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Simple Summary: Chronic lymphocytic leukemia (CLL) is a unique and slowly progressing cancer
that affects white blood cells, and research on CLL has highlighted the inconsistency of gene mutations
across patients. Using a novel approach that merges statistical thermodynamics and systems biology,
this research examines the CLL protein—protein interaction networks to pinpoint proteins integral
to the onset of the disease. Betti number (a topology of complexity) estimates, which measure the
importance of individual proteins when removed from the network, helped identify numerous
potential therapeutic targets, notably within the Wnt signaling pathway, a pathway implicated in
various cellular processes and known for its defective expression in CLL. The finding advocates
for a multi-target inhibition approach, focusing on several key proteins to minimize side effects,
thereby laying a foundation for designing more effective therapies for CLL. This paper emphasizes
the potential benefits of a comprehensive study, spanning cellular-to-genome-wide scales, to design
personalized treatments for CLL patients.

Abstract: Whole-genome sequencing has revealed that TP53, NOTCH1, ATM, SE3B1, BIRC3, ABL,
NXF1, BCR, and ZAP70 are often mutated in CLL, but not consistently across all CLL patients. This
paper employs a statistical thermodynamics approach in combination with the systems biology of
the CLL protein—protein interaction networks to identify the most significant participant proteins in
the cancerous transformation. Betti number (a topology of complexity) estimates highlight a protein
hierarchy, primarily in the Wnt pathway known for aberrant CLL activation. These individually
identified proteins suggest a network-targeted strategy over single-target drug development. The
findings advocate for a multi-target inhibition approach, limited to several key proteins to minimize
side effects, thereby providing a foundation for designing therapies. This study emphasizes a shift
towards a comprehensive, multi-scale analysis to enhance personalized treatment strategies for CLL,
which could be experimentally validated using siRNA or small-molecule inhibitors. The result is not
just the identification of these proteins but their rank-order, offering a potent signal amplification in
the context of the 20,000 proteins produced by the human body, thus providing a strategic basis for
therapeutic intervention in CLL, underscoring the necessity for a more holistic, cellular, chromosomal,
and genome-wide study to develop tailored treatments for CLL patients.
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1. Introduction

Chronic lymphocytic leukemia (CLL) is a type of cancer that affects white blood cells
and tends to progress slowly over many years. It is a chronic lymphoproliferative disorder
characterized by an increased production of morphologically mature but immunologically
dysfunctional B lymphocytes. As a result, these cells are unable to fight infections as well
as normal white blood cells do [1].

The disease starts developing in the bone marrow, since here leukemia cells survive
longer and eventually outnumber normal cells. Then, cells further grow and may spread to
other parts of the body, including the spleen, the lymph nodes, and the liver [1]. Since the
growth of leukemia cells is slow, CLL may remain latent for many years before it causes
symptoms, and it is usually harder to cure than acute leukemias [1].

From the genetic perspective, CLL is a unique disease with multiple gene signa-
tures. One cohort of patients can exhibit a different gene-signature set than another cohort.
Whole-genome sequencing has revealed that TP53, NOTCHI1, ATM, SE3B1, BIRC3, ABL,
NXF1, BCR, and ZAP70 are often mutated in CLL, but not consistently across all CLL
patients [2—4]. For example, NOTCH1 is mutated in about 10% of newly diagnosed pa-
tients and in about 15% to 20% of progressive ones. Similarly, SF3B1 is mutated in about
10% of newly diagnosed CLL patients and about 17% in late-stage disease [2]. Just because
a gene is mutated does not mean that it will be strongly expressed. One of the goals
of our study is to show a molecular thermodynamics approach to determine the most
energetically significant pathways supporting a given patient’s CLL initiation and progres-
sion. This new molecular systems approach may shed light on optimal treatment for each
patient—essentially personalized therapy. Before we present this new methodology, we
provide an overview of the known biomarkers for CLL and then a survey of the current
treatment options, as well as experimental drugs in development.

