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Simple Summary: Innovative therapies matter only if they can reach and benefit patients. Of the
2 million new cases of cancer diagnosed in the U.S. last year, between 70% and 80% were estimated to
be non-responders to precision medicine. In these cases, treatment options are limited. Even among
the responders, their tumors will frequently develop drug resistance against targeted drugs. When
the progressive disease occurs following standard therapy, oncologists enter into an educational
guess cycle where therapeutic outcomes become unpredictable and patients’ benefits are unsecured.
Our mission here is to provide every patient with more genetics-tailored and effective treatment
options. Our transformative gene-to-drug technology works by testing tumor gene activities from a
patient’s own blood to guide therapies that are most likely to benefit the patient non-responders with
refractory or relapsed disease. We found this unprecedented technology can help match patients
with more FDA-approved drugs and significantly improve patient outcomes. This one-of-a-kind
innovation revolutionizes gene-to-drug mapping power and opens a new dimension of how cancer
drugs can be better matched to patients.

Abstract: As precision medicine such as targeted therapy and immunotherapy often have limited
accessibility, low response rate, and evolved resistance, it is urgent to develop simple, low-cost,
and quick-turnaround personalized diagnostic technologies for drug response prediction with high
sensitivity, speed, and accuracy. The major challenges of drug response prediction strategies em-
ploying digital database modeling are the scarcity of labeled clinical data, applicability only to
a few classes of drugs, and losing the resolution at the individual patient level. Although these
challenges have been partially addressed by large-scale cancer cell line datasets and more patient-
relevant cell-based systems, the integration of different data types and data translation from pre-
clinical to clinical utilities are still far-fetched. To overcome the current limitations of precision
medicine with a clinically proven drug response prediction assay, we have developed an innova-
tive and proprietary technology based on in vitro patient testing and in silico data analytics. First,
a patient-derived gene expression signature was established via the transcriptomic profiling of
cell-free mRNA (cfmRNA) from the patient’s blood. Second, a gene-to-drug data fusion and over-
laying mechanism to transfer data were performed. Finally, a semi-supervised method was used
for the database searching, matching, annotation, and ranking of drug efficacies from a pool of
~700 approved, investigational, or clinical trial drug candidates. A personalized drug response
report can be delivered to inform clinical decisions within a week. The PGA (patient-derived gene
expression-informed anticancer drug efficacy) test has significantly improved patient outcomes when
compared to the treatment plans without PGA support. The implementation of PGA, which com-
bines patient-unique cfmRNA fingerprints with drug mapping power, has the potential to identify
treatment options when patients are no longer responding to therapy and when standard-of-care
is exhausted.
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1. Introduction

The deciphering of human genome sequence has expedited the genetic data-driven
revolution toward precision medicine, which has delivered earlier diagnoses, more targeted
and personalized treatment, and the real-time monitoring of therapeutic efficacies. Preci-
sion medicine promises improved health outcomes by providing the right therapy to the
right patient, at the “first” time without delay [1]. The current standard of care is to utilize
actionable genomic data to tailor therapy for each individual cancer patient. However, the
reality of today’s precision medicine is that only 5-10% of cancer patients experience a clin-
ical benefit from treatments matched to tumor DNA mutations via biomarker testing [2—4].
Although there are many factors underlying this modest success rate, improved drug re-
sponse prediction will significantly benefit more patients, especially those non-responders
to targeted therapy or immunotherapy [4-6].

Mega pre-clinical databases, for example, Genomics of Drug Sensitivity in Cancer
(GDSC) [7,8] and Cancer Cell Line Encyclopedia (CCLE) [9] provide a full spectrum of the
genomic profiles of somatic mutation, copy number aberration, structural variant, transcrip-
tomic, and methylomic data, together with in vitro dose-response information to a large
number of targeted and chemotherapy drugs. More importantly, there are clinical datasets
which register the responses of real-life patients to monotherapy or combination therapy,
e.g., The Cancer Genome Atlas (TCGA) and ClinicalTrials.gov. Nevertheless, the pre-clinical
datasets enable drug response modeling, training, and prediction, in particular for many
drugs, from various types of pre-clinical systems to patients [8,9]. Working on pre-clinical
big data, current in silico analyses are usually aimed at building computational deep learn-
ing, deep neural network methods to predict drug response [10,11]. However, it remains
challenging to integrate and interpret the diverse and large number of high-dimensional
multiomic data points in a clinically relevant manner. Further, the complex cellular signal-
ing networks that regulate the anticancer drug response are largely overlooked in digital
computation and simulation, thereby losing the translatability to real-world patients [12,13].
A computational approach should be trained on relevant and standardized clinical data to
achieve translatability; unfortunately, the available clinical datasets such as TCGA do not
have sufficient patient records with drug response information.

Extensive studies have suggested that gene expression data are the most effective data
type for drug response prediction [11,14,15]. Although gene expression profiles provide a
machine learning model with deeper insight into the same sample and promise a better
characterization of biological processes, this approach has several limitations. First, it
will miss much-needed resolution at the individual patient level, which may limit its
ability to predict personalized drug response. Second, the non-real-time gene expression
patterns will misrepresent the dynamics of input genes and data. Third, sample-specific
gene expression data have not been deployed yet. The digital modeling was used to
show gene-relatedness in the context of cancer, but not for sample-specific prediction tasks
(e.g., drug response prediction). Therefore, it is not appropriate to use the most important
input gene sets for each sample.

In the clinical application of drug response prediction, our goal is to predict which
drugs will most likely benefit the patient based on the patient’s own gene expression
signature. Since clinical gene-drug datasets are largely unavailable, many modeling studies
have focused on large pre-clinical pharmacogenomics datasets such as cancer cell lines
as a surrogate to patients. A majority of the digital computation approaches are trained
on cell line datasets and then tested on patient datasets [16,17]. However, cell lines even
with the same genetic alterations often do not recapitulate a patient’s drug response due to
the lack of an immune system and a tumor microenvironment (TME) [18]. Moreover, in
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cell lines, the drug response is often measured by the IC50 or AUC (Area Under Curve),
whereas in patients, it is often based on changes in the size of the tumor and measured
by metrics such as response evaluation criteria in solid tumors (RECIST) [19]. Therefore,
drug response prediction is a regression problem in cell lines but a classification problem
in patients. Discrepancies in both the input and output pharmacogenomics datasets must
be re-aligned and resolved, with an urgent need for a translational technology to bridge
this gap.

