for a CNN model.
Omer et al. [21] introduced a beat-to-beat blood pressure (BP) estimation system using
facial videos, employing Transfer Learning based on pre-trained image deep learning net-
works. The 1D beat was transformed into a 2D image, and cleaning metrics were applied
to both the training data and the extracted remote rPPG signal. Only the selected beats
were utilized to train the DL network (ResNet-101) to predict BP. The mean absolute error
(MAE) for estimated BP from real videos was 7.05 for systolic BP (SBP) and 5.62 for diastolic
BP (DBP).

More recently, Cheng et al. [22] introduced a novel deep learning approach for remote
blood oxygen saturation (SpO2) measurement using facial videos captured by consumer-
level RGB cameras. The proposed models utilize spatial-temporal representations of facial
video data, which are fed into CNNs to predict SpO2 levels. The best-performing model
achieves a root mean squared error (RMSE) of 1.71%, surpassing the international standard
of 4% for approved pulse oximeters.

Jaiswal et al. [23] proposed a video-based noise-resistant cardiopulmonary measure-
ment method for contactless heart rate (HR) estimation, addressing challenges like weak
physiological signals and noise caused by head movements, illumination variations, and
device inconsistencies. A novel motion representation, derived using wavelet decomposi-
tion from subsequent frames, is projected to a CNN (ResNet-18) for HR estimation under
diverse lighting and continuous motion. Experimental results on four benchmark datasets
(e.g., RMSE = 7.21) demonstrate the method’s superior performance for HR estimation
under challenging conditions.
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Lin et al. [24] introduced a dual-path estimation method for continuous and contactless
monitoring of vital signs using remote photoplethysmography. The method addresses chal-
lenges like weak signals, body movements, and limited data generalization by combining
video magnification and deep learning. The approach begins with automated facial region
of interest (ROI) detection, tracking, and magnification. Features such as heart rate, pulse
transit time (PTT), and pulse wave waveform characteristics are extracted from the steady
wave components of the ROIs. A small CNN then estimates blood pressure from these
features. The results are RMSE (HR, SBP, and DBP) = 5.33, 4.11, and 3.75, demonstrating
the method’s potential for future clinical applications.

Park et al. [25] proposed to measure facial respiratory rate (FRR) using facial videos
and robust respiratory signals across varied environments. The method incorporates
bounding box stabilization to remove high-frequency noise from face detection and real-
time coordinate correction for accurate signal calculation. An ROI is defined on the face,
and RGB data is transformed into the YCgCo color space. Respiratory signals are extracted
using partial zero-padding-based Fast Fourier Transform (FFT) and inverse FFT (iFFT)
applied to the Cg channel. The FRR is then determined by analyzing peak-to-peak intervals
within the derived respiratory signal. Results (RMSE = 1.01) demonstrate the accuracy
and reliability of the proposed approach, highlighting its potential for robust, noninvasive
respiratory monitoring in diverse real-world conditions.

Zheng [26] introduced a method utilizing facial images and a CNN-SVM model to
forecast body temperature. Facial images were captured using both a digital camera and
a smartphone, and ResNet-50 was employed to extract facial features. Subsequently, an
SVM model was trained to predict body temperature. The ResNet-50-SVM model yielded
a low error rate (<0.35 ◦C) while maintaining a rapid processing speed. This contactless
approach to body temperature measurement and monitoring proved particularly valuable
during the COVID-19 pandemic period (2020–2023).

As summarized in Table 1, previous studies in the literature have estimated remote
rPPG signals from facial videos and subsequently trained deep learning models to predict
one single vital sign, typically heart rate or blood pressure. One significant problem is the
lack of a compressive approach to estimate all vital signs from facial videos. In this study,
we present a hybrid end-to-end model comprising CNN, convLSTM, and ViViT, which is
capable of directly inferring multiple vital signs from facial videos. Our contributions are
to develop one integrated neural network model for predicting all vital signs and to train
the model on a fairly large dataset. The remainder of this paper is structured as follows:
Section 2 outlines the preprocessing steps for the Vital Video Dataset. Section 3 discusses
the deep learning neural network models employed. Section 4 presents the experimental
findings. Finally, Section 5 provides a summary of the paper.

Table 1. Summary of the most recent studies for vital sign estimation from facial videos.