It is of fundamental importance to obtain information about the patient’s status
and prognosis to define the therapeutic strategy. There exist several laboratory-based
prognostic markers, such as high levels of serum beta-2 microglobulin (B2M) and the
absolute lymphocyte count (ALC). However, chromosomal aberrations detected using
Fluorescent In Situ Hybridization (FISH) serve as the main prognostic tools. The most
common aberrations detected in CLL patients are as follows [5]:

e  Deletions on the long arm of chromosome 13 (del(13q)): In patients with this aberration,
the disease progresses slowly.

e  Deletions on the long arm of chromosome 11 (del(11q)): This usually occurs among
young males and tends to manifest with bulky lymph nodes. It is associated with rapid
disease progression and short survival. The 11q chromosome contains the Ataxia—
Telangiectasia-mutated gene (ATM), and ATM kinase is responsible for inhibited cell
cycle progression in the case of DNA damage. Furthermore, ATM kinase acts on p53
by phosphorylating it in order to induce apoptosis. Therefore, when 11q is deleted,
this phosphorylation does not occur, and the cell damage cannot be repaired [6].

e Deletion on the short arm of chromosome 17 (del(17p)): This results in the loss of
TP53, which is the most important prognostic marker in CLL. It is associated with
rapid disease progression and resistance to fludarabine chemoimmunotherapy. In
addition to the role of TP53 as a prognostic marker in CLL, it is also fundamen-
tally a predictive marker for chemo-immunotherapy, guiding treatment decisions
and potentially influencing the response to specific therapies, such as fludarabine
chemoimmunotherapy [7].

e Immunoglobulin heavy-chain variable region gene (IGHV) mutational status: For
prognosis and therapy choice, it is important to detect IGHV mutational status since
the unmutated state is correlated with low survival.

e  Other markers, which are present in a low percentage of newly diagnosed CLL pa-
tients, but whose incidence increases in patients who are refractory to fludarabine
chemotherapy, are mutations of NOTCH1, SF3B1, and BIRC3. Finally, combining
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genetics, clinical parameters, and biochemistry, the CLL International Prognostic Index
(CLL-IPI) is a tool to predict the status of the disease [8].

Wnt signaling is a network of interacting protein pathways which control processes
such as cell differentiation, cell cycle regulation, proliferation, apoptosis, cytoskeletal rear-
rangement, cell polarity, adhesion, motility, migration and invasion, and the interaction
with the microenvironment [9]. Wnt signaling is correlated with hematopoiesis and is
linked with leukemogenesis of cancers such as CLL [9]. Two Wnt signaling pathways
are associated with CLL, namely the Wnt/ 3-catenin-dependent and -independent path-
ways. The Wnt/ 3-catenin is associated with cell proliferation, homeostasis, and cell cycle
regulation, and thus its malfunction indicated a hallmark of many cancers. Regarding
the Wnt/ 3-catenin independent pathway, the Wnt/PCP (Planar Cell Polarity) is the most
important one, and it takes place in the regulation of cell polarity, migration, and invasion.
Wnt pathways play a role in CLL pathogenesis and response to treatment. Moreover, the
expression of Wnt signaling molecules from Wnt/ 3-catenin and Wnt/PCP pathways is
defective in CLL. For example, ROR1 (receptor tyrosine kinase-like orphan receptor), a
Wnt-5 (a Wnt protein)-dedicated receptor in the Wnt/PCP pathway, is expressed on the
surface of CLL cells and not on the healthy B cells. Therefore, ROR1 is a sensitive marker of
a possible relapse of patients with a more aggressive form of the disease.

The scope of this study extends beyond the traditional single-target silver bullet
approach in drug development, acknowledging the intricate network of proteins that
drive the pathological transformation of CLL. A systems biology perspective indicates
that targeting a manageable group of five or six network nodes could be more effective
for combination therapy design, considering the potential for serious side effects due to
overlapping off-target interactions. The statistical thermodynamics method applied here
aims to identify and hierarchize such targets, which could be inhibited by existing approved
or investigational drugs, setting the stage for a more nuanced and personalized treatment
approach in CLL.

2. Current Treatment Options and Experimental Drug Candidates

Unfortunately, currently available treatments may relieve CLL patients from their
symptoms and extend their survival, but still CLL remains incurable [6]. For patients
without “active disease” and who are asymptomatic, or those with early-stage disease, the
treatment consists of just a simple observation during which blood counts are performed
every three months [6]. For patients with “active disease”, before choosing therapy, the
clinical status must be evaluated in terms of general health, characteristics such as TP53
abnormalities or adverse cytogenetics, or relapsed disease [6]. Standard treatment has
been chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab (FCR).
However, it has demonstrated a lack of efficacy, and it leads to numerous side effects,
especially in patients with TP53 or NOTCHI1 mutations, unmutated IGHV, and deletion of
17p or 11q [8].