In this study, we developed an innovative liquid biopsy cell-free mRNA (cfmRNA)
based technology, called patient-derived gene expression-informed anticancer drug efficacy
(PGA), for predicting cancer drug responses. It applied ¢fmRNA profiling to measure
gene expression and established a cancer type-specific, patient-unique gene expression
signature. The signature was then used to digitally query, search, match, categorize,
and rank drug efficacies from a library of more than 700 anticancer drugs to identify the
most effective drugs for the patient. Importantly, PGA was further prospectively and
clinically tested on gene expression data from a real-life group of patients with refractory
or relapsed non-small cell lung cancer (NSCLC) to identify potentially effective drugs. Our
results demonstrated that the first-ever PGA platform, combining in vitro patient testing
with in silico data computation, enabled us to analyze each patient’s cfmRNA data in
real-time to better match them with tailored treatments and drug combinations. These
findings underscored the clinical utility of PGA and contributed to the advancement of drug
response prediction.

2. Materials and Methods
2.1. Sample Processing and RNA Isolation

All the paired tissue and blood samples were purchased from iSpecimen (Lexington,
MA, USA), Discovery Life Sciences (Huntsville, AL, USA), or Precision for Medicine
(Carlsbad, CA, USA). Ten milliliters of EDTA whole blood from each patient was collected
and spun at 1100x g for 10 min within one hour of collection to separate plasma. The
plasma samples were double spun at 16,000x g for 10 min and aliquoted to cryogenic
vials, and stored at —80 °C until analyzed. Archival formalin-fixed, paraffin-embedded
(FFPE) tissue samples were used to extract tumor RNA. All the tumor tissue samples were
pathologically examined to have >50% tumor nuclei and the median tumor content was
77.5%. All the plasma samples for cell-free mRNA (cfmRNA) extraction were subjected to
one freeze-thaw cycle. In total, 400 pL of double-spun plasma was used to extract cfmRNA
using the MagMAX™ Viral/Pathogen Nucleic Acid Isolation Kit. For the FFPE tumor
and adjacent normal tissues, RNA was extracted from 5 consecutive 10 um thick sections
by MagMAX™ FFPE DNA /RNA Ultra Kit (Applied Biosystems, Foster City, CA, USA).
Both plasma and tissue RNA extractions were performed on the KingFisher™ Duo Prime
Purification System (Thermo Fisher Scientific, Waltham, MA, USA). The isolated RNA was
quantified using the Qubit RNA HS Assay Kit and Qubit 2.0 Fluorometer (Life Technologies,
Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions.
For quality control, the size distribution of the extracted RNA fragments was assessed using
the RNA 6000 Pico kit on a 2100 Bioanalyzer Lab-on-a-Chip platform (Agilent Technologies,
Santa Clara, CA, USA), and expressed as the percentage of fragments greater than 200 base
pairs (DV200).

2.2. Reverse Transcriptase Quantitative PCR (RT-gPCR)

Double-stranded cDNA was synthesized from 1 ug of total RNA using NEBNext
RNA First Strand Synthesis Module and NEBNext Ultra™ II Non-Directional RNA Sec-
ond Strand Synthesis Module (New England Biolabs, Ipswich, MA, USA) according to
the manufacturer’s instruction. For targeted plasma transcriptomic profiling, 9 TagMan
Gene Expression Arrays (Applied Biosystems, Foster City, CA, USA) covering 9 major
signaling pathways of about 750 cancer-associated genes were employed. They were
TagMan array immune response #4414073, cell surface markers #4418754, DNA repair
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mechanism #4418773, DNA methylation #4414127, transcription factors #4418784, p53
signaling #4414168, MAPK pathways #4414093, Molecular Mechanisms of Cancer #4418806,
and tumor metastasis #4418743. Real-time qRT-PCR amplification and detection were per-
formed with TagMan Gene Expression Assay reagents in a QuantStudio 12K Flex System
(Applied Biosystems, Foster City, CA, USA) using standard settings and cycling parameters.
The 20 pL reactions were carried out containing 10 pL. TagMan Fast Advanced Master Mix
and 10 ng of a cDNA template per well in a 96-well format.

The expression level of each individual gene in all the specimens was normalized
to a reference RNA pool (made by pooling equal amounts of total RNA from each of the
tumor-free specimens) used as a calibrator. In every qPCR run, ribosomal 185 RNA was
included as the internal control. The relative changes in gene expression were determined
by the AACt method using the Sequence Detection System (SDS) 2.1 software (Applied
Biosystems, Foster City, CA, USA). The AACt approach quantifies the expression of the tar-
get gene normalized to an endogenous reference and relative to a calibrator, allowing direct
comparison with the RNA-Seq data which the outputs are relative counts of transcripts.

2.3. FFPE Tissue RNA Sequencing

The sequencing library construction was performed using cDNA fragments of
250-300 bp in length. The pooled libraries were sequenced on an Illumina HiSeq plat-
form (Illumina, San Diego, CA, USA) with 125 bp/150 bp paired-end reads generated.
Raw sequencing data were smoothened by Cutadapt 4.0 to filter out the reads that were
of low quality, low-read, and those containing adapters and sequencing artifacts. The
clean reads were then aligned to the reference genome and counted the number of reads
mapped to each gene using TopHat v2.0.12 and HTSeq v0.6.1, respectively. To correct for
larger transcripts having higher read counts, all the sequencing data were normalized and
expressed as Transcripts Per Million (TPM) or Reads/Fragments Per Kilo-base per Million
mapped reads (RPKM/FPKM), which was calculated to determine relative gene expression
levels [20]. Differential expression was digitally analyzed by the DESeq R package v1.18.0.
Top high-confidence differentially expressed genes were identified by comparing the ex-
pression levels of all the transcripts in the TUMOR groups with those in the NORMAL
group using the cutoff of |log2 (fold change)| > 1 and an adjusted p-value < 0.05.

2.4. Single-Cell Gene Expression Profiling by RNA-Seq

The tumor tissues were digested with a human tumor dissociation kit (Miltenyi
Biotec, Gaithersburg, MD, USA) following the manufacturer’s protocol. If more than 5%
of the dead cells in cell suspensions were indicated by trypan blue staining, the dead
cells were filtered out using a dead cell removal kit (Miltenyi Biotec, Gaithersburg, MD,
USA). Single-cell suspension was immediately used for RNA sequencing or frozen in the
cryopreservation solution (90% fetal bovine serum and 10% dimethyl sulfoxide) at —80 °C
with cell concentration within 100-2000/ uL.