Ref.\Study Method Vital Sign Dataset (Size) Result (RMSE)

[22] CNN SpO2 VIPL-HR (107 subjects) 1.71%

[23] CNN (ResNet-18) HR VIPL-HR (107 subjects) 7.21

[24] video magnification,
CNN HR, SBP, DBP Private (288 videos) 5.33, 4.11, 3.75

[25] FFT RR Private (unknown size) 1.01

[26] CNN-SVM Body temperature Private (144 subjects) 0.35

(This Study) Hybrid CNN model HR, SpO2, SBP, DBP VVD-Large (891 subjects) [27] 5.55, 0.87, 4.07, 2.21
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2. Dataset Preprocessing
The proposed NN model for vital sign estimation requires preprocessing, including

normalization, face detection, and standardization.

2.1. Image Normalization and Face Detection

Image normalization (intensity scaling/stretching) is defined as follows:

IN = (I0 − IMin)
LMax − LMin

IMax − IMin
+ LMin (1)

where IN is the normalized image, I0 is the original image, IMin and IMax are the mini-
mum and maximum pixel values in I0, and LMin and LMax are the desired minimum and
maximum pixel values in IN. For example, we may select LMin = 0 and LMax = 255.

Face detection is a critical task in image processing, serving as a pivotal step for
subsequent operations. Various techniques have been developed for detecting faces within
a single image, including knowledge-based methods, feature-invariant facial approaches,
template-matching methods, and appearance-based methods. A comprehensive survey
on face detection is available in [28]. Many methods leverage color information, such
as identifying regions (skin maps) with similar skin color, effectively narrowing down
the search area. One of the most successful algorithms for visual image processing is the
Viola–Jones algorithm [29], introduced in 2001. Face detection methods efficiently identify
multiple faces within an image, irrespective of their sizes and backgrounds, by leveraging
spatial changes. The Viola–Jones (VJ) algorithm has become widely adopted for object
detection, particularly in face detection. Viola and Jones developed this algorithm as a
machine learning approach for object detection, prioritizing fast and accurate detection
rates. The VJ method incorporates three key aspects. Firstly, it utilizes integral images [29,30]
as an image representation structure, where features are computed by summing pixel values
within rectangular areas, extending a method introduced by Papageorgiou et al. [31].

Although Viola and Jones acknowledge the simplicity of using rectangles, they enable
efficient computational calculations [29,30], which aligns well with the Adaboost algorithm
employed for learning features in the image. This extension of the Adaboost algorithm
enables the system to select a set of features and train classifiers, a concept initially discussed
by Freund and Schapire [32]. This learning mechanism enables the system to discern
between integral representations of faces and background regions. Another significant
aspect of the VJ method is the use of cascading classifiers. At each stage, the classifier either
rejects instances (represented as sliding windows from a test image) based on a given
feature value or forwards them for further processing. Initially, a large number of negative
examples are swiftly eliminated. To expedite the system, Viola and Jones discard areas
highly unlikely to contain the object. The image undergoes testing with the first cascade,
with rejected areas no longer processed. Regions likely to contain the object are further
assessed until all classifiers are evaluated, with areas in the final classifier deemed likely to
contain the object (face).

2.2. Facial Image Standardization

We apply general standardization to all facial images:

IS =
(
I′N − µ

)
/σ (2)

where IS is the standardized image, I′N is the cropped facial image after normalization using
Equation (1) and face detection, and µ and σ denote the mean and standard deviation of all
faces (I′N images) after normalization, respectively.
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Every face was identified and isolated from every frame, then resized to 288 × 256
pixels, standardized, and normalized (with intensity stretched). The normalized facial
videos are segmented into 30-frame clips as input data, while the outcome variables
(outputs) consist of four vital signs (HR, SpO2, systolic BP, and diastolic BP), as well as two
demographic variables: sex and age. These six outcome variables are treated as continuous
variables, allowing for the training of a neural network (NN) model for regression. The
predicted sex values can be thresholded to generate a binary result (female or male).

3. Deep Learning Neural Networks
3.1. Convolutional Neural Network

Convolutional neural networks (CNNs) draw inspiration from the visual cortex, where
small cell regions are sensitive to specific visual field areas. These networks blend elements
of biology, mathematics, and computer science, becoming pivotal innovations in computer
vision and artificial intelligence (AI). The turning point for CNNs came in 2012 when Alex
Krizhevsky et al. [33] utilized an 8-layer CNN (5 convolutional, 3 fully-connected) to win
the ImageNet competition [34], significantly reducing the classification error rate from
25.8% (in 2011) to 16.4% (in 2012), marking a remarkable advancement at the time. This
model (of 63 million parameters), referred to as AlexNet, has since become influential in
the field.