Target agents are small molecules that have greater efficacy in patients harboring TP53
mutation or del(17p), whose examples include the following [6]:

Bruton tyrosine kinase inhibitors (ibrutinib and acalabrutinib),

BCL-2 inhibitor (venetoclax),

Purine analogs (fludarabine and pentostatin),

Alkylating agents (cyclophosphamide, chlorambucil, and bendamustine),
Monoclonal antibodies (rituximab, ofatumumab, and obinutuzumab),

PI3K inhibitor (idelalisib).

The most common chemotherapy medications used are listed below, together with
their main mode of action:

e Fludarabine: a purine analogue and an antineoplastic agent.
e  Cyclophosphamide: an alkylating agent.
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e Rituximab: a monoclonal antibody which targets the B-lymphocyte antigen CD20
expressed on the surface of B cells.

These three together (FCR) constitute a chemoimmunotherapy treatment:
Bendamustine: an alkylating agent used along with Rituximab (BR) to form another
combination chemoimmunotherapy treatment.

Chlorambucil: an alkylating agent.

Ibrutinib is a Bruton tyrosine kinase (BTK) inhibitor. BTK, an enzyme which works
for B-cell survival and growth, helps delay the progression of cancer. It inhibits
CLL cell migration, proliferation, and survival [10]. Unfortunately, it presents some
side effects, such as pneumonia, upper respiratory tract infection, atrial fibrillation,
sinusitis, headaches, nausea, and many more [10].

e  Acalabrutinib is a more selective irreversible BTK inhibitor since it acts just like
ibrutinib, but without the side effects involving other kinases [10]. Its most common
side effects are headaches, tiredness, low red blood cells, low platelets, and low white
blood cells [10].

e PI3K (Phosphatidylinositol-3-kinase) inhibitors such as Idelalisib [11], which was
FDA-approved in 2014 for use in combination with rituximab for treating relapsed
CLL [12]. However, Idelalisib is also toxic with nearly 40% of patients having had to
interrupt the therapy due to rash or 3—4-grade transaminitis, and pulmonary infections.
A PI3K$ inhibitor called TGR 1202 has better selectivity compared to idelalisib. It
was approved for medical use in the USA in February 2021. TGR 1202 reduces the
phosphorylation of AKT in lymphoma and leukemia cells.

e  Venetoclax binds and inhibits the antiapoptotic protein B-cell lymphoma 2 (BCL-2) [9].
In CLL, the inhibition of this pathway has been considered an optimal therapeutic
strategy [13]. The use of Venetoclax was approved by the FDA in 2016 [13]. Its side
effects usually include low levels of white and red blood cells, respiratory infections,
diarrhea, nausea, tiredness, and tumor lysis syndrome (TLS).

e  Sotorasib (AMG510) is a highly selective and irreversible inhibitor which binds at an
allosteric pocket, leading to the trapping of KRAS (Kirsten rat sarcoma virus) in an
inactive GDP-bound state. Note that KRAS transmits signals for growth, division,
and differentiation to the nucleus of the cell from the outside. KRAS mutations are
among the most oncogenic events in carcinomas, including CLL, and a majority of
them consist of missense mutation of the 12th codon (glycine). It was approved by the
FDA in May 2021. Some of its side effects are diarrhea, nausea, and muscle or bone
pain [14].

e Adagrasib (MRTX849) is an irreversible covalent inhibitor of G12C KRAS mutation
that makes a covalent bond to cysteine and binds in the switch-II pocket of KRAS in its
inactive GDP state. It demonstrated improved antitumor activity when in combination
with vistusertib (an mTOR inhibitor). In clinical trials, some patients experienced
pneumonitis and heart failure, which led to the interruption of the treatment. Others
experienced nausea, fatigue, and anemia. This inhibitor is still in clinical trials, together
with numerous other experimental drugs under development [14].

e  Experimental drug candidates also include AKT pathway allosteric inhibitors: ARQ092/
miransertib, BAY1125976, MK2206, and TAS-117 [15].

e  ATP-competitive AKT inhibitors: Capivasertib and ipatasertib showed a favorable
safety profile, along with signs of activity in phase I monotherapy trials [14]. Other
AKT inhibitors include the following compounds: afuresertib (GSK2110183), upros-
ertib (GSK2141795 and GSK795), and ordidonin (NSC-250682) [16].