The capturing and barcoding of single cells were conducted using the 10X Chromium
platform (10X Genomics, Pleasanton, CA, USA). RNA-seq libraries were constructed follow-
ing the instructions from the Chromium Single Cell 3" Reagent v3 Kits. Each lane of a 10X
chip was loaded with approximately 5000 cells. The cells were partitioned into single-cell
gel beads in emulsions (GEMs) inside the Chromium instrument, where full-length cDNA
synthesis occurred. Following reverse transcription and cleanup, the cDNA from barcoded
single-cell RNAs were amplified, and the 3’ gene expression libraries were constructed.
The ¢cDNA pool corresponding to an insertion size of ~350—-400bp was then enriched.
Sequencing libraries were quantified using Agilent Bioanalyzer High Sensitivity DNA
chips (Agilent Technologies, Santa Clara, CA, USA) and pooled together to obtain similar
numbers of reads from each single cell before sequencing on the NovaSeq 6000 S4 (Illumina,
San Diego, CA, USA).
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2.5. Single-Cell Spatial Transcriptomics Analysis

Single-cell RNA-Seq reads were mapped to the human reference genome (GRCh38)
using Cell Ranger v1.1.0 pipeline with default settings. The resulting gene—cell matrices
were subsequently imported into the Seurat (v3.1.5) R toolkit for further quality control
and downstream analysis [21,22]. To search for clinically relevant genes co-localized and
coexpressed with the selected PGA Lung biomarkers for drug efficacy prediction, we
identified cell clusters using Seurat graph-based clustering methods at increasing resolu-
tions to identify major cell types within a single-cell RNA-Seq dataset. We used marker
genes—EGFR, KRAS, BRAF, MET, HER2, ALK, ROS1, and RET—to identify lung tumor
cells; CD8, CD25, CD69, PD-1, CTLA-4 and B cell markers for immune cell population;
K167 and PCNA for highly proliferative cells; and SOX2, OCT4, KLF4, and MYC for cancer
stem cells. Mesenchymal, stromal, vascular endothelial, and other cell-of-interest clusters
can be further annotated based on canonical markers for further dimensionality reduction
using the FindClusters function in the Seurat package. Cell clusters were identified at a
resolution of 0.3 and annotated based on prior knowledge. We recognized a cluster with a
minimum of 5% of the cells from the total cell population. If the marker genes are not our
primary interest, we would leave the original clusters unchanged.

2.6. Correlation between Gene Expression and Drug Efficacy

A method of gene pathway/network generalization for drug response prediction
is needed to take both pre-clinical and clinical samples during deployment. Therefore,
we selected datasets and developed gene-drug correlation based on cancer cell lines,
archived tumors, single-cell transcriptomics, and real-world patients. We employed the
following resources for gene pathway generalization: Cancer Cell Line Encyclopedia
(CCLE), The Genomics of Drug Sensitivity in Cancer (GDSCv1/2), The Cancer Therapeutics
Response Portal (CTRPv2), EMBL-EBI Single Cell Expression Atlas, cBioPortal for Cancer
Genomics, CREAMMIST database, Cancer Treatment Response Gene Signature database
(CTR-DB), and The Cancer Genomic Atlas (TCGA). All the datasets were downloaded
from the ORCESTRA platform [23]. We focused on bridging cell line datasets to patient
tumors because they are the missing link for translation from the pre-clinical to the clinical
stage [24].

Correlation at the gene level: We applied two computational analytics to qualify
the correlation between cell lines and the corresponding TCGA cohorts: (i) Spearman’s
correlation coefficient (p) between every cancer cell line and its corresponding TCGA cohort
was determined at the gene level. First, the TPM values of each transcript in a TCGA cohort
were averaged per cohort. Then, for each TCGA cohort, Spearman’s p was calculated
between the averaged TPM values and those of the disease-matched cell lines across
20,053 protein-coding genes. (ii) The recapitulation of the TCGA cohort overexpressed gene
profiles in cell lines was aligned and measured by gene set enrichment analysis (GSEA).
We reasoned that the pattern of overactive genes that have an upregulated expression in a
TCGA cohort can be considered as the cohort signature, and these overexpression profiles
should be reflected by cell line models. For each cell line, we calculated with log2 the
transformation of the fold change in every gene expression relative to the disease baseline
expression. In the end, the GSEA of the TCGA cohort overexpressed gene profiles was used
for an association analysis against the data from the gene log2 fold changes in cell lines.
The final correlation outputs were reported as the normalized enrichment score (NES), with
a positive value indicating a high correlation between a cell line and a disease-matched
TCGA cohort.

Correlation at the pathway level: The activity of a total of 14 cancer-related pathways
was interrogated using PROGENYy, a pathway-response signature-based approach that
is capable of deep data mining to obtain cancer-related pathway responsive genes [25],
together with the CytoSig program which analyzes 43 cytokines gene expression pro-
files [26]. Both results were presented as z-scores to indicate the relative activities, with a
p-value < 0.05 considered as significant.
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In the gene-to-drug mapping, the latent representations of the patient’s tumor gene
expression profile must then be aligned with each drug’s latent representation through cell
line data links. Low-rank multimodal fusion (LMF) was employed as the fusion method,
and the output from this fusion was then passed to the final module which predicted the
drug efficacy. LMF is a technique for combining multiple modalities in a neural network
such that the latent representations of different features are forced to “interact” with each
other [27]. LMF has shown higher performance than other fusion methods. It is especially
important for modeling biology since it is known that various biomolecules in the cell
interact with each other and thus must also be allowed to interact when modeling biology
in silico.

2.7. Statistical Analysis

Data on patient outcomes were collected and analyzed from the date of treatment
with or without PGA guidance to the time of the death or the date on which data were
censored. All the statistical analyses were performed using the SPSS software v20.0 (SPSS
Inc., Chicago, IL, USA). Progression-free survival (PFS) and overall survival (OS) were
plotted with the Kaplan-Meier estimator and analyzed with the bilateral log-rank test. The
combined effects of key variables in both PFS and OS were determined in multivariate
analysis using Cox proportional hazards regression models. p < 0.05 was considered a
statistically significant difference.