Simonyan and Zisserman [35] from the University of Oxford crafted a 19-layer
(16 conv., 3 fully connected) CNN named the VGG-19 model [35,36]. This model strictly
employs 3 × 3 filters with stride and pad of 1, alongside 2 × 2 max-pooling layers with
stride 2. VGG Net achieved a remarkable error rate of 7.3% by utilizing small filters in all
convolutional layers, underscoring the importance of deep layer networks for effective
hierarchical representation of visual data. The VGG-19 model (143 million parameters)
ranked 2nd in classification and 1st in localization in ILSVRC 2014.

The ResNet-50 model [37] encompasses 101 layers, featuring 33 three-layer residual
blocks in addition to input and output layers. These identity connections facilitate learning
incremental or residual representations, enabling smooth back-propagation. ResNet-101
employs 3 × 3 filters with a stride of 2 and 3 × 3 max-pooling layers with a stride of
2. Notably, ResNet-101 secured 1st place in ImageNet classification at ILSVRC 2015,
addressing the training challenges encountered in deep networks (more than 30 layers),
such as vanishing gradients.

Recently, an Xception [38] (Extreme Inception) network architecture has been pro-
posed on a hypothesis: the mapping of cross-channel correlations and spatial correlations
in the feature maps of CNNs can be entirely decoupled. Thus, the Inception modules
can be replaced with depthwise separable convolutions. The Xception architecture has
36 convolutional layers forming the feature extraction base of the network. For image
classification, the convolutional base will be followed by a logistic regression layer. Op-
tionally, one may insert fully connected layers before the logistic regression layer. The
36 convolutional layers are structured into 14 modules, all of which have linear residual
connections around them, except for the first and last modules. Compared to Inception V3,
Xception has a similar parameter count and shows small gains in classification performance
on the ImageNet dataset.

As used in the Xception model, a depthwise separable convolution, commonly called
separable convolution in deep learning frameworks such as TensorFlow/Keras, consists of
a depthwise convolution, i.e., a spatial convolution performed independently over each
channel of an input, followed by a pointwise convolution, i.e., a 1 × 1 convolution, projecting
the channel’s output by the depthwise convolution onto a new channel space. The scenario
of separable convolution plus pointwise convolution can significantly reduce the load of
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convolutional computation in contrast with a regular 2D or 3D convolution layer, thus
speeding up the CNN model training and inferring process.

3.2. Video Vision Transformer

Transformers were primarily developed and utilized for tasks in natural language
processing (NLP), exemplified by language models like BERT (Bidirectional Encoder Repre-
sentations from Transformers) [39]. Transformers establish connections between pairs of
input tokens, such as words in NLP, through a mechanism known as attention. However,
this approach becomes increasingly computationally intensive as the number of tokens
grows. In dealing with images, the fundamental unit of analysis shifts to the pixel. Yet, com-
puting relationships between every pair of pixels becomes prohibitively resource-intensive
in terms of memory and computation.

To tackle this challenge, Vision Transformers (ViTs) calculate relationships among
smaller image regions, typically 16 × 16 pixels, thus reducing computational demands.
These regions, along with positional embeddings, form a sequence. The embeddings
represent learnable vectors. Each region is vectorized and then multiplied by an embedding
matrix. The resulting sequence, along with positional embeddings, is then inputted into the
transformer for further processing. The Video ViT (ViViT) model adds an extra step called
a video tube (cube), which organizes frames by height by width (e.g., 6 × 9 × 8), along
with positional embedding. The remainder of the ViViT process remains the same as ViT.

Self-attention is a common technique applied in the vision transformer model. It
involves creating three vectors from each of the encoder’s input vectors (in the NLP case, the
embedding of each word). For each word, a Query vector, a Key vector, and a Value vector
are created by multiplying the embedding by three matrices trained during the training
process. Multi-headed attention enhances the model’s ability to focus on different positions
by providing the attention layer with multiple representation subspaces. This is achieved
by utilizing multiple sets of Query/Key/Value weight matrices, where each set represents a
different representation subspace. For example, a transformer might employ eight attention
heads, each consisting of eight sets of weight matrices for each encoder/decoder. These
sets are initialized randomly and then used post-training to project input embeddings or
vectors from lower encoders/decoders into distinct representation subspaces.