Additionally, various drug candidates are in development with MYC pathway-inhibition
profiles [17]:
e Compound 361 (MYCi361, NUCC-0196361) [18],
Compound 975 (MICi975, NUCC-0200975) [19],
MYCMI-6 [20],
KSI-3716 and MYRA-A [20],
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e  KI-MS2-008 [20],
e L755507 [17].

3. Systems Biology Background

The conceptual framework for understanding the thermodynamics and energetics of
the molecular biology of human diseases from a network biology perspective has been
developed over the past decade. Various studies were undertaken to quantify different
signaling and metabolic pathways in various cancer types and other diseases, using metrics
such as network entropy and the Gibbs free energy applied to each specific case [21-26].
Here, we give only a brief summary of this approach. The transcriptome and other “-omic”
(e.g., proteomic, genomic, etc.) measures can represent the energetic state of a cell. Here,
we mean “energetic” from a thermodynamics perspective. There is a chemical potential
between interacting molecules in a cell, and the chemical potential of all the proteins that
interact with each other can be imagined forming a rugged landscape, not dissimilar to
Waddington'’s epigenetic landscape [27,28].

The method we propose uses mRNA transcriptome data or RNA-seq data as a sur-
rogate for protein concentration. This assumption is largely valid. Kim et al. [29] and
Wihelm et al. [30] have shown an 83% correlation between mass spectrometry-generated
proteomic information and transcriptomic information for multiple tissue types. Further-
more, Guo et al. [31] found a Spearman correlation of 0.8 in comparing RNAseq and mRNA
transcriptome from TCGA human cancer data [32].

Given a set of transcriptome data, a representative of protein concentration, we overlay
that on the human protein—protein interaction network from BioGrid [33]. This means
that we assign to each protein on the network the scaled (between 0 and 1) transcriptome
value (or RNAseq value). From that, we can compute the Gibbs free energy of each
protein—protein interaction using the mapping relation:

Ci

— 1
G, =¢; anCj

1)

where ¢; is the “concentration” of the protein i, normalized or rescaled to be between 0
and 1. The sum in the denominator is taken over all protein neighbors of i, including
i. Therefore, the denominator can be considered a degree-entropy. Carrying out this
mathematical operation essentially transforms the “concentration” value assigned to each
protein to a Gibbs free energy. Thus, we replace the scalar value of transcriptome to a scalar
function—the Gibbs free energy.

The above equation is derived from a well-known concept in chemical thermodynam-
ics [34]. A biological cell or a group of cells (a tumor) exist in a complex chemical balance
produced by a network of interacting molecular species, ranging from small molecules to
some very large molecules on the order of hundreds to thousands of Daltons. The molecular
concentration balance in this network is the Gibbs free energy, G. This thermodynamic
quantity is typically expressed in the context of systems kept at a constant temperature and
pressure, where the system can exchange molecules with the environment. For an arbitrary
molecular system, the Gibbs function is given as a molar difference [35] in Equation (2):

0G = udn. 2)

where (1 symbolizes the chemical potential, G is the Gibbs energy, and on is the molar
difference (essentially concentration difference). Typically, one writes the chemical potential

as follows:
W= (5G)
0N ) p 1k ete.

Equation (3) above assumes that the molar concentrations of other molecular compo-
nents (other than i) are held constant, along with constant temperature and pressure. Using

)
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Equation (1) and given a network of interacting chemical species or proteins, and given
their concentration, we can compute the Gibbs free energy for a single protein in the PPL

The Gibbs free energy is a negative number, so associated with each protein on the
network is a negative energy well. This results in a rugged energy landscape represented
schematically in Figure 1. If we use what is referred to as a topological filtration on this
landscape, we essentially move a filtration plane up from the deepest energy well. As
the filtration plane is moved up, larger-and-larger energetic subnetworks are captured.
For convenience, we stop the filtration at energy threshold 32—meaning 32 nodes in the
energetic subnetwork. We call these subnetworks Gibbs-homology networks.