3. Results
3.1. Cancer Type-Specific and Patient-Derived Gene Expression Profiles

Although RNA-Seq and microarrays were standard methods benchmarked for differ-
ential gene expression and prediction model development, the challenge of quantifying
low-abundance, short half-life cfmRNA species is compounded by the time-consuming
and labor-intensive workflows. The requirement of high-quality and sufficient quantity of
cfmRNA also imposes a technical barrier on top of the interference from abundant globin
mRNA and ribosomal RNA (rRNA). Although globin and rRNA removal strategies have
mitigated some of these issues, they require a large amount of total cfRNA input and thus
are not practical in clinical settings. To overcome these limitations, we applied multiplex
RT-qPCR-based targeted transcriptomic profiling, followed by the quantitative analysis of
cfmRNA abundance by AACt, the difference in Ct values between reference gene (18S) and
target gene, and normalized to the control samples.

Circulating cfmRNA was isolated from the pooled plasma samples of patient cohorts
with lung, pancreatic, or breast cancer. The targeted transcriptomic profiling of ~750 well-
established cancer-associated genes was performed. These genes were selected by their
key roles in major cancer signaling pathways: immune response (IR), cell surface markers
(CSMs), transcription factors (TFs), DNA repair (DR), DNA methylation (DM), oncogenesis
(ONC), tumor metastasis (TM), TP53 signaling (TS), MAP kinases (MKs). The distribution
of detected cfmRNA species from the lung cancer cohort was demonstrated in Figure 1A.
We identified that the same percentage of genes belonged to cell surface markers and the
TP53 signaling pathway (21%), 17% of the detected transcripts were members of the MAP
kinase family, 13% were involved in DNA repair, 8% correlated with oncogenesis, 7%
associated with tumor metastasis, 6% involved in immune response, 5% are transcription
factors, and 2% related to DNA methylation.
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Figure 1. Plasma cfmRNA profiling by cancer type, functional cluster, and expression level.
(A) The pie chart displayed the distribution of the various functional classes of cfmRNA in lung cancer;
(B) representative gene expression heatmaps showing high-, medium-, and low-expressing transcripts
involved in different pathways from different cancer types.

Figure 1B illustrates a global cfmRNA expression and functional landscape in lung,
breast, and pancreatic cancers. The circulating cell-free transcriptome composition of TP53
signaling and MAP kinases was particularly dominant in these three cancer types. For
the quantification of cfmRNA expression levels, we categorized transcripts into 4 classes
based on ACt values—high, medium, low, and not detected. Those genes with ACt values
between 0 and 15 were classified as “high expression” (blue); ACt values between 15 and 20
were interpreted as “medium expression” (green); and ACt values of 20-30 were considered
as “low expression” (red) after normalization with the control samples. The genes with ACt
values > 30 were considered “not detected” and not color-coded. From the representative
cfmRNA expression heatmaps, one can easily identify the differentially expressed genes
of specific functional clusters in particular cancer type. For example, ERCC2, MDM2,
POLR2B, and PSMB10 genes involved in the DNA repair pathway are highly expressed in
pancreatic cancer; whereas FANCG is a breast cancer-specific gene; and POLH and RPA2
are strongly expressed in lung cancer. Among those cell surface markers, C5AR1, CD24,
CD28, and SELP genes are highly expressed in pancreatic cancer; whereas CD7, CD8A, and
FAS overexpression are breast cancer-specific; and CD79 and MS4A1 are strongly expressed
as lung cancer-specific genes.

Here, we have established first-ever, highly distinct cfmRNA expression profiles,
and functional clusters specific for lung, breast, and pancreatic cancers. As shown in
the heatmaps, pancreatic cancer was characterized by the highest heterogeneity of gene
expression as a wide spectrum of genes were activated by its transcriptional machinery. In
contrast, lung cancer has relatively low ¢fmRNA heterogeneity and fewer specific genes
identified in the circulating cfmRNA transcriptome. Multiple deregulated pathways are
responsible for transducing mechanical and growth stimuli into the continuous activation of
specific gene expression (i.e., always ON and never turn OFF) during cancer development
and association with drug susceptibility. In this groundbreaking work, we have established
an unprecedented functional cfmRNA database which will guide (i) the illustration of a
comprehensive landscape of cfmRNA in circulation, (ii) the classification of cfmRNA species
by their functions, (iii) the identification of differentially expressed ¢fmRNA in a particular
cancer type, and (iv) the establishment of specific cfmRNA expression signatures for
different cancer types. The cfmRNA expression profiles identified in this study represented
the functional genomic fingerprints in circulation for specific cancer types, thus offering
the exciting opportunity of personalized drug efficacy prediction.
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3.2. Selection and Validation of PGA Lung cfmRNA Biomarkers

Genomic features are frequently regarded as the state-of-the-art markers for drug re-
sponse prediction. Numerous studies, on the other hand, have shown that the measurement
of gene expression is a potent and still under-utilized method for identifying cell vulnerabil-
ities, with superior performance over genomic features in genetic and compound response
prediction [28-30]. The advantage of expression-based profiles over DNA-based alterations
held consistently across multiple experimental platforms, models, and databases [31].

Most importantly, contrary to the common perception in the literature, the most
accurate expression-based models depended on only a few features, suggesting that a
full RNA-Seq profile of tumors is not necessary to gain powerful prediction for preci-
sion therapy [31] Since many cell vulnerabilities can be identified with just one or two
expression features, cost- and time-efficient technologies such as RT-qPCR with identi-
fied biomarkers could offer unmatched benefits. Specifically, genes exhibiting bimodal
expression and covering important cancer-associated pathways can be used to robustly
predict drug response across datasets [32]. These bimodal predictive biomarkers have a
high potential for clinical translatability given the clear separation they would provide
between patient responder and non-responder cohorts, and the practicality of measur-
ing a few genes for treatment planning using various targeted assays instead of whole-
transcriptome sequencing.

Consistently, another line of evidence, essentially by guided trial and error, has demon-
strated that it is possible to “reprogram” cell type by manipulating only a handful of
genes [33]. It has been delicately proven that the forced expression of only four genes SOX2,
OCT4, KLF4, and MYC was able to turn adult cells back into pluripotent or embryonic-like
stem cells [34]. Overall, it was estimated that 10-200 meta-analytic genes are required to
provide optimal downstream performance and make available replicable marker lists for
the 85 BICCN cell types [33]. Even modern precision medicine supports this notion that
a single hotspot mutation in a single gene, e.g., EGFR, KRAS, BRAF, ABL1, and JAK2, is
sufficient to predict effective targeted therapy.