3.3. Recurrent Neural Network

Recurrent neural networks (RNNs) are crafted to harness sequential data. Unlike
traditional neural networks, which assume independence between inputs and outputs,
RNNs acknowledge the significance of dependencies, which is particularly evident in
tasks like NLP. For instance, predicting the subsequent word in a sentence benefits from
contextual knowledge about preceding words. RNNs earn their recurrent designation
because they execute the same operation for each sequence element, with output reliant
on prior computations. Conceptually, RNNs possess a “memory” that retains information
from previous calculations. While theoretically capable of leveraging information from
arbitrarily long sequences, practical implementations often limit consideration to a few
preceding steps.

RNNs have demonstrated significant success across various NLP tasks and applica-
tions involving temporal signals [40]. Among RNN variants, long short-term memory
(LSTM) networks stand out, excelling in capturing long-term dependencies. LSTMs, akin
to RNNs, employ a distinct approach to compute the hidden state. In LSTMs, memories,
termed cells, act as “black boxes” that take the previous (hidden) state, st−1, and current
input, xt, as inputs. These cells autonomously decide what information to retain or discard
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from memory before combining the previous state, current memory, and input. Notably,
LSTM units are highly effective at capturing long-term dependencies.

In certain applications, such as weather prediction, modeling temporal evolution (e.g.,
HR changes over time) via recurrence relations (e.g., LSTM) is desirable. Similarly, in vital
sign estimation, capturing physiological signal variation over time (e.g., HR fluctuations)
is essential. Simultaneously, efficient extraction of spatial features (e.g., signal variation
with location) is crucial, often accomplished using convolutional filters. Therefore, an
ideal architecture integrates both recurrent and convolutional mechanisms, resulting in
convolutional LSTM (ConvLSTM) layers.

3.4. Hybrid Models

Given facial video clips as input data (30 × 288 × 256 × 3) and six continuous output
variables (HR, SpO2, SBP, DBP, sex, age), a typical neural network (NN) model comprises
several key blocks: Input, Stem, Body, Head, and Output. As outlined in Table 2, the
Stem block comprises a single convolutional layer, reducing the input frame size by ¼.
The “time_distr” operator applies the same convolutions to all 30 frames. The Head block
includes two fully connected layers, with separate heads for each output. All six outputs are
then concatenated into a vector output. Table 2 also presents two Body blocks, ViViT (Mdl_a)
and ConvLSTM (Mdl_b), which can be concatenated into a hybrid model (HMdl_ab) or
utilized separately as two models (Mdl_a, Mdl_b) by excluding the “Concat” operator.

Table 2. Hybrid Model (HMdl_ab) architecture combining 2 NN models: ViViT and ConvLSTM.
Normalization and Dropout layers are omitted. The batch size is omitted in the “Output Shape”
column. time_distr = time_distributed.
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The ViViT (Mdl_a) Body block comprises Tublet embedding (two 3D convolutional 
layers for patch embedding), positional encoder, multi-head attention, and feed-forward 
network (FFN). We opted for 1 frame in Tublet embedding to maintain high temporal 
resolution, 8-head attention, 64 key dimensions, 768 embedding vector dimensions, and 8 
FFN layers. A total of 360 embedding vectors (768 dimensions each) result from 30 tem-
poral frames and 12 spatial patches. 

The ViViT (Mdl_a) Body block comprises Tublet embedding (two 3D convolutional
layers for patch embedding), positional encoder, multi-head attention, and feed-forward
network (FFN). We opted for 1 frame in Tublet embedding to maintain high temporal reso-
lution, 8-head attention, 64 key dimensions, 768 embedding vector dimensions, and 8 FFN
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layers. A total of 360 embedding vectors (768 dimensions each) result from 30 temporal
frames and 12 spatial patches.

The ConvLSTM (Mdl_b) Body block comprises 4 ConvLSTM layers with specified
numbers of filters, convolutional kernel size, and strides. Subsequently, 12 spatial patches
over 30 frames are flattened to preserve both spatial and temporal resolution in the fea-
ture space.

Table 3 showcases a hybrid model (HMdl_abc) consisting of three Body blocks: ViViT
(Mdl_a), ConvLSTM (Mdl_b), and ResCNN (Mdl_c). The ResCNN (Mdl_c) Body block
comprises five time-distributed (per frame) convolutional layers, each featuring a residual
block. The numbers of filters, convolutional kernel size, and strides are specified for each
convolutional layer, followed by a “flatten” function at the end.