Filtration of Energy Landscape

0 Q.
"'3‘\',-{.’.\1 )
e ®va T,\)U ” ('.
] . — Y (¥ ‘)gg ()% e
——— - — FEFT

O H L0

Figure 1. As the “filtration plane” moves up from the bottom, more-and-more nodes are captured in
larger-and-larger energetic subnetworks for protein—protein interaction set.

We now compute the Betti centrality, a topological measure, on the 32-node energetic
networks, as described in Benzekry et al. [23]. The concept is easily described. In networks,
there are holes or rings of various sizes. In these energetic pathways, protein—protein
interaction networks, the proteins form interaction rings. In densely connected, but not
fully connected, networks, the rings or holes may consist of triangles and larger rings of
interaction. To find the Betti centrality, we ask ourselves the following question: Which
protein, when removed from the network, will change the overall total number of rings the
most? The total number of rings is called the Betti number. Given a network G consisting
of edges, e, and vertices, v, the Betti centrality is given by Equation (4):

B(v;) = B(G) — B(G — {v;}) 4)

Hence, the difference from the total Betti number, B(G), and the Betti number of the
network after removing node i gives the Betti centrality for node i. We compute this for all
nodes in the threshold-32 energetic network. Often, there will be two or more proteins in
the network that have equivalent Betti centrality.

4. Methodology and Datasets

We report on a meta-analysis of 1001 samples from CLL patients and cancer cell lines.
This study used online data from GEO [36]: GSE10139, GSE28654, GSE31048, GSE39671,
GSE49896, GSE50006, and GSE69034. The data were mRNA expression numbers, all col-
lected using Affymetrix Human Genome Array, HG-U133_2. We also used the human
protein—protein interaction network from Biogrid [33]. In particular, we used the dataset
downloaded from the BIOGRID-ORGANISM: homo_sapiens-3.5.172.2. An integrative anal-
ysis, including the t-SNE visualization of samples and subgroups, is detailed in Appendix C
(Figure Al).
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Reiterating the method, we collected the GSE expression datasets, and then the expres-
sion value for each gene was overlaid on the human protein—protein interaction network
for each protein or node in the network. For each node in the network, we then applied
Equation (1), which resulted in the Gibbs energy for that node. This resulted in a rugged
landscape similar to the one shown in Figure 1. Then, the procedure consisted in per-
forming a filtration and computing the Betti number for zero nodes removed and then
removing a node and recomputing the Betti number and replacing the node. This removal-
computation-replacement procedure resulted in a list of nodes that had the largest impact
on complexity of the Gibbs homology network. We finally ranked significant nodes in a
Pareto chart for each patient. Pareto charts were prepared at several filtration thresholds:
32, 48, 64, and 96.

5. Results

Our discussion of the results is presented below, and it follows an analysis of the
individual datasets and the research publication associated with it (if present) prior to
presenting the meta-analysis Pareto chart and the network graphs.

i.  Ref. [37] (GSE10137) “A genomic approach to improve prognosis and predict ther-
apeutic response in chronic lymphocytic leukemia”, by Friedman et al., 2009. This
was one of the papers with a large table in the Supplementary section. The table
consisted of upregulated and downregulated probes indicative of progressive disease;
upregulated and downregulated probes indicating chlorambucil resistance; upregu-
lated and downregulated probes indicative of Pentostatin, Cyclophosphamide, and
Rituximab signature. An important quote from the paper states that: “Others have
previously noted the prognostic significance of cytoskeletal genes and the tumor
necrosis factor in CLL. Notably, probes for ZAP-70 did not constitute this genomic
signature, although mean expression for ZAP-70 probes in samples from patients
with progressive disease was higher than those from patients with stable disease”.
The table of genes was parsed from the PDF document and used in our subsequent
analysis (discussed below).

ii.  Ref. [3] (GSE28654) “Gene expression profiling identifies ARSD as a new marker of
disease progression and sphingolipid metabolism as a potential novel metabolism in
chronic lymphocytic leukemia” (Trojani et al., 2012) [3]. A table in the manuscript lists
about 65 genes that were selected as being differentially expressed in two cohorts of
CLL patients. Of those genes, the authors selected 19 genes for PCR analysis because
of their significance. Those genes are ZAP70, ARSD, LPL, ADAM?29, AGPAT2, CRY1,
MBOAT1, YPEL1, NRIP1, RIMKLB, P2RX1, EGR3, TGFBR3, APP, DCLK2, FGL2,
ZNF667, CHPT1, and FUT8. An important quote from the paper is as follows: “In
the literature, lists of differentially expressed genes obtained using high-throughput
microarray by different laboratories and research centers have often limited over-
lap [38,39]. These differences are matters of important scientific discussions and are
imputed, among other causes, to dataset dimensions: small number of subjects (some
tens) with respect to the number of variables (tens of thousands of genomic probes
in human). Notably and reassuringly the gene set list (65 genes) emerged from this
study showed a substantial (but not quantitated) overlap with results from previously
published microarray studies [40—43]”. The list of 65 genes was incorporated in our
subsequent analysis.

