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Simple Summary: Gastric cancer is one of the leading causes of cancer-related death worldwide.
Although the treatment of gastric cancer patients has improved during the last decades, survival
rates are still around 20%. Non-coding RNAs were shown to participate in numerous pathways
during the development and progression of gastric cancer. MicroRNAs and lncRNAs are among
the most well studied classes of non-coding RNAs, since they have important roles as oncogenic
or tumor suppressor molecules in several pathways. The Wnt/β-catenin signaling pathway was
proven to be critical in different contexts in cell biology and may help in prognosis and diagnosis of
gastric cancer.

Abstract: Gastric cancer is one of the most common cancers and the third cause of cancer-related death
worldwide. The treatment of GC patients improved due to advancements in surgery, radiotherapy
and chemotherapy. However, the long-term survival rate of patients with gastric cancer remains
around 20%. Thus, development of novel therapeutic approaches is of great interest, in order to
reduce the need for mutilating surgeries and morbid adjuvant therapies. For many years, it was
believed that the RNA was a mere intermediate molecule in the genetic information flow. However,
during the past decades, with the advent of new sequencing technologies, it was revealed that
non-coding RNAs play important roles in many different biological processes. The Wnt/β-catenin
signaling pathway has been reported to regulate crucial events during neoplasic development,
such as cell differentiation, proliferation, invasion, migration, apoptosis, and angiogenesis. In this
review, we will focus on microRNAs and long non-coding RNAs that have been implicated in gastric
cancer tumorigenesis via modulation of the Wnt/β-catenin signaling pathway, which provided some
biomarkers to prognosis, diagnosis, and therapy.
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1. Introduction
1.1. Gastric Cancer

Gastric cancer (GC) is the fifth most common cancer and the third cause of death
caused by cancer worldwide, with over 1,000,000 new cases per year and more than
700,000 deaths. Generally, this type of neoplasm affects men more frequently than women,
with incidence rates being around two-fold higher in males compared to females. GC
incidence rates are prominently increased in Eastern Asia, where the average incidence is
32.1 per 100,000 among males and 13.2 per 100,000 among females. South America (12.7 per
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100,000 among men and 6.9 per 100,000 among women) and Eastern Europe (17.1 per
100,000 for males and 7.5 per 100,000 for females) are also regions where GC incidence is
very high [1]. The risk factors associated with GC include infection by microorganisms,
such as Helicobacter pylori and Epstein–Barr virus, and lifestyle habits, including high
consumption of alcohol and smoking, increased intake of foods preserved by salting, and
low fruit ingestion [2–5].

More than 90% of gastric tumors originate from the gastric glands on the stomach
mucosa, and therefore are called adenocarcinomas. These tumors are commonly classified
into subgroups based on different parameters. Anatomically, the stomach can be classified
into cardia (the portion closest to the esophagus), fundus (the upper part), body (the
main part), antrum (the lower portion), and pylorus (furthest part). Accordingly, the GC
adenocarcinomas may be divided into cardia or non-cardia [6]. Moreover, some studies
have proposed that these two subtypes may have distinct etiologies [7]. These tumors can
also be categorized into intestinal or diffused, according to histological subtypes [8]. The
intestinal type is more incident, with males being more affected than females (roughly two-
fold). In addition, these patients usually have a well-differentiated tumor and, consequently,
a better prognosis. On the other hand, the diffused type is less frequent; however, its
incidence rate has been increasing by 3.6% per year, on average. Additionally, this type is
characterized as less differentiated, and the patients have a worse prognosis [9,10]. New
and molecular approaches have been described in an attempt to propose a comprehensive
classification, as previously reviewed by our group [11].

In general, GC is diagnosed late due to the fact the patients are usually asymptomatic
or present nonspecific symptoms for a long period of time. Consequently, these tumors
often metastasize by the time of diagnosis, which contributes to the poor prognosis of
the disease. During the past years, the treatment of GC patients has improved thanks to
advancements in surgery, radiotherapy, and chemotherapy. However, this was not trans-
lated into better long-term survival rates, since the five-year overall survival rate is around
20% [6]. In this context, various researchers have been working on identifying molecular
targets for diagnosis and prognosis of GC, as well as for developing novel therapeutic
approaches to reduce the need for mutilating surgeries and morbid adjuvant therapies.

1.2. Non-Coding RNAs

For many years, molecular biologists believed that the primary function of the RNA
was to encode sequence information. The few exceptions were components of protein
containing complexes, such as ribosomal RNA (rRNA) and telomerase RNA component
(TERC) [1,2]. However, modern sequencing technologies revealed that the majority of
the human transcriptome is composed of non-coding RNAs (ncRNAs) [12–14]. Moreover,
these molecules have been described as critical for a range of functions in various cellular
processes, such as cell cycle, development, and metabolism, for instance [15,16]. Depending
of the size of the molecule, ncRNAs may be divided into long non-coding RNAs (lncRNAs),
if the transcript contains more than 200 nucleotides; or small ncRNAs, when they are
shorter than 200 nucleotides [17]. Small ncRNAs may also be further divided into different
categories, such as piwi-interacting RNA (piRNAs), small nuclear RNA (snRNAs), small
nucleolar RNAs (snoRNAs), and microRNAs (miRNAs), among others [18] (Figure 1).

Here, we will emphasize the roles of lncRNAs and microRNAs that regulate gastric
tumorigenesis through the Wnt/β-Catenin pathway.