Table 3. Hybrid Model (HMdl_abc) architecture combining 3 NN models: CNN_Res, ViViT, and
ConvLSTM. Normalization and Dropout layers are omitted. The batch size is omitted in the “Output
Shape” column. time_distr = time_distributed.
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50 and Xception, are time-distributed to each frame in conjunction with the (6×) Head 
layer (as outputs). The inputs of these two CNN models are the facial video clips (30 × 288 
× 256 × 3, no Stem layer applied). Consequently, a total of nine NN models are considered 
for comparison in our experiments. The parameter sizes of these models are provided in 
Tables 2–4. 
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Table 4. The root mean square errors (RMSEs) and the root mean square deviations (RMSDs) of
vital signs (HR, SpO2, SBP, DBP) prediction varying with nine deep learning NN models: Trained
on the data samples from 90% of subjects and Tested on the samples from 10% subjects from the
VVD-Large dataset [27]. In the left column, the model parameters and its output features (to Heads)
are presented.

Model\Vital Sign HR SpO2 SBP DBP Sex Age

ResNet-50, 118.1 M
61,440 11.11 (17.16) 1.54 (1.15) 9.62 (22.14) 6.51 (13.95) 0.06 (0.49) 6.27 (20.95)

Xception, 115.4 M
61,440 7.90 (15.32) 1.24 (1.89) 6.11 (20.74) 3.86 (12.35) 0.04 (0.49) 3.60 (20.81)

Mdl_a, 552.0 M
ViViT: 276,480 7.02 (12.14) 0.99 (1.52) 6.69 (17.16) 3.72 (10.10) 0.02 (0.50) 4.38 (19.18)

Mdl_b, 520.0 M
ConvLSTM: 276,480 7.12 (10.51) 1.04 (1.19) 5.92 (15.20) 3.75 (8.61) 0.02 (0.50) 4.40 (17.94)

Mdl_c, 497.2 M
ResCNN: 276,480 6.60 (12.61) 0.90 (1.54) 5.61 (17.68) 3.34 (10.72) 0.01 (0.50) 3.65 (19.74)

HMdl_ab, 1072.0 M
552,960 6.49 (11.50) 0.93 (1.35) 5.18 (16.30) 3.05 (9.50) 0.02 (0.50) 3.01 (18.49)

HMdl_ac, 1049.1 M
552,960 6.33 (12.64) 0.88 (1.57) 4.71 (17.91) 2.80 (10.67) 0.03 (0.50) 2.72 (19.68)

HMdl_bc, 1017.2 M
552,960 6.56 (11.37) 0.97 (1.38) 4.94 (16.34) 2.89 (9.55) 0.02 (0.50) 3.23 (18.56)

HMdl_abc, 1569.2 M
829,440 6.42 (11.67) 0.88 (1.43) 4.84 (16.56) 2.80 (9.67) 0.00 (0.50) 2.56 (18.96)

4. Experimental Results
4.1. Vital Video Dataset Description

We assembled a sizable dataset known as the Vital Video Dataset (VVD) [27], com-
prising 891 participants, illustrated in Figure 1. This dataset encompasses 459 female and
432 male individuals. For each participant, we captured two uncompressed 30 s videos,
synchronized PPG waveforms, and a single blood pressure measurement. Additionally,
gender, age, and skin color were recorded for every participant.
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Figure 1. Illustration of the VVD-Large dataset [27] (891 subjects): (a) the distributions of the variables,
(b) mosaic of the facial videos (851 = 37 × 23 faces shown).

During the recording process, participants were instructed to maintain a forward
gaze and keep their fingers as steady as possible, preferably resting on the knee. Once the
PPG waveform stabilized, a 30-second video was recorded simultaneously with the PPG
waveform. Furthermore, heart rate and blood oxygen saturation level values calculated by
the pulse oximeter were recorded.

Following the initial recording, another 30-second session commenced, during which
BP measurements were obtained. PPG waveform, HR, and SpO2 values were also captured
during this session. It is noteworthy that measuring BP during the recording, rather than
before or after, is crucial as the measurement process itself can influence BP values.

The details of the VVD dataset are described as follows:

• A total of 891 participants (balanced gender/age distribution including all skin tones);
• Uncompressed 1920 × 1200, 30 FPS facial videos (see Figure 1b);
• Synchronized PPG ground truth;
• Blood pressure spot measurement collected during video recording;
• Sex and age recorded.