iii. Ref. [40] (GSE31048) “Somatic mutation as a mechanism of Wnt/B-Catenin path-
way activation in CLL” [40]. In the Supplementary Materials to this paper were
two large tables listing genes. One table listed from their own study (Wnt pathway),
and the other table listed Wnt genes from the literature and websites. Both tables were
combined for the study. A quote from the paper: “... our data demonstrate that altered
gene expression is indistinguishable between samples with and without mutations”.

iv.  Ref. [41] (GSE39671) “Subnetwork-based analysis of chronic lymphocytic leukemia
identifies pathways that associate with disease progression” (Chuang et al., 2012) [41].
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The Supplementary data included only figures and graphs. No table with a gene list.
Of note is the following quote: “Furthermore, the marker sets identified by different
research groups often share few genes in common. Two landmark studies, Rosen-
wald and colleagues [42] and Klein and colleagues [43] each identify approximately
100 genes that were expressed differentially by CLL cells that use mutated versus
unmutated IGHV genes. However, only 4 marker genes were identified in common
between these studies”.

v.  Ref. [44] (GSE49896) “miR-150 influences B-cell receptor signaling in chronic lympho-
cytic leukemia by regulating expression of GAB1 and FOXP1” (Mraz, et al., 2014) [44].
The following is quoted from their paper: “We identified miR-150 as being the most
abundantly expressed miRNA in CLL. However, we observed significant heterogene-
ity in the expression levels of this miRNA among CLL cells of different patients. Low-
level expression of miR-150 associated with unfavorable clinicobiological and prog-
nostic markers, such as expression of ZAP-70 or use of unmutated IGHV (p < 0.005).
Additionally, our data suggest that the levels of methylation of the upstream region
of 1000 nt proximal to miR-150 associate with its expression. We demonstrated that
GAB1 and FOXP1 genes represent newly defined direct targets of miR-150 in CLL
cells. We also showed that high-level expression of GAB1 and FOXP1 associates with
relatively high sensitivity of CLL cells to surface immunoglobulin ligation. High levels
of GAB1/FOXP1 and low levels of miR-150 associate with a greater responsiveness to
BCR ligation in CLL cells and more adverse clinical prognosis”.

vi.  GSE50006—no manuscript.

vii. GSE69034—no manuscript.

We created a master list of all genes cited and/or given in the tables associated with
the above manuscripts. This list is in Appendix B. There were 515 genes in total. The list
of genes was inputted into the DAVID platform for functional annotation analysis [45],
and only 208 genes were found, which indicates that DAVID’s database has annotations
for only 208 of those genes. The missing genes might be due to them being less well-
characterized, newer discoveries not yet integrated into DAVID’s database, or they might
be represented differently in the user’s list compared to DAVID’s nomenclature. To identify
genes relevant for a generic condition like “leukemia”, the KEGG [46] and OMIM [47]
databases are used to filter and analyze the results such that both are integrated into DAVID.
These databases contain curated information about genes related to specific pathways or
diseases. By cross-referencing the 208 identified genes with “leukemia” in both KEGG
and OMIM, genes whose expression or mutation is linked with the onset, progression, or
other aspects of leukemia are pinpointed, aiming at narrowing down potential targets for
research, therapeutic development, or further molecular study. Searching that file resulted
in the following list: AKT1, CTBP1, CTBP2, CTBPA, SMAD4, HDAC1, LEF1, RARA, TCE3,
TCF7, TCF7L1, TCF7L2, and MYC.