1.3. Long Non-Coding RNAs

As previously mentioned, the ncRNAs that contain more than 200 nucleotides in
length are named long non-coding RNAs [17]. As well as miRNAs, lncRNAs are also
frequently polyadenylated and transcribed by RNA Pol II [19]. In addition, many lncRNA
transcripts are spliced and capped [20], conferring to them the ability to survive longer
periods of time in the cell nucleus. Thus, differently from miRNAs, which act in the
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cytoplasm of the cells, where they either degrade mRNA or repress its expression, lncRNAs
were shown to have a wide variety of functions (Figure 2).
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Figure 2. The functions of lncRNAs. LncRNAs have a diverse range of functions depending on their subcellular localization.
Nuclear lncRNAs may work as transcriptional inductors, by interacting with transcriptional activators, causing target
gene activation; transcriptional repressors, by interacting with transcriptional repressors, preventing target gene activation;
regulators of mRNA splicing, by interacting with splicing factors; and molecular decoys, keeping transcriptional activators
away from chromatin. Cytoplasmic lncRNAs, among other functions, frequently act as molecular decoys, preventing
protein–protein interactions, and competing endogenous RNAs, serving as molecular sponges titrating miRNAs away from
their mRNA targets.
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Usually, nuclear lncRNAs act as regulators of gene expression. In this case, a given
lncRNA interacts with and recruits transcription activators or repressors to gene promoters.
Moreover, this type of regulation can occur in cis, when the lncRNA activates or represses
genes near their own site of transcription. Alternatively, lncRNAs may influence the
expression in trans, when they influence the expression of a distant gene.

An example of cis-acting lncRNA is APTR (Alu-mediated p21 Transcription Regula-
tor), a lncRNA transcribed from chromosome 7q21, which recruits the Polycomb repressive
complex 2 (PRC2) to the p21 gene promoter (localized in chromosome 6p21.2), repressing
its expression [21]. Another function of lncRNAs localized to the nucleus is to function as
molecular decoys. PANDA (p21 Associated ncRNA DNA Damage Activated) sequesters
the transcription factor NF-YA (Nuclear transcription factor Y subunit alpha) and pre-
vents the activation of the target genes CCNB1 (Cyclin B1), FAS (Fas Cell Surface Death
Receptor), BBC3 (BCL2 Binding Component 3), and PMAIP1 (Phorbol-12-Myristate-13-
Acetate-Induced Protein 1) [22].

The most frequent function of cytoplasmic lncRNAs is working as competing endoge-
nous RNAs (ceRNAs).

Many examples have been reported over the years, including LINC00689 (Long
Intergenic Non-Protein Coding RNA 689), which sponges miR-526b-3p, preventing it from
binding and degrading ADAM9 (ADAM Metallopeptidase Domain 9) [23]. Cytoplasmic
lncRNAs also may regulate mRNA and protein stability [24] and be molecular decoys for
proteins or RNAs [25].

Until this moment, 172,216 human lncRNA transcripts and 96,308 lncRNA genes
have been identified [26]; the number is larger than the 84,485 protein-coding transcripts
and 19,954 protein-coding genes [27]. Additionally, although they are less conserved and
expressed in lower levels than protein-coding genes [19,20,28], as pointed out previously,
many groups have shown their importance for various physiological and pathological
processes.

1.4. MicroRNAs

MiRNAs comprehend a class of endogenous sncRNAs (small non-coding RNA) that
range from 17 to 27 nt in size (~22 nt) and are expressed both in plants and animals [29].
They regulate gene expression post-transcriptionally by base pairing with mRNAs of
protein-coding genes to repress their expression. Mechanistically, a miRNA can either
cleave or repress an mRNA, depending on how precise the base complementarity is with
the mRNA. A miRNA–mRNA perfect base pairing will result in the degradation of the
mRNA, while an imperfect base pairing will cause the repression of the mRNA, inhibiting
protein translation. Furthermore, the base pairing of nucleotides 2 to 7 was shown to be
crucial for the recognition of the miRNA with the target mRNA; this region is referred to
as the seed sequence [30].

In the nucleus of mammalian cells, miRNAs genes are usually transcribed by RNA
polymerase II (Pol II) into a long capped, polyadenylated, and spliced primary microRNA
(pri-miRNA) molecule. Subsequently, pri-miRNAs are cleaved into a hairpin-shaped
precursor microRNA (pre-miRNA) by the microprocessor complex, which is composed of
DGCR8 (DiGeorge Syndrome Critical Region 8) and DROSHA (Drosha Ribonuclease III).
Successively, the pre-miRNA hairpin is exported from the nucleus by Exportin 5 (XPO5) to
the cytoplasm, where it is processed by the RNase III endonuclease DICER, resulting in
the mature miRNA duplex [29]. Therefore, one pre-miRNA molecule yields two mature
single-strand miRNAs. The 5′-end of the pre-miRNA originates the 5p strand, whereas the
3p strand derives from the 3′-end [31]. Thereafter, the mature miRNA associates with the
Argonaute protein (AGO), one of the components of the RNA-induced silencing complex
(RISC), where it will negatively regulate mRNA expression [29] (Figure 3).
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Since the identification of the first discovered miRNA, lin-4 [32], 2656 other human
mature miRNAs have been identified with more than 29,000 unique gene targets [33]. Many
of them have been reported to be relevant in the context of disease, including cancer, such
as let-7 and miRNA-106b-5p [34,35]. In this review, we will emphasize the ones involved
in gastric cancer and the Wnt/ β -catenin signaling pathway.