In our experiment, we employed a compressed version of the VVD dataset, named the
VVD-Large dataset, comprising 891 participants. This dataset encompasses a total of 90 GB
of compressed videos at a bitrate of 13 Mbps. The distributions of age, averaged HR, and
BP values are depicted in Figure 1a. The attributes available in the VVD-Large dataset [27]
are listed below, where the first reading of each attribute in the first example is provided as
an example.

i. Heart rate (HR): one reading per second in beats per minute, e.g., 72;
ii. Blood oxygen saturation level (SpO2): one reading per second in percentage (≤100%),

e.g., 98;
iii. Blood pressure (BP): one reading per second, including systolic pressure and diastolic

pressure, in millimeters of mercury (mm Hg), e.g., 126/66;
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iv. Subject sex: e.g., M;
v. Subject age: e.g., 22;
vi. PPG waveform: 56 readings per second in percentage (not used in this study), e.g., 35;
vii. Subject skin color: labeled as 1 (White)–6 (dark brown/black) according to Fitzpatrick

skin types (not used in this study), e.g., 4.

Each participant is associated with two video files, each containing 30 s facial videos.
As one heartbeat cycle typically lasts less than one second (i.e., HR typically exceeds 60 bpm
or 1 bps), we clip 30 frames (i.e., 1 s of 30 FPS video) as the sequence of input images for
our NN models. From each of the two video files for a participant, nine 30-frame clips are
randomly extracted. It is ensured that there are no overlapping (repeatedly used) frames in
the nine clips from the same participant. During data splits for training and testing, we
ensure that multiple clips from one participant are allocated to the same subset, either the
training or testing subset.

All faces are detected and extracted from each frame, resized to 288 × 256 pixels, and
then standardized and normalized (intensity stretched) as per Section 2. The normalized
facial video clips serve as the input data, while the outcome variables (outputs) consist of
four vital signs, HR, SpO2, Systolic BP, and Diastolic BP, along with sex and age. Ground-
truth values corresponding to these six outcome variables are normalized to [0, 1] for
training, and the NN model’s prediction values are scaled back to their original range. A
thresholding process is applied for sex prediction.

Given the model’s complexity and the large video data, training an NN model is time
consuming (e.g., 1018 s/epoch for HMdl_abc). Instead of 10-fold cross-validation, 90% of
the VVD-Large data (from 802 subjects) is utilized for training, while 10% (from 89 subjects)
is reserved for testing. All reported results in Table 4 are obtained from the testing dataset.
An illustration of one hybrid model training is presented in Figure 2, demonstrating the
convergence of the train loss and validation loss after 30 epochs. All trainings are halted
after 64 epochs.
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Figure 2. Train and validation (10% of train dataset) loss over 64 epochs (HMdl_abc, 709.7 M, 16 h
of training).

4.2. Nine NN Model Performance

The performance of the NN model prediction is evaluated using root mean square
error (RMSE) and root mean square deviation (RMSD) by comparing the prediction values
with the ground-truth values. A smaller RMSE indicates better prediction accuracy. It is
worth noting that RMSD is influenced by the range (distribution) of each vital sign variable
and the prediction performance. When comparing RMSD values between different NN
models (but not across different vital signs), smaller values indicate better performance.

Table 4 showcases the performance of nine NN models in predicting four vital signs
(HR, SpO2, SBP, DBP), as well as sex and age. The ViViT (Mdl_a) model incorporates both
temporal and spatial analysis into a single model, applying attention mechanisms to both
time patches (among frames) and spatial patches (within a frame). All four hybrid models
(HMdl_ab, _ac, _bc, and _abc) exhibit smaller RMSEs compared to the three base models
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(Mdl_a, _b, and _c). Overall, the hybrid model, HMdl_ac and HMdl_abc, demonstrates the
best performance, suggesting that combining ViViT with ResCNN and ConvLSTM further
enhances spatial analysis capabilities atop the already high temporal (between frames)
analysis power in the Mdl_a model.

As shown in Table 4, the performance of the Xception model is better than the ResNet-
50 model. However, both are poorly performed compared to the rest of the seven cus-
tomized models. Therefore, the rest of the discussion, including score fusion, is concentrated
on the seven proposed models.

To visualize the prediction performance, histograms of prediction values and ground-
truth values are depicted in Figure 3. These plots illustrate the distributions of four vital
signs and ages. In the bottom-left subplot of Figure 3, if a prediction bar (orange) is lower
than its neighboring ground-truth bar (green), it indicates that the average prediction is
smaller than the average ground-truths within that bin (a range of vital sign).