Comparing the PublishedGeneList with our CLLnet96 list, only four were found: MYC,
HDAC1, CTNNB1, and APP. Two of those, MYC and HDAC1, are known to participate
in leukemia. The CLLnet96 list is assembled from all 1001 patients at Gibbs threshold
96. To reiterate the concept of threshold, for any given patient, the deepest well in the
landscape is usually the same for all thresholds; but there may be differences based on
the expression, and this gives rise to differences in the Gibbs homology network. An
energy threshold of, say, 32 will result in a network of 32 nodes that are the largest negative
energy values. This is called a topological filtration. Using this technique, we can produce
1 of these 32 threshold networks for each patient. If we do that, and then concatenate
the entire list of nodes for each of the patients at this threshold, followed by sorting and
discarding redundant nodes in the list, the result will be what we call the CLLnet32 list.
By the nature of the filtration, CLLnet32 C CLLnet48 C CLLnet64 C CLLnet96, meaning
that CLLnet32 is a proper subset of CLLnet48, etc. So, taking the list CLLnet96 will, by
definition, incorporate all others. Comparing our CLLnet96 with the superset of published
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genes (i.e., PublishedGeneList in the Appendix B), we find only four that were both lists,
MYC, HDAC1, CTNNBI, and APP.

After comparing the PublishedGeneList and the CLLnet96 superset, we then used
DAVID, an online bioinformatics resource that allows one to submit a list of genes (or other
biological components, e.g., proteins), and it returns important information such as the
KEGG pathway or OMIM associated with that gene. There are 98 genes in the superlist
of CLL96net list. From that analysis, we find the following genes to be associated with
leukemia (various types): KRAS, GRB2, HDAC1, NPM1, TP53, and MYC. In that superlist,
CUL1, TP53, and CTNNBI are associated with the Wnt signaling pathway.

The published gene lists consisted of two parts. Keep in mind that, although the
papers cited above included GSE expression data, most of them did not include tables of
genes they identified from their analysis as being important. Instead, they were looking for
prognostic markers for disease progression. So, Part 1 of the published gene list consisted
of selections identified by the authors from GSE10137 and GSE28654. The combined list
consisted of 320 genes. Of those 320 genes, 22 were found in DAVID. Only CEBPA and MYC
were found to be associated with any form of leukemia. And CSNK2A1 and MYC were
found to be associated with the Wnt signaling pathway. When we expand the published
list to include GSE321048, which was a focused study on the Wnt pathway and CLL [40],
the list expands to 515. Naturally, a huge number of genes were flagged by DAVID as
being in the Wnt pathway (78 total). And a smaller subset was found to be associated with
some form of leukemia: AKT1, CTBP1, CTBP2, CEBPA, SMAD4, HDACI1, LEF1, RARA,
TCF3, TCF7, TCF7L1, TCFL2, and MYC. Looking for common genes between the expanded
published and our larger list of 96 threshold, we find KRAS, GRB2, HDAC1, NPM1, TP53,
MYC, APP, and CTNNBL1.

At threshold 32, CTNNBI is the best Betti target once out of 1001 patients, but it is
present in the threshold 32 networks 326 times. Keep in mind that anything found in
the 32 threshold is energetically important. So, we find it in 32.5% of the population as a
potentially good target for CLL (at 48 threshold 37.9%, at 64 threshold 44.1%, and at 96
threshold 58.9%). CTNNBI1 is an important gene involved in CLL. It is also an important
node in the Wnt pathway [48].

6. Results and Discussion: Wnt Pathway

It is interesting that so many of the authors of the papers cited above did not find
overlap among their gene list and other investigators. There was little overlap between
those authors’ lists until we included the dataset from GSE321048, the Wnt pathway. We
speculate that the reason our Gibbs analysis of expression data did not overlap well with
other expression data is that the Gibbs function includes a measure of network entropy
(denominator in Equation (1)). Furthermore, many of the genes that are highly expressed, as
reported in the literature, are not necessarily mutated based on whole-genome sequencing.

Figure 2 shows the Wnt pathway from KEGG. After using the online R-script KEG-
Graph at Bioconductor, it was converted to an edge-list of relevant protein—protein interac-
tions [49].

The resulting edge-list was plotted using Cytoscape 3.7 [50]. The PPI network is shown
in Figure 3. Two nodes are highlighted. MYC is highlighted and connected to LEF1, TCF7,
TCF7L1, and TCF7L2. MYC, as we will see, is an important player in the Wnt pathway.
Also, CTNNBI has 24 neighboring interactions and has a betweenness of 0.3155, the highest
in this network. It also is an important player in the Wnt pathway.
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Figure 2. Wnt signaling pathway from KEGG, https:/ /www.genome.jp/pathway/hsa04310 accessed

on 30 July 2024 [46].
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Figure 3. The PPI of Wnt pathway.