1.5. Wnt/β-Catenin Pathway

The Wnt signaling pathways are one of the most important and well-studied group
of signal transduction pathways in cell biology. They have been reported to regulate
crucial events during embryonic development, such as cell differentiation, polarization,
and migration [36,37]. In addition, dysregulations on these pathways have been reported
to implicate in pathological conditions, as type 2 diabetes mellitus and cancer [38,39].

To date, three different pathways have been described. The Wnt/β-catenin pathway
(canonical) relies on the translocation of β-catenin to the nucleus where it mainly acts
as a coactivator for the TCF/LEF (T-cell specific transcription factor/lymphoid enhancer
binding factor) transcriptional factor family. The other two pathways are independent of
β-catenin and are referred to as non-canonical [40].

The non-canonical planar cell polarity pathway, among others, regulates cell polarity
(asymmetric distribution of molecular components within the cell) during embryonic
development [41].

The non-canonical Wnt/calcium pathway is responsible for regulating the intracellular
calcium levels.

The canonical or Wnt/β-Catenin pathway, as previously stated, results in transcription
factor activation as a consequence of β-catenin translocation to the nucleus. In the absence
of Wnt, cytosolic β-catenin is constantly degraded by a destruction complex formed by
Axin, APC (Adenomatous polyposis coli), PP2A (protein phosphatase 2A), CK1 (Casein
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kinase 1), and GSK3 (glycogen synthase kinase 3). This complex phosphorylates β-catenin
and β-TrCP (Beta-Transducin Repeat Containing E3 Ubiquitin Protein Ligase) recognizes
and ubiquitin tags it to proteasome degradation. However, when extracellular Wnt binds
to Frizzled, the receptor, and the co-receptor LRP5/6 (lipoprotein receptor-related pro-
tein 5/6), disheveled protein is recruited, and LRP5/6 becomes phosphorylated. Axin
is then translocated to the plasma membrane, disrupting the Axin-mediated phospho-
rylation/degradation of β-catenin. Finally, β-catenin accumulates in the cytoplasm and
translocates to the nucleus where it serves as a co-activator for the TCF transcription factor
family to activate Wnt responsive genes [40].

The canonical Wnt pathway is considered crucial to important processes, including
wounds and healing, embryonic development, cell proliferation, and EMT (epithelial
to mesenchymal transition) [42–44]. Moreover, the dysregulation of the Wnt/β-Catenin
pathway induces tumor progression in different tissues [45–48], including the stomach. In
fact, components of the Wnt signaling pathway were shown to be dysregulated in GC tissue
samples. Genomic analysis identified that 46% of gastric tumors exhibit deregulation of
the Wnt/β-catenin pathway. Additionally, several Wnt ligands are upregulated in human
gastric tumors, including WNT1, WNT2b, WNT5a, WNT6, and WNT10a [49]. In addition,
many reports indicate that the components and the target genes of this signaling pathway
are upregulated and mutated, both in humans and animal models [50–55]. Finally, there
are studies reporting that in GC, β-catenin translocates to the nucleus of GC cells, further
indicating that the Wnt/β-catenin pathway is important in this context [56,57]. Thus,
in this review, we will discuss the role of miRNAs and lncRNAs in the Wnt/β-Catenin
pathway and their importance to gastric tumorigenesis (Figure 4).
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2. MicroRNAs Associated with Wnt/β-Catenin Signaling Pathway

In the following sections, we will describe in more detail the most prominent Wnt/β-
catenin-related miRNAs in GC. However, the summary of all GC miRNAs involved in the
Wnt/β-catenin may be found in Tables 1–4.

2.1. Epithelial-to-Mesenchymal Transition (EMT) and Metastasis Increase in Gastric Cancer

During embryogenesis, through a series of cell divisions and transformations, a single-
cell organism gives rise to a complex multicellular organism. During this process, some
epithelial cells change their configurations to acquire some mesenchymal cell features. The
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loss of epithelial characteristics and gain of mesenchymal features is called epithelial-to-
mesenchymal transition (EMT).

EMT is a multistage and reversible process related to cellular adhesion and commu-
nication, and it is part of natural processes, such as embryogenesis and wound healing.
Besides that, EMT may occur in some pathological changes, such as cancer, specifically in
metastasis initiation. This process comprehends several stages, which includes changes
in apical–basal polarity organization of epithelial cells and changes in cells arrangement,
determined by activation of EMT transcription factors, which is then followed by induced
expression of genes related to mesenchymal state. Such alterations can give a huge advan-
tage in mobility and invasive capacities, improving metastasis and elevating resistance to
many cancer therapies [58].

In this setting, the Wnt/β-catenin signaling pathway plays an important role in the
activation of EMT process. In addition, it has been shown that miRNAs can induce or
suppress Wnt/β-catenin signaling, as they can act as oncogenes (OncomiRNAs) or as tumor
suppressors [59]. Therefore, in this topic, the studies were grouped into two different tables,
according to miRNAs effects in Wnt/β-catenin signaling and stimulating or suppressing
the EMT process (Tables 1 and 2).

Overexpressing or silencing gene assays using siRNAs in cell culture are commonly
used to explore the capacity of cell proliferation, migration, and invasion before and after
transfection. Possible miRNA target genes are observed in different target prediction tools.