BioMedInformatics 2025, 5, x FOR PEER REVIEW 14 of 18 
 

 

 

Figure 3. Vital sign predictions (5 columns: HR, SpO2, Age, BPH/DBP, BPL/SBP) comparisons of 
seven models (7 rows: Mdl_a, _b, _c, HMdl_ab, _ac, _bc, _abc): true (ground truth in green color) 
vs. prediction (in orange color). 

Among these outcome variables, sex and age are considered static variables, meaning 
they do not vary over time within the recording duration. SpO2 is a slowly varying vari-
able. However, HR and BPs are dynamic variables, exhibiting rapid or substantial fluctu-
ations within 30–60 s. To accurately predict fast-varying variables, temporal data analysis 
with high resolution is crucial. The ViViT model (Mdl_a) offers temporal analysis (via 
attention mechanism) with a resolution of 30 frames. While two hybrid models (HMdl_ac 
and HMdl_abc) demonstrate smaller errors in predicting SpO2, DBP, Sex, and Age, they 
exhibit relatively larger errors in estimating HR and SBP. Achieving higher temporal res-
olution may be feasible by employing a higher frame rate camera (e.g., 90 FPS, 300 FPS) 
and implementing a novel temporal analysis model. Hopefully, these measures will help 
reduce the errors in predicting highly dynamic vital signs like HR and SBP. 

4.3. Score Fusion Performance 

To enhance the performance of vital sign estimation, score fusion methods can be 
employed, integrating multiple scores from different NN models, as delineated in Table 
4. Various types of score-fusion methodologies exist, including arithmetic fusion (e.g., av-
erage, majority vote) [41], regression-based fusion, and density-based fusion (e.g., Gauss-
ian mixture model) [42,43]. For this study, three regression-based score fusion methods 
were chosen: Mean fusion (baseline), Support Vector Machine (SVM) [44,45], Random 
Forest (RF), and Gradient Boosting. The multiple scores are amalgamated into feature 

Figure 3. Vital sign predictions (5 columns: HR, SpO2, Age, BPH/DBP, BPL/SBP) comparisons of
seven models (7 rows: Mdl_a, _b, _c, HMdl_ab, _ac, _bc, _abc): true (ground truth in green color) vs.
prediction (in orange color).

Among these outcome variables, sex and age are considered static variables, meaning
they do not vary over time within the recording duration. SpO2 is a slowly varying variable.
However, HR and BPs are dynamic variables, exhibiting rapid or substantial fluctuations
within 30–60 s. To accurately predict fast-varying variables, temporal data analysis with
high resolution is crucial. The ViViT model (Mdl_a) offers temporal analysis (via attention
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mechanism) with a resolution of 30 frames. While two hybrid models (HMdl_ac and
HMdl_abc) demonstrate smaller errors in predicting SpO2, DBP, Sex, and Age, they exhibit
relatively larger errors in estimating HR and SBP. Achieving higher temporal resolution
may be feasible by employing a higher frame rate camera (e.g., 90 FPS, 300 FPS) and
implementing a novel temporal analysis model. Hopefully, these measures will help reduce
the errors in predicting highly dynamic vital signs like HR and SBP.

4.3. Score Fusion Performance

To enhance the performance of vital sign estimation, score fusion methods can be
employed, integrating multiple scores from different NN models, as delineated in Table 4.
Various types of score-fusion methodologies exist, including arithmetic fusion (e.g., average,
majority vote) [41], regression-based fusion, and density-based fusion (e.g., Gaussian
mixture model) [42,43]. For this study, three regression-based score fusion methods were
chosen: Mean fusion (baseline), Support Vector Machine (SVM) [44,45], Random Forest
(RF), and Gradient Boosting. The multiple scores are amalgamated into feature vectors
and subsequently inputted into a classifier for training (utilizing labeled score vectors)
or testing.

In our study, the SVM method utilized a Gaussian kernel function and a one-versus-
one coding design, employing seven binary learners for the corresponding seven scores.
The RF model involved training an ensemble of 100 classification trees, each with a depth
of 40, using the complete training dataset. At each decision split, a random subset of
predictors (scores) was employed to maximize the gain of the split criterion across all
possible splits of the predictors. The final regression was derived by aggregating the results
from all the trees in the ensemble.

Ten-fold cross-validation was implemented in score fusion experiments, and the root
mean square errors (RMSEs) of score fusion were calculated by combining all ten-fold
testing scores. The scores for fusion, a feature vector of seven dimensions, consist of the
scores from seven NN models (see Table 5).