We thus set up to select dozens of lung cancer-specific cfmRNA biomarkers based
on four criteria: (i) tumor-specific, highly expressed, and readily detectable biomarkers;
(ii) biomarkers involved in nine major cancer functional clusters, directly affecting more
than 10,000 genes; (iii) biomarkers that were retrospectively verified in tumor tissues as
overactive; and (iv) biomarkers associated with drug efficacy, e.g., cell death, proliferation,
survival, hypoxia, and microsatellite instability (MSI). The selected biomarkers were next
interrogated through the TCGA database to assess their expression in patient tumors. As
expected, these PGA Lung biomarkers were found to be overexpressed in 60-70% of the
1145 lung cancer patient tumors (Figure 2A). Further, the overexpression of these selected
biomarkers significantly correlated with hypoxia (p = 0.0177, Figure 2B) and MSI scores
(p = 0.0143, Figure 2C) in the TCGA PanCancer Database of 510 LUAD samples.

In parallel, the transcriptome-wide characterization of lung tumor tissues was con-
ducted using RNA-Seq technology. Of 17,780 detected and annotated transcripts,
5185 (29%) displayed at least 1.2-fold higher expression over noncancer samples. Within
those high-confidence, top-performance overactive genes, we have identified lung cancer-
specific transcripts that are recurrently detected in both plasma and tissue. These selected
PGA Lung biomarkers met our set criteria: (i) they were undetectable in noncancer or
other cancer plasma, (ii) they were overexpressed in the cancer group compared to the
noncancer group, and (iii) they were detected in more than one cancer sample in the lung
cancer cohort. Our results demonstrated a strong correlation between the cfmRNA levels
in plasma and mRNA expression in tissue, suggesting that these biomarkers with relatively
high expression in tumor tissue could enhance cancer detection by the non-invasive liquid
biopsy technology (Figure 3). Overall, our data validated the clinical relevance of the
selected PGA Lung biomarkers for informed drug efficacy.
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Figure 2. Validation of the selected PGA Lung biomarkers for drug efficacy prediction. (A) The
overexpression of PGA Lung biomarkers in most lung tumor tissues from the TCGA database
(1145 samples). Significant association of PGA Lung biomarkers with hypoxia (B) and MSI scores
(C) in the TCGA PanCancer database (510 LUAD samples).

Relative cfmRNA expression by RT-gPCR
(Delta Ct value)

Relative tissue mRNA expression by whole transcriptomic
sequencing (fold expression)

Figure 3. Strong correlation of the PGA Lung biomarker expression levels between the plasma
and tissue samples. The relative cfmRNA levels were expressed as delta Ct values, whereas the
tissue mRNA expression was normalized as fold expression. The data showed a positive correlation
between the cfmRNA and tissue mRNA expression (i.e., an inverse relationship between delta Ct and
fold expression).
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3.3. Single-Cell Spatial Transcriptomics Analyses

Unraveling quantitative information on gene expression changes in situ can provide
valuable insights into genetic interaction, sub-population classification, cell lineage evo-
lution, and the tumor microenvironment. Spatial transcriptomics, an emerging technique
that utilizes spatially barcoded, complementary DNA probes for full-transcriptome capture
on tissue sections can be added to RNA-seq data to transform our understanding of tissue
functional organization and extracellular and intracellular interactions in situ. The analysis
of single-cell RNA expression in their spatial context provides critical insight into tumors,
immune cells, and their microenvironment. This also helps to decipher the subcellular
co-localization and coexpression of target RNA biomarkers, leading to an unprecedented
resolution for drug efficacy prediction.

To characterize the phenotypic and functional interaction of tumor cells and their
microenvironment in lung cancer, we first performed single-cell RNA-Seq with spatial tran-
scriptomics followed by graph-based clustering analyses to distinguish EGFR-expressing
tumor cells in three lung carcinomas in a total of 32,341 cells (Figure 4). Distinct from
other tumor clusters, EGFR-expressing tumor cells only made up a fraction (less than 30%)
of the entire tumor population. Interestingly, EGFR+ staining was highly overlapping
with MET, HER?2, and ROS1 expression, whereas very few ALK- and RET-expressing cells
were detected, and distinct from the EGFR+ cells. The high expression level of KRAS was
detected in over 50% of the tumor population, and its distribution was more consistent with
BRAF expression. The single-cell spatial analyses have distinguished diverse cell types in
lung cancer: EGFR-/MET-/HER2-/ROS1-expressing, KRAS-/BRAF-positive, and ALK+
or RET+ cells. Our novel observations here were somehow surprising in terms of the high
and complex heterogeneity at the single-cell level, and will provide potential guidance on
target-tailored therapy strategy in lung cancer.

EGFR MET HER2
ALK ROS1 RET BRAF
e

Figure 4. Single-cell RNA-Seq spatial transcriptomic analysis in lung carcinoma tissues (32,341 cells).
The visualization of tumor cells expressing the key lung cancer driver genes EGFR, KRAS, BRAF,
MET, HER2, ALK, ROS1, or RET. The expression patterns of EGFR, MET, HER2, and ROS1 were
highly overlapped, and these EGFR-/MET-/HER2-/ROS1-coexpressing cells only constituted a small
fraction of the entire tumor population. By contrast, the expression profiles of KRAS and BRAF were
similar and distributed across the entire section.
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Next, we took a closer look at the expression distribution of the selected PGA Lung
biomarkers to infer their roles in regulating drug responses. Most of the selected PGA
Lung biomarkers were similar in expression patterns, resembled KRAS/BRAF, and they
may constitute a relatively homogeneous population (Figure 5A). We also discovered
a concurrent expression of PCNA in this population, indicative of highly proliferative
activities. PCNA is well documented as an important prognostic predictor of cancer. Its
expression has been found to be significantly elevated in various malignant tumors. PCNA
expression thus can reflect cell dynamics and represent the proliferative potentials of cells,
and can be used as a marker for chemotherapy efficacy [35].