Table 1 shows the miRNAs involved in promoting EMT in GC, describing their
targets, their major molecular effects, the study type (in vitro, in vivo, or both), and the
consequences on Wnt/β-catenin pathway and on EMT. Noticeably, miR-27 is upregulated
in gastric cancer and it targets the APC gene to stimulate the Wnt/β-catenin pathway [60].

Table 1. OncomiRNAs associated with Wnt/β-catenin pathway and their roles to the epithelial-to-mesenchymal transition
(EMT) progress in gastric cancer.

OncomiRNAs Targets Consequence on
Wnt/β-Catenin Pathway

Consequence
on EMT Major Effects Study Type Ref.

miR-27 APC Induction Induction ↑ZEB1, ZEB2, Slug, Vimentin
↓E-cadherin In vitro [60]

miR-199a-5p E-cadherin Induction Induction ↓E-cadherin levels under
SRF action

In vitro and
in vivo [61]

miR-194 SUFU Induction Induction ↑β-catenin In vitro and
in vivo [62]

miR-192 SMG-1 Induction Induction ↓SMG↓E-cadherin,
↑N-cadherin

In vitro and
in vivo [63]

miR-215 SMG-1 Induction Induction ↓SMG↓E-cadherin
↑N-cadherin

In vitro and
in vivo [63]

miR-188-5p PTEN Induction Induction ↑Phospho-Ser9 of GSK3β;
↑Wnt

In vitro and
in vivo [64]

miR-675 PITX1 Induction Induction ↑Cell proliferation,
migration and invasion In vitro [65]

↑: Upregulation, ↓: Downregulation.

Levels of E-cadherin and N-cadherin were measured to evaluate the suppression or
induction of EMT. In the same way, proteins related to Wnt/β-catenin signaling were
analyzed to classify the effects of miRNAs in this signaling pathway. Generally, EMT starts
when the Wnt/β-catenin pathway is hyperstimulated by OncomiRNAs, and the opposite
occurs when Wnt/β-catenin pathway is repressed by tumor suppressor miRNAs.

Similarly, Table 2 presents the miRNAs that suppress EMT in GC. It also states the
miRNA targets, their major molecular effects, the study type (in vitro, in vivo, or both),
and the consequences for the Wnt/β-catenin pathway and for EMT.
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Table 2. Tumor suppressor miRNAs associated with Wnt/β-catenin pathway and their roles in epithelial-to-mesenchymal
transition (EMT) progress in gastric cancer.

Tumor Suppressor
miRNAs Targets Consequence for

Wnt/β-Catenin Pathway
Consequence

for EMT Major Effects Study Type Ref.

miR-200a
ZEB1,

ZEB2 and
β-catenin

Suppression Suppression
↓N-cadherin
↓β-catenin
↑E-cadherin

In vitro and
in vivo [66,67]

miR-29c-3p KIAA1199 Suppression Suppression

↓KIAA1199
↓N-cadherin
↑E-cadherin

↑Axin2

In vitro and
in vivo [68]

miR-381 CUL4B Suppression Suppression ↓Cell proliferation
and invasion

In vitro and
in vivo [69]

miR-489 CUL4B Suppression Suppression ↓Cell proliferation and
invasion

In vitro and
in vivo [69]

miR-338 EphA2 Suppression Suppression ↓EMT-related markers In vitro [70]

miR-375-3p YWHAZ Suppression Suppression ↓Cell proliferation and
invasion In vitro [71]

miR-338-3p SOX5 Suppression Suppression ↓Cell proliferation In vitro and
tissues. [72]

miR-873 STRA6 Suppression Suppression ↓Cell migration and
invasion

In vitro and
in vivo [73]

↑: Upregulation, ↓: Downregulation.

Thus, as exhibited in Table 2, most reports showed that miRNAs that suppress the
Wnt/β-catenin pathway also suppress the EMT process, differing only by the genes they
target. Thereby, some studies explored miR-200a functions, and its target genes, such as the
β-catenin gene (CTNNB1) [66], ZEB1 (Zinc finger E-box-binding homeobox 1) and ZEB2
(Zinc finger E-box-binding homeobox 2), E-cadherin repressors, under the influence of
Toosendanin, a bioactive compound extracted from Melia Fructus [74]. Lina and colleagues
bring to the discussion a gene included in the human unidentified gene-encoded (HUGE),
KIAA1199 (Hyaluronan-Binding Protein Involved In Hyaluronan Depolymerization). This
gene is related to non-syndromic hearing loss and most recently related to the gain of
characteristics related to the EMT process in cancer cells. In that research, they showed
the effect of KIAA1199 in gastric cancer as a stimulated factor of metastasis by binding to
WBP11 (WW Domain Binding Protein 11) and PTP4A3 (Protein Tyrosine Phosphatase 4A3)
and regulating the EMT-related Wnt and EGFR signaling pathways. Functional assays
showed that KIAA1199 is a target gene of miR-29c-3p and can be altered in vitro and
in vivo by overexpression and knockout of miR-29c-3p [68].

2.2. Cell Proliferation, Migration, Invasion, and Apoptosis

Some studies explore the functions of miRNAs and their relationship with some cell
phenotypes, such as cell proliferation, migration, and invasiveness, as we can see in Table 3.
Most of studies showed miRNAs related to decreased cell proliferation and decreased
tumor growth. Just a small part of the studies explored miRNAs with oncogenic potential
in gastric cancer.