Table 5. The RMSEs of score fusion using 7 scores from 7 NN models.

Fusion\Vital Sign HR SpO2 SBP DBP Sex Age

Mean Fusion 6.18 0.87 4.65 2.70 0.01 2.60

SVM Regr. 5.86 0.98 7.66 3.86 0.09 3.52

Gradient Boosting 5.53 0.89 4.38 2.34 0.00 2.38

RF Regr. (100, 40) 5.55 0.87 4.07 2.21 0.00 2.30

The mean fusion simply averages all scores. Except for the SVM regression, the rest of
the score fusion methods (including mean fusion) performed better than any single model.
The RF regression method is the best model in terms of the smallest RMSEs.

4.4. Time Costs of Nine NN Models

All models were implemented using Python 3.9 and TensorFlow 2.11 and executed in
JupyterLab (Version 3.6.1) on a DELL Precision workstation with the following specifica-
tions: Intel Xeon 5220R 24-Core CPU clocked at 2.2 GHz, 256 GB of RAM, 8 TB hard disk,
running Ubuntu 20.04. The workstation was equipped with an NVIDIA Dual RTX A6000
Graphics Board (with NV Link) featuring 48 GB of video memory and 10,752 CUDA cores
for each board. However, all training and testing procedures were conducted using only
one A6000 board. The time costs of training and testing for each of the nine NN models are
detailed in Table 6. There is no doubt that the ResNet-50 and Xception models are fast in
training and testing due to the small parameter size. Notably, the hybrid model (HMdl_abc)
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required the longest time for both training and testing. Nevertheless, the inference time
of 56.8 milliseconds per sample (consisting of 30 frames) is relatively rapid, enabling the
machine to process approximately 18 such requests in a single second.

Table 6. Model parameters, dimension of the output features (to Heads), training time (including
validation time, seconds per epoch), and testing time (milliseconds per sample) varying with nine NN
models tested on the VVD-Large dataset [27]. Time costs (testing on one Nvidia A6000 48 GB-GPU
board) slightly change at different runs due to data caching and optimization.

Metric\NN
Model ResNet-50 Xception Mdl_a Mdl_b Mdl_c HMdl_ab HMdl_ac HMdl_bc HMdl_abc

# Parameters 118.1 M 115.4 M 552.0 M 520.0 M 497.2 M 1072.0 M 1049.1 M 1017.2 M 1569.2 M

# Features 61,440 61,440 276,480 276,480 276,480 552,960 552,960 552,960 829,440

Training time
(s/epoch) 235 256 348 420 396 519 477 566 1018

Testing time
(ms/sample) 8.3 9.3 23.5 23.5 23.5 23.5 23.5 23.5 43.1

5. Discussion and Conclusions
This study introduces a deep learning framework aimed at directly predicting vital

signs from facial videos. Comparing nine NN models, the hybrid model, which integrates
CNN, convLSTM, and ViViT blocks, emerges as the top performer. The small RMSEs
associated with the hybrid model’s predictions indicate its superior capability in extracting
temporospatial features from facial videos. Through experiments, we observed the hybrid
model’s efficacy in predicting vital signs such as HR, SpO2, SBP, and DBP, along with
demographic variables like sex and age.

Facial images can be easily captured using common devices like smartphones, laptops,
or web cameras, eliminating the need for specialized equipment like vital sign monitors.
This implementation offers an economical and convenient solution for vital sign monitoring,
particularly beneficial for elderly individuals or during outbreaks of contagious diseases
like COVID-19.

Due to the large model and big dataset but limited GPU resources, we did not conduct
10-fold cross-validation experiments. Instead, we randomly chose one-fold to do the test.
Thus, error analysis cannot be performed in this study. The VVD-Large dataset does
not include any ground truths for body temperature and respiration rate, although the
proposed hybrid model has the capacity to integrate body temperature and respiration
rate prediction.

The proposed models were only validated on one dataset, although this dataset is
fairly large and has already considered the balances of age, gender, and race. However,
the dataset (size, representation, diversity, balance, processing) plays an important role in
any data-driven model, including ours hereby. Thus, we will continuously validate and
improve our models on larger datasets.

The data preprocessing was completed prior to any model training and testing in
our experiments. For real-time applications, facial detection and data normalization can
be implemented either on the client side (e.g., in a smartphone app) or on the server side
(where the hybrid model performs predictions). A trained hybrid model can be further
improved by applying reinforcement learning methods.
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