Representative PGA Lung Biomarkers
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Figure 5. Single-cell RNA-Seq spatial transcriptomic analysis of PGA Lung biomarkers in (A) lung
carcinoma tissues (32,341 cells) and (B) dissociated tumor cells from the pleural effusion of lung
adenocarcinoma patients (7511 cells). The visualization of tumor cells expressing the representative
PGA Lung biomarkers 1-8. The expression patterns of these PGA Lung genes were highly similar
and distributed across the entire section, resembling those of KRAS and BRAF. Most significantly,
the population of tumor cells expressing PGA Lung biomarkers was found to be PCNA-positive,
indicative of high proliferation potential.
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The immune cells that existed in other clusters were also examined by the following
markers: CD4, CDS8, CD25, CD69, CD19, CD20, PD-1, and CTLA-4. However, these
immune cells were not in close proximity to EGFR-/MET-/HER2-/ROS1-expressing cells
suggesting that they might not be the infiltrated immune cells (Supplementary Data;
Figure S1). It will be of great interest to assess markers closely related to the pro-invasive
or immunosuppressive tumor microenvironment to predict immunotherapy response.

To confirm what we have observed in lung carcinoma tissues, we set out to conduct
the single-cell spatial transcriptomics of tumor cells obtained from the pleural effusion
of lung adenocarcinoma patients with a total of 7511 cells (Figure 5B). As expected and
consistent with the tumor tissue results, dissociated tumor cells in the pleural effusion
showed similar expression distribution among the selected PGA Lung biomarkers, and
most also coexpressed PCNA. Together, we have demonstrated the coexpression of the
selected PGA Lung biomarkers with PCNA in two different sample types from different
lung cancer patients.

3.4. From Patient’s Gene Expression Signature to Drug Efficacy Prediction

Cancer cell lines with pharmacological, genomic, and transcriptomic characteristics
are the most important resource available today for drug response studies. These datasets
can be pooled, analyzed, and trained from the Cancer Cell Line Encyclopedia (CCLE),
The Genomics of Drug Sensitivity in Cancer (GDSCv1/2), and The Cancer Therapeutics
Response Portal (CTRPv2). A total of 232 lung cancer cell lines were digitally mapped
and analyzed for their correlation with the corresponding TCGA lung cancer cohorts (a
total of 1089 patient tumors). Since most of the patient tumors also harbor immune and
other normal cells, the TCGA samples with a tumor content lower than 70% were excluded
from the analysis. The correlation between the cell lines and the corresponding TCGA
cohort was determined using Spearman’s correlation coefficient (p) and the normalized
enrichment score (NES). A positive value indicated high consistency between a cell line
and a disease-matched TCGA cohort. Overall, we found strong genetic similarity between
lung cancer cell lines and lung cancer patient tumors (Figure 6). These cell lines faithfully
recapitulate gene expression profiles and major cancer pathway activities in tumors, many
of these associated with drug sensitivity /resistance.

Lung Adenocarcinoma (LUAD), N=585 Lung Squamous Cell Carcinoma (LUSC), N=504
vs. 232 Lung Cancer cell lines vs. 232 Lung Cancer cell lines
Ta @NCI-H3255 O.B-.% SHCC2814
0.75 -% r%
0.75
0.7 4
0.7
0.65
T T NES] 0.65 . . . NESI
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Figure 6. Strong functional genomics similarity between the TCGA lung tumors and lung cancer
cell lines. The Spearman correlation and normalized enrichment score (NES) were derived from the
expression patterns of overactive genes and the activities of the cancer-related pathways.
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We next took advantage of the high-degree representation of tumor functional activi-
ties in cancer cell lines for the pharmacogenomic prediction of drug sensitivity. Publicly
available gene expression datasets for a large cohort of cell lines (CCLE), single cells (EMBL),
and primary tumors (TCGA) were retrospectively pooled and merged to identify clinically
relevant features called cancer consensus modules (CCMs). Prospectively collected cancer
type-specific, patient-derived gene expression signatures were then used to align, filter,
homogenize, and map with CCM. The resultant datasets were applied to predict in vivo
drug efficacies (Figure 7). We have identified significant gene-drug interactions for the
majority of 700+ anticancer drugs (approved, investigational, or clinical trial) via PGA. A
pathway-centric approach highlighted the power of drug efficacy prediction by those PGA
Lung biomarkers involved in cancer pathways. For example, MEK and PARP inhibitors
have been identified by the PGA test to be effective for a number of refractory or recurrent
lung cancer patients. Together, we have discovered and established a translational linkage
demonstrating that lung cancer patient-derived gene expression signatures can be mapped
onto molecularly annotated human cancer cell lines and correlated with sensitivity to more
than 700 anticancer drugs. Our data fusion and mapping analytics ensured accurate transla-
tion from functional genotypes to cellular phenotypes and identified effective therapeutics
to benefit lung cancer patients.

RNA-Seq Gene TCGA Tumor & Patient-Derived Gene
Expression Data EMBL Single Cell Expression Slgr_@ture
(1,900 Cell Lines) Expression Atlas (Tumor-Specific

Hyperactive Genes)

v

Homogenized Expression Data
TCGA _
Cell Tumors; Patient-
Lines Single Cell Derived :
RNA-Seq
Data fusion & ¢ Data quant. &
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i Data interpretation
transformation Drug IC50/Z Scores interpretati
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Figure 7. Overview of in silico data fusion, annotation, mapping, and analyses in the PGA Lung test.
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3.5. Clinical Utility and Validity of the PGA Lung Test

As a proof of principle, we further evaluated PGA clinical validity on a small cohort of
30 patients with recurrent or progressive lung cancer. To ensure the cross-group comparison
of the trial, we divided patients into two groups, each with the indicated numbers of age-,
gender- and stage-matched subjects. In the placebo group of 12 patients, clinicians treated
these patients according to current medical guidelines without the PGA test, while in the
experimental group of 18 patients, patients went through the PGA test and clinicians treated
these patients with PGA’s drug efficacy information. Tumor response following treatment
was evaluated by a standard-of-care computed tomography scan based on the response
evaluation criteria in solid tumors (RECIST). The Kaplan—-Meier method and a log-rank
test were used to analyze the univariate discrimination of progression-free survival (PFS)
and overall survival (OS) with demographic, baseline clinical information and toxicity data.
The Kaplan—Meier curve is a non-parametric statistic used to estimate the survival function
from lifetime data. In medical research, it is often used to measure the fraction of patients
living for a certain amount of time after treatment. In clinical trials or community trials, a
plot of the Kaplan—-Meier estimator is a series of declining horizontal steps which, with a
large enough sample size, approaches the true survival function for that population. The
log-rank test is used to test whether the difference between survival times between two
groups is statistically different or not. It is widely used in clinical trials to establish the
efficacy of a new treatment in comparison with a control treatment when the measurement
is the time to event.