Qiu et al. studied TRIM29 (Tripartite motif containing 29) and miR-185. The results
indicated that TRIM29 acted as an oncogene in GC, improving cell cycle progression and
decreasing apoptosis. MiR-185 was reported to be downregulated in GC and to target
TRIM29, acting as a tumor-suppressive gene in GC. Interestingly, miR-185 overexpression
inhibited cell proliferation and colony formation and induced apoptosis. In addition, the
upregulation of miR-185 caused a decrease in the Wnt/β-catenin pathway genes β-catenin,
c-myc, and cyclinD1 [79].
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Table 3. MiRNAs associated with cell proliferation, migration, invasion, and apoptosis phenotypes and Wnt/β-catenin
pathway in gastric cancer.

miRNAs Status
in GC Targets Consequence on Wnt/β-

Catenin Pathway
Cell Prolif-

eration
Cell Migration
and Invasion Apoptosis Tumor

Growth Study Type Ref.

miR-200b ↓ Wnt-1 Suppression ↓ - - ↓ In vitro and
in vivo [75]

miR-22 ↓ Wnt-1 Suppression ↓ - - ↓ In vitro and
in vivo [75]

miR-19 ↓ MEF2D Suppression ↓ - - ↓ In vitro and
in vivo [76]

miR-27b ↓ FZD7 Suppression ↓ - - - In vitro [77]
miR-511 ↓ TRIM24 Suppression ↓ ↓ - - In vitro [78]
miR-185 ↓ TRIM29 Suppression ↓ - - - In vitro [79]
miR-532 ↑ NKD1 Induction ↑ ↑ - - In vitro [80]

miR-324-3p ↑ Smad4 Induction ↑ ↑ - ↑ In vivo, In vitro
and organoids [81]

miR-195-5p ↓ Not elucidated Suppression ↓ - ↑ - In vitro and
samples [82]

miR-18a ↑ SMAD2 Induction ↑ ↑ - - In vitro and
in vivo [83]

miR-19a ↑ SMAD2 Induction ↑ ↑ - - In vitro and
in vivo [83]

miR-876-5p ↓ WNT5A and
MITF Suppression ↓ ↓ ↑ ↓ In vitro and

in vivo [84]

↑: Upregulation, ↓: Downregulation.

Some studies use a different approach to explore miRNA functions and their relation-
ship with some cell phenotypes. For example, Sun and collaborators used human gastric
organoids to elucidate the role of miR-324-3p in gastric cancer. The results showed that
miR-324-3p is upregulated in GC tissues and cells, and it may act as an oncogene, improv-
ing cell proliferation, migration, and vitality. They also found that miR-324-3p targeted
SMAD4, which has been described as a tumor suppressor in some cancers, including in
GC. SMAD4 was shown to modulate cell process, such as proliferation, apoptosis, and
migration. Finally, they suggested that miR-324-3p increased gastric organoid growth
by activating Wnt/β-catenin via downregulation of SMAD4. However, there is a lack
of evidence to support this assertion [81]. Yuan et al. explored the role of miR-18a and
miR-19a in GC, both derived from MIR17HG (MiR-17-92a-1 Cluster Host Gene), a class of
pri-miRNAs located in human chromosome 13. The results suggested that miR-18a and
miR19a promoted GC metastasis by targeting SMAD2 and upregulating Wnt/β-catenin.
Additionally, IRF-1 (a nuclear transcription regulator) could inhibit MIR17HG expression,
showing a potential clinical advance for GC pathogenesis [83].

2.3. Drug Resistance

One of the most challenging tasks in GC treatment is to understand how some cells
can resist the effect of chemotherapeutic treatments. For this reason, it is interesting to
identify and elucidate drug resistance mechanisms of gastric cancer stem cells (GCSCs). In
this topic, we will expose the studies involving the Wnt signaling pathway and miRNAs
regulating the stemness properties of gastric cancer cell lines described in the literature. It
is important to point out that, although some studies present evidence to support a direct
relationship between the effects caused by miRNAs in the Wnt pathway and stemness
phenotypes, most studies only present correlations between the studied miRNAs and
phenotypic alterations associated with the Wnt pathway. Therefore, a careful look at
the methodology used is necessary. Wu et al. explored the upregulated miR-483-5p in
GCSC derived from MKN-45 gastric cancer cells. Using in vitro experiments, they showed
that miR-483-5p can improve cell proliferation and decrease cell apoptosis in GCSCs
compared to GC parental cells. Additionally, they showed that miR-483-5p upregulation
activates expression of β catenin, its downstream target molecules cyclin D1, and matrix
metalloproteinase 2, while decreasing Bcl 2 expression [85]. An overview of the studies
selected for this topic can be found in Table 4.
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Table 4. MiRNAs associated with self-renewal phenotype and Wnt/β-catenin pathway in gastric cancer.

Gene or Protein That
Targets miRNA miRNAs Status

in GC Targets Consequence on
Wnt/β-Catenin Pathway

Sphere
Formation Cell Lines Used Study Type Ref.

Not elucidated miR-483-5p ↑ Not elucidated Induction ↑ MKN-45 In vitro [85]
SLC34A2 miR-25 ↑ GSK3β Induction ↑ MKN-28 MKN-45 In vitro and

in vivo [86]

Not elucidated miR-501-5p ↑ DKK1 NKD1
GSK3β Induction ↑

SGC-7901 HGC-27
MGC-803
MKN-28
BGC-823

In vitro [87]

BRD4 miR-216a-3p ↓ Wnt3a Suppression ↓
AGS, BGC-823

MKN-45 MGC-803
SGC-7901 GES-1

In vitro [88]

↑: Upregulation, ↓: Downregulation.

3. Long Non-Coding RNAs Associated with Wnt/β-Catenin Signaling Pathway

The hallmarks of cancer, proposed by Hanahan and Weinberg [89], identified a set
of common tumor characteristics: self-sufficiency in growth signals, insensitivity to anti-
growth signals, evading apoptosis, limitless replicative potential, sustained angiogenesis,
and tissue invasion and metastasis. As aforementioned, lncRNAs were proposed as
important players in many tumorigenesis processes, including cell proliferation, invasion,
migration, angiogenesis, escaping apoptosis, and acquiring drug resistance. Most of the
lncRNAs acting through the Wnt/β-Catenin pathway in GC were reported to be associated
with more than one of the hallmarks of cancer. As well as in the miRNA section, here, we
will describe in more detail the noticeable Wnt/β-catenin-related lncRNAs in GC. Table 5
will provide a summary of the other lncRNAs.

Table 5. LncRNAs aberrantly expressed in GC and associated with the Wnt/β-catenin signaling pathway.

lncRNA Proposed Mechanism Expression in GC Cancer Related Phenotype Ref.

HOTAIR ceRNA—miR34a Upregulated Drug Resistance [90]
CAT104 ceRNA—miR-381 Upregulated Cell proliferation, migration, invasion, and apoptosis [91]

LINC01133 ceRNA—miR-106a-3p Downregulated Cell proliferation, migration, and invasion [92]
LINC01606 ceRNA—miR-423-5p Upregulated Cell migration and invasion [93]
LINC00052 interacts with β-catenin and SMYD2 Upregulated Cell proliferation, migration, and invasion [94]

BCAR4 Not elucidated Upregulated Drug resistance [95]
FEZF1-AS1 Not elucidated Upregulated Cell proliferation [96]
MALAT1 Not elucidated Upregulated Cell proliferation, migration, invasion, and apoptosis [97]

ENST00000434223 Not elucidated Downregulated Cell proliferation, migration, invasion, and apoptosis [98]
lnc-GNAT1-1 Not elucidated Downregulated Cell proliferation, migration, and invasion [99]

PEG10 ceRNA—miR-3200 Upregulated Cell proliferation, migration, invasion, and apoptosis [100]
TP73-AS1 Not elucidated Upregulated Cell proliferation and invasion [101]

LINC01225 Not elucidated Upregulated Cell proliferation, migration, and invasion [102]
TOB1-AS1 ceRNA—miR-23a Upregulated Cell proliferation, migration, invasion, and apoptosis [103]

ZFAS1 ceRNA—miRNA-200b-3p Upregulated Cell proliferation, migration, invasion, and drug resistance [104]
MIR4435-2HG Not elucidated Upregulated Cell proliferation, migration, invasion, and apoptosis [105]

LINC01314 Not elucidated Downregulated Cell migration, invasion, and angiogenesis [106]
HCG11 ceRNA—miR-1276 Upregulated Cell proliferation, migration, and apoptosis [107]

GATA6-AS1 interaction with EZH2 Downregulated Cell proliferation, migration, and invasion [108]
GASL1 Not elucidated Downregulated Cell proliferation [109]

LINC01503 Not elucidated Upregulated Cell proliferation and invasion [110]
PCAT6 ceRNA—miR-15a Upregulated Cell proliferation and apoptosis [111]

OIP5-AS1 ceRNA—miR-367-3p Upregulated Cell proliferation and apoptosis [112]
NNT-AS1 ceRNA—miR-142-5p Upregulated Cell proliferation, migration, invasion, and apoptosis [113]

HOXC-AS1 interaction with eIF4A3 Upregulated Cell proliferation and apoptosis [114]
FAM83H-AS1 Not elucidated Upregulated Drug resistance [115]

3.1. Cell Proliferation

The most frequent tumoral phenotype associated with lncRNAs and the Wnt/β-
Catenin pathway is aberrant cell proliferation. For instance, CAT104 was initially reported
as part of a lncRNA signature model along with LINC01234 (Long Intergenic Non-Protein
Coding RNA 1234), and STXBP5-AS1 (Syntaxin Binding Protein 5 Antisense RNA 1) to
predict breast cancer patient survival [116]. In 2018, CAT104 was shown to be an oncogenic
lncRNA, as it is highly expressed in a panel of human GC cells when compared to normal
cell lines. Successively, CAT104 repression decreased cell proliferation, invasion, and
migration and promoted apoptosis. In silico and in vitro studies demonstrated that CAT104
acts as a ceRNA for miR-381. Additionally, miR-381 was necessary for CAT104 silencing
described phenotypes in GC cells. The expression of Wnt/β-catenin signaling-related
proteins Wnt3a, Wnt5a, and β-catenin was decreased by miR-381 mimic transfection, while
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their expression was upregulated upon miR-381 inhibitor transfection. ZEB1, one of the
genes transcriptionally regulated by β-catenin [117], was identified as a direct target of
miR-381. ZEB1 overexpression was able to rescue the oncogenic phenotypes in GC cells
caused by miR-381 upregulation. Conversely, ZEB1 knockdown reversed the miR-381
inhibitor effects, supporting the idea that the biological function of CAT104 was mediated
by miR-381 and ZEB1 in GC cells [91].