In our pilot trial, the Kaplan-Meier survival analysis revealed significantly longer PFS
and OS among the PGA-guided patients compared with the patients without PGA support
(PFS: hazard ratio, 4.0; 95% CI, 1.4-11.3; p = 0.021; OS: hazard ratio, 3.8; 95% CI, 1.2-12.4;
p = 0.052) (Figure 8). Thus, the real-world data here demonstrated PGA'’s clinical utility and
validity with a significant effect on long-term survival in our cohort of lung cancer patients.

PFS of NSCLC patients treated with or OS of NSCLC patients treated with or
without PGA guidance without PGA guidance
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Figure 8. Kaplan—-Meier analysis of progression-free survival (PFS) and overall survival (OS) for the
treatment of real-world lung cancer patients with or without the support from the PGA Lung test.
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4. Discussion

The hallmark of precision medicine is the ability to obtain early genetic evidence of
whether the medicine is working and use that to inform clinical decisions. Unfortunately,
all too often, the actual benefits of precision therapy to patients are short-lived because
tumors are heterogeneous and drug resistance emerges quickly. The harsh reality is that
only 20-30% of cancer patients are eligible, and in the qualified population, about one-
fourth actually respond to targeted treatment. As a result, a small fraction of cancer
patients (5-10%) experience a clinical benefit from treatments matched to tumor DNA
mutations (via biomarker testing). Finding reliable and interpretable biomarkers that
can predict non-responder patients” response to anticancer drugs thus remains a huge
unmet clinical need. In this study, we have invented and employed cutting-edge functional
genomics to translate a patient’s genetic profile into a drug response to benefit more
patients. The PGA classifier was designed to categorize patient’s cfmRNA expression data
into “responder” or “not responder”—in reality, PGA does not provide a binary answer
but instead generates drug efficacy prediction (or drug response prediction) to more than
700 anticancer drugs.

Gene expression profiling is an innovative functional genomics for identifying tumor
vulnerabilities, with superior performance over genomic features in both genetic and drug
response prediction. Studies have shown the advantage of expression-based features over
DNA-based alterations held consistently across multiple experimental platforms using dif-
ferent perturbation technologies. It has been suggested that the expression of gene panels,
such as pathway clusters or transcription factor classes, are more robust and reliable predic-
tors than the expression of individual genes [36,37]. Moreover, it was able to “reprogram”
cell type by manipulating only a handful of genes, and it was estimated that 10-200 genes are
sufficient to robustly determine a cell’s type. Based on these findings, we have conducted
plasma cfmRNA profiling to identify cancer type-specific, patient-unique gene expression
signatures for drug efficacy prediction. We have selected dozens of tumor-overexpressed
biomarkers involved in nine cancer pathways, i.e., immune response, cell surface markers,
DNA repair, DNA methylation, oncogenesis, tumor metastasis, transcription factors, TP53
signaling, and MAPK pathways, to be broadly representative and ensured the capture
of tumor and non-tumor signals. These selected PGA Lung biomarkers are capable of
directly affecting more than 10,000 genes, and their over-activation has been retrospectively
verified in tumor tissues and TCGA cohorts. Most significantly, these biomarkers were
implicated in drug response, e.g., cell growth, survival, death, hypoxia, and microsatellite
instability (MSI).

We further profiled the cell subtypes expressing PGA Lung biomarkers and their
spatial distribution in lung tumor tissues as well as dissociated tumor cells from the pleural
effusion by single-cell RNA-Seq and spatial transcriptome. As a result, we created an atlas
of PGA Lung biomarker-expressing cells in lung cancer. We defined these cell clusters
using representative PGA Lung biomarkers, key lung cancer driver genes, and immune cell
markers, and identified their spatial distribution. We found that the EGFR-/MET-/HER2-/
ROS1-expressing tumor cells constituted only a small fraction of the tumor population,
while the KRAS-/BRAF-positive cell clusters were distributed over the entire tumor sec-
tion. Most cells expressing PGA Lung biomarkers were also KRAS+/BRAF+, suggesting
this relatively homogeneous population could be a more effective target for therapeutic
intervention than the EGFR-/MET-/HER2-/ROS1-positive cells. Interestingly, immune T-
and B-cells were found to be in distinct cell clusters and distant from the EGFR-/MET-/
HER2-/ROS1-expressing tumor cells. The PGA Lung biomarker-expressing cells were
also enriched with PCNA, indicative of high proliferation potential. The spatial patterns
were reproducible in tumor cells from the pleural effusion. Therefore, our data identified,
for the first time, the PGA Lung-/KRAS-/PCNA-coexpressing cells as the dominant and
representative subtype in lung tumors which will serve as an important cell atlas in il-
lustrating the complex transcriptomics and potential therapeutic targets for lung cancer.
Moreover, treatment strategies targeting EGFR/MET/HER2/ROS1 may not be sufficient.
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Tumor cell subtypes, immune cell proximity, and gene expression in individual cell types in
lung cancer could partly explain the failure of targeted therapy and immunotherapy. The
single-cell spatial transcriptome also revealed that the relatively homogeneous coexpression
of PGA Lung biomarkers in the same population, instead of heterogeneous expression
in different cell clusters, would make PGA Lung assay more accurate and consistent for
drug efficacy prediction. Overall, the spatial atlas of the transcriptional profiles of PGA
Lung biomarkers in the tumor cell subtypes further validated their predictive power for
drug efficacy.