LINC01133, previously described as an important lncRNA for cancer progression
and metastasis [118,119], was reported to be downregulated in GC. Low expression of
LINC01133 was associated with poor overall survival rates and progression-free survival,
while patients with higher levels of LINC01133 showed the opposite trend, conferring
to it a protective characteristic, and thus being considered a tumor suppressor lncRNA.
LINC01133 overexpression inhibited proliferation, migration, and invasion in vitro and
in vivo. In the same context, mesenchymal markers’ vimentin and N-cadherin levels were
reduced, whereas the epithelial marker E-cadherin levels were increased, indicating that
EMT was inhibited. As a result of bioinformatics analysis and dual-luciferase reporter
assays, miR-106a-3p was discovered to be a target of LINC01133. Analysis of differential
gene expression, using miR-106a-3p depleted GC cells, identified APC (a tumor suppressor
gene and component of the β-catenin destruction complex) as a target of miR-106a-3p.
Rescue experiments supported this data and confirmed that LINC01133 is dependent on
the miR-106a-3p/APC axis. Later, the Wnt signaling pathway was identified as the most
enriched pathway after gene ontology analysis of publicly available miRNA target datasets,
consistent with in vitro results of protein expression experiments of EMT-related genes [92].

3.2. Cell Migration and Invasion

Another important hallmark of tumor cells is their ability to migrate and invade
distant sites to form metastasis. In this scenario, there are a few Wnt/β-catenin-related
lncRNAs that are responsible of regulating cellular migration and invasion.

The lncRNA ZFAS1 (Zinc finger nuclear transcription factor, X-box binding 1-type
containing 1 antisense RNA 1) was reported as upregulated in GC and associated with the
Wnt/β-catenin. First, Xu et al. determined that ZFAS1 knockdown decreased cell prolifera-
tion, migration and invasion and drug resistance by regulating cyclin D1, cyclin E, cyclin
B1, E-cadherin, N-cadherin, vimentin, MMP-2, and MMP-14. B-catenin mRNA and protein
expression and GSK3β phosphorylation (Ser9) levels were declined, while NKD2 (NKD In-
hibitor of Wnt Signaling Pathway 2) protein expression was increased after downregulation
of ZFAS1. In addition, ZFAS1 silencing-induced malignancy inhibition was overturned
β-catenin overexpression, which stimulated cell invasion and chemotherapy resistance,
strongly revealing that ZFAS1 blocks the canonical Wnt/β-catenin signaling pathway in GC
to facilitate cell proliferation, migration, invasion, and drug resistance [120]. More recently,
Zhang et al. confirmed that ZFAS1 induced the expression of phosphorylated GSK3β
(p-GSK3β) and β-catenin, besides Wnt1 upregulation. Beyond that, authors discovered
that miR-200b was repressed in GC, and its overexpression led to reduced p-GSK3β and
β-catenin expression. Consistently, ZFAS1 was found to directly target miR-200b, which, in
turn, was shown to target Wnt1 directly. Farther, miR-200b upregulation counteracted the
ZFAS1-induced cell proliferation, showing that ZFAS1 functions via miR-200b and through
the Wnt/β-catenin signaling pathway to increase cell proliferation in GC [104].

3.3. Apoptosis

As stated before, many lncRNAs acting through the Wnt/β-Catenin pathway in GC
were reported to be associated with more than one of the hallmarks of cancer.

Identified as highly expressed in a lncRNA microarray analysis, MIR4435-2 Host
Gene (MIR4435-2HG) silencing inhibited cell proliferation, migration, and invasion while
increasing apoptosis of GC cells. An RNA pull-down assay followed by mass spectrometry
identified that MIR4435-2HG was a molecular decoy, being able to bind to DSP (Desmo-
plakin) and inhibit its expression. Moreover, increased E-cadherin expression and decreased
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expression levels of N-cadherin, vimentin, c-myc, β-catenin, cyclin D1, and Survivin were
observed in GC cells. After a series of rescue experiments and dual-luciferase reporter
assays, MIR4435-2HG was found to activate the Wnt/β-catenin signaling pathway through
DSP to stimulate GC tumorigenesis [105].

OIP5 Antisense RNA 1 (OIP5-AS1) was found to be highly expressed in GC, and this
upregulation is associated with shorter overall and disease-free survival rates of patients
with GC. OIP5-AS1 overexpression and silencing showed that OIP5-AS1 induced cell
proliferation and inhibited apoptosis in GC cells. Mechanistically, OIP5-AS1 was reported
to be a molecular sponge for miR-367-3p, which, in turn, regulated the gene HMGA2 (High
Mobility Group AT-Hook 2). Additionally, OIP5-AS1 was described to increase the p-AKT
and p-β-catenin levels, suggesting that OIP5-AS1 regulated the activation of AKT and
β-catenin pathways through HMGA2 [112].

3.4. Drug Resistance

Another extensively studied mechanism of tumorigenesis is the ability of cells to
resist treatment and become insensitive to anti-growth signals. One of the most studied
oncogenic lncRNAs in cancer biology, HOTAIR (HOX transcript antisense RNA), was
previously described as a ceRNA in GC [121–123].

More recently, HOTAIR was reported to be associated with Wnt/β-catenin signaling.
Cheng et al. found that HOTAIR was highly expressed in both GC patient samples,
GC cell lines and cisplatin-resistant GC cell lines, while miR-34a was lowly expressed.
Moreover, bioinformatics analysis followed by dual-luciferase reporter assays indicated
that miR-34a was a target of HOTAIR. In addition, HOTAIR was shown to work via
miR-34a to modulate cisplatin resistance and apoptosis by controlling the expression of
the multidrug-resistance proteins ABCB1 (ATP Binding Cassette Subfamily B Member
1), ABCC1 (ATP Binding Cassette Subfamily C Member 1), and ABCG2 (ATP Binding
Cassette Subfamily G Member 2), and apoptosis-related proteins cleaved caspase-3, Bax
(BCL2 Associated X, Apoptosis Regulator), Bcl-2 (B-cell lymphoma 2), and Survivin. More
interestingly, HOTAIR knockdown decreased the expression levels of Wnt1 and β-catenin
in cisplatin-resistant GC cells. As expected, miR-34a overexpression rescued Wnt1 and
β-catenin protein expression in HOTAIR silenced cells, confirming that HOTAIR regulates
the Wnt/β-catenin signaling pathways via miR-34a [90].

BCAR4 (Breast Cancer Anti-Estrogen Resistance 4 (Non-Protein Coding)) is upregu-
lated and associated with worse patient outcomes in GC. Interestingly, BCAR4 expression
was higher in diffuse GC tissue samples than in intestinal GC tissue samples, corroborating
its association with more aggressive characteristics. Overexpression of BCAR4 increased
cisplatin resistance, whereas silencing of BCAR4 increased sensitivity of cisplatin. Consis-
tently, in cisplatin-resistant GC cells, BCAR4 was upregulated when compared to GC cells.
Furthermore, in the context of tumor sphere formation experiments, BCAR4 increased
the expression of β-catenin and the tumor stem cell biomarkers Nanog, Oct3/4, Sox2,
c-myc, and Klf4. However, upregulation of these markers was abolished after β-catenin
downregulation, indicating that BCAR4 promotes drug resistance by controlling β-catenin
expression and its tumor stem cells’ related genes [95].

3.5. Angiogenesis

Another cancer hallmark, angiogenesis was also reported to be involved in GC tu-
morigenesis via Wnt/β-catenin. In order to discover differentially expressed lncRNAs,
Tang et al. found LINC01314 (Long Intergenic Non-Protein Coding RNA 1314) to be
reduced in GC. Further in silico pathway analysis and a dual-luciferase reporter assay
identified that KLK4 (Kallikrein Related Peptidase 4) was a direct target of LINC01314 and
it could regulate the Wnt/β-catenin signaling pathway. In vitro LINC0134 overexpression
downregulated KLK4, resulting in inhibited GC cell migration and invasion, and caused
decreases in Wnt-1, β-catenin, cyclin D1, and N-cadherin and an increase in E-cadherin.
Additional rescue experiments proved that KLK4 was essential for LINC01314 overex-
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pression changes in gene expression and phenotypes. In vitro and in vivo experiments
evidenced that angiogenesis was also reduced after LINC0134 upregulation, which was
corroborated by decreased expressions of VEGF-C (Vascular Endothelial Growth Factor C)
and VEGFR3 (Vascular Endothelial Growth Factor Receptor 3) [106].

4. Conclusions

The early diagnosis of gastric cancer is decisive to increase the chances of cure without
the need of mutilating surgery. By that, the study of new methods of early detection of GC
are essential to decrease mortality rates and increase life quality and overall survival rates.
In this work, we explore studies involving microRNAs and long-non-coding RNAs that
affect the progression of gastric cancer through the Wnt/β-catenin pathway.

The Wnt signaling is one of the most studied pathways in cancer cell physiology. In
fact, there are numerous ncRNAs involved in promoting gastric cancer via this pathway.

Aside from the aberrant expression of the molecules directly involved in this pathway,
here, we evidenced that many ncRNAs can also alter the expression of the Wnt signaling
proteins, as well as the β-catenin-regulated genes promoting gastric carcinogenesis.

We observed that pathological changes can occur in several stages that make up
the Wnt signaling pathway. In addition, they can include several classes of molecules,
which may involve proteins, genes, microRNAs, and long non-coding RNAs in expression
imbalance, both regulated for more and for less. In relation to drug resistance, it is neces-
sary to obtain a better understanding of the characteristics of some cell subpopulations
responsible for the maintenance of the tumor process and chemotherapy resistance, such
as the phenotype of gastric cancer stem cells (GCSCs). As well, it is important to establish a
characterization of this subpopulation aiming at improving the analysis for the next studies
involving stem cells.

Regarding the cell lines used in the studies, is important to explore the heterogeneity
of the tumorigenic process of gastric cancer in different populations, including cell lines that
represent them. Some studies established and cytogenetically characterized gastric cancer
cell lines from the population of northern Brazil [124–126]. Further studies are needed to
produce articles with greater accuracy in the study of ncRNAs. Anauate and collaborators
proposed miR-101-3p + miR-140-3p as the best choice for reference genes for RT-qPCR for
a more accurate comparison analysis of miRNAs in gastric cancer tissues [127].

As we presented in this review, there are plentiful ncRNAs capable of using the
Wnt/β-catenin signaling pathway to modulate cell proliferation, invasion, apoptosis,
migration, drug resistance, and metastatic spread of gastric cancer cells. This indicates that
the Wnt/β-catenin signaling pathway-related ncRNAs may be used not only as diagnostic
and prognostic biomarkers but also as novel targets for GC therapy, increasing treatment
efficacy and reducing side effects.
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