To date, multiple cellular and molecular changes in lung cancer, including those muta-
tions in the driver genes and interaction between tumor and immune cells, are thought to
contribute to the pathological state. However, it is a daunting and risky task to extrapolate
pharmacogenomics datasets from cells directly to humans. A number of computational
drug response predictions are trained and learned on pre-clinical datasets and subsequently
“humanized” to bridge pre-clinical models and human tumors. Most approaches applied
molecular profiles and drug screens from the large-scale databases of pre-clinical mod-
els with advanced machine learning and training, e.g., transfer learning or deep neural
network learning, to correct for differences between pre-clinical models and human tu-
mors [10,12,15]. Although promising, these digital approaches either do not take into
account the real-time, real-world patient data and dynamic tumor evolution or only model
these differences as a technical batch effect, leading to “one-size-fits-all” generalized soft-
ware packages. To reach accuracies that are acceptable for clinical applications, existing
databases and technologies just cannot provide the right source code for cell-to-tumor
translation. In this study, we have correlated gene overexpression patterns and pathway
activities of more than 200 lung cancer cell lines with the corresponding TCGA tumor
cohorts. Our results of cell-tumor comparisons demonstrated substantial similarities in
the gene—pathway functional profiles across pre-clinical and clinical barriers. Our work
established the first-ever molecular algorithm for data fusion, translation, and extrapolation
combining in vitro patient testing and in silico analytics, providing a quantum leap for
drug efficacy prediction in lung cancer. In the long term, PGA technology could serve as a
powerful tool to advance our understanding of the molecular mechanisms in cancer that
mediate vulnerability or drug sensitivity.

Our analysis of >1000 patient tumor samples, ~40,000 single cells, and the subsequent
superimposing of consensus genomic features onto cell lines exemplifies how gene ex-
pression signatures can be used to reliably predict drug efficacy at the individual patient
level, and maximizes the clinical utility of the PGA Lung test reported. The majority
of cancer consensus modules (CCMs) identified from the TCGA tumors and single-cell
transcriptomics are captured within a large number of lung cancer cell lines and often at
a similar extent to those observed in patient cohorts. Pharmacological datasets in cancer
cell lines also offer an unbiased and plug-and-play resource for potential leverage on
drug efficacy.

We introduced the PGA Lung test to integrate pre-clinical and clinical data in a semi-
supervised way. Our approach functionally aligned cell-to-tumor similarity matrices and
extracted relevant CCM for mapping drug efficacy. By performing a functional gene—
pathway alignment instead of a direct database comparison, CCM limited the effect of
sample selection bias and filtered out variables. Although we restricted ourselves to dozens
of PGA Lung biomarkers, deploying CCM that incorporate patient-derived gene expression
signatures specifically tailored for personalized drug efficacy prediction is a potentially
revolutionary avenue. The identified and defined CCM was present in real-world patients
at a frequency that would make PGA Lung testing in a clinical setting feasible. We have
found that more than 90% of the primary tumor samples harbor at least one CCM associated
with increased drug response. Hence, prioritizing molecular diagnostics that deliver real-
time gene expression profiles could be the most cost- and time-effective means to stratify
patients for cancer treatment.
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Today, the vast majority of cancer patients have no detectable biomarkers for precision
medicine. Therefore, expanding our arsenal of accurate theranostics would pave the way
for personalized medicine by identifying the most effective drug for each patient. The
PGA Lung test was able to predict drug efficacies for patients, either as monotherapy or
combination therapy. We convincingly demonstrated that its performance was substantially
better than an educated guess for a number of therapies of high clinical importance,
such as platinum-based chemotherapies, gemcitabine, and paclitaxel. PGA Lung assay is
versatile, generalizable, scalable, and can be implemented to provide guidance in alternative
treatment options (e.g., drug repurposing) for patients with refractory or relapsed disease
or when the standard-of-care treatments are exhausted.

PGA Lung technology still has room for improvement. First, a few CCMs are not well
represented by a single cell line or not at all, and coverage by individual patients is variable.
As we are in an era of precision oncology, where many drugs are active in small molecularly
defined subgroups of patients, the broadness of CCM for different tumor genotypes can
be further improved. As the pre-clinical and clinical databases keep expanding, they will
make CCM encompassing the molecular diversity of cancer a realistic possibility. Second,
our ability to validate some pharmacogenomic associations was restricted by the limited
number of overlapping cell lines and drugs between these studies. The consistency between
datasets is not perfect, and efforts toward standardization to reduce methodological and
biological differences across the different studies are likely to improve future CCM repre-
sentation between datasets. Third, we focused on cfmRNA expression. The integration of
other genomic features—for example, mutations, copy number, methylation, and chromatin
accessibility—may help refine drug efficacy prediction by providing additional signals.
Finally, we do assume the functional clustering from CCM follows the same biological
dogma in pre-clinical models and human tumors. This assumption, albeit reasonable, might
be debatable.

Real-life patient-derived gene expression profiling opens new paths to understanding
how cancer drugs can be better matched to patients. The breakthrough PGA technology
enables us to analyze each patient’s molecular portrait to better match them with tailored
treatments. PGA Lung test also sheds light on the complex relationships between gene
activity within tumors and how different treatments will affect them.

5. Conclusions

PGA-based drug efficacy predictions, for the first time, revealed a clinically strong
relationship between drugs and gene pathways in the context of treatment response.
This groundbreaking technology connected a systematic drug efficacy prediction pipeline
with layered in vitro and in silico analyses involving plasma cfmRNA profiling, cancer
type-specific biomarkers, individualized gene expression signatures, and anticancer drug
database, which are the most important prerequisite for the clinical implementation of the
PGA Lung platform.

Owing to the explicit use of cfmRNA biomarkers, PGA Lung highlights the under-
pinning biological mechanisms contributing to drug efficacy. The plasma gene expression-
based prediction approach allowed us to capture novel signals from a non-tumor envi-
ronment, immune cell communication, and interaction in real-time. This can enable drug
efficacy prediction at cellular resolution from both tumor and non-tumor tissues, thus
providing a high degree of specificity much more so than using tumor DNA sequencing
data alone.

The number of tumor mutations can sometimes help doctors identify the patients most
likely to benefit from targeted therapy but unfortunately, most cancer patients (70-80%)
carry no actionable mutations and do not respond to targeted therapy. Even in those
responders, drug resistance will inevitably develop. Treatment options for progressive
disease continue to dwindle as mortality rates are rising. The one-of-a-kind PGA Lung
technology is able to nominate existing drugs for further consideration to meet the unmet
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demands of enabling personalized treatments for “non-responder” patients based on tumor
molecular profiles, thereby fulfilling the precision medicine promise.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/onco4030012/s1, Figure S1: Distinct immune cell clusters in tumor
microenvironment by single cell RNA-Seq spatial transcriptomic analysis in lung carcinoma tissues
(32,341 cells).
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