As described above, we computed the Betti centrality for the Gibbs homology net-
works. Figure 4 shows a Pareto chart for the Betti centrality nodes at threshold-48. In our
analysis of the 1001 expression samples, CTNNB1 was present as a key Betti centrality
node in three samples. Whereas MYC was not present as a key Betti centrality node at
threshold-48, but at threshold-32, MYC was present 24 times; 12 times (50%), it was found
in dataset GSE30671, which is associated with the manuscript by Chuang et al. [41]. This
again shows the inconsistency in gene expression values from samples of CLL patients. Of
key importance is the fact that RPS15 is a Betti centrality node in three patients, and RPS15A

is a Betti centrality node in five patients at threshold-48. These are shown in Figure 4.
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Figure 4. Pareto chart for Betti centrality at Gibbs-homology threshold-48, showing only those with
nine or more occurrences.

As shown in Figure 3, MYC is an important node in the Wnt pathway. It is directly
connected to LEF1, TCF7, TCF7L1, and TCF7L2. Except for LEF1, which is a lymphoid
enhancer-binding factor, the others are transcription factors. Figure 5 shows a Gibbs
homology network at threshold-48 for a patient (GSM787065 part of GSE31048 [40]) whose
RPS15 is the Betti centrality node. In the network diagram, the nodes are in a degree-sorted
order, starting at the bottom, with MYC as the highest degree (48), and going around
counterclockwise. RPS15 and MYC are pulled out of the network for easy locating, and
MYC and all its first connections are highlighted in yellow.

As we pointed out above, a gene can be mutated, and yet not overexpressed or
underexpressed relative to normal. This is likely the main cause for differences in reported
transcriptome data from various investigators. What is clear from the literature (e.g.,
Wang et al.) [40] is that the Wnt pathway is highly important, and overexpressed genes
in that pathway are often indicative of cancer. MYC is a regulator of ribosome protein
synthesis [51] and has been shown to be a key regulator in supporting and maintaining
tumorigenesis [52]. For example, Wu et al. [52] found that inactivation of MYC resulted
in some tumors undergoing regression, and mutated RPS15 was identified in almost
20% of CLL patients who relapsed after FCR treatment. These mutations are associated
with clinical aggressiveness in CLL, along with the mutant RPS15 displaying defective
regulation of endogenous p53, which indicates a novel molecular mechanism underlying
CLL pathobiology [52]. RPS15 and RPS15A are often overexpressed in CLL [53], and our
results confirm this with all (1001 patients) Gibbs-homology subnetworks at threshold-96,
showing RPS15 or RPS15A as being an energetically important node.
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Figure 5. The Gibbs homology network for a patient in which RPS15 has the highest Betti centrality.
RPS15 and MYC are pulled out for easy location. MYC and all of its first neighbors are highlighted
in yellow.

7. Conclusions

We showed in this study that the genes BIK, NFkB, JAK/STAT, NOTCH1, BCL2, and
EEF2, among others, play a significant role in the support of CLL. Yet, some of them are
only rarely studied in the literature because they are not strongly expressed; our research
confirms this. Just because a gene or two are mutated does not mean that they will be
strongly expressed. As pointed out above, gene expression found inconsistent sets of genes
that were highly expressed and that had high Gibbs energy. We found the same inconsistent
results when we looked at the Hi-C results for CLL patients. Speedy et al. [54] found that
BCL2 was strongly implicated in the disease. They also found a disruption at the NFkB-
binding site, but other genes, such as JAK/STAT, BTK, and EEF2, were not mentioned in
their manuscript. Beekman et al. [55] found only NOTCHI1, Puiggros et al. [56] found only
NOTCHI1 and SF3B1 as candidates for high risk of mutation, and Kiefer et al. [57] found
NOTCH1 for trisomy 12.

Though the actual causal agent of CLL is not well known, we can speculate that if
there is some molecular agent (e.g., herbicide) or an energetic EM signal (e.g., X-ray), it
will typically impact the cell only during a specific phase of the cell cycle [58]. There are
regions of the genome that are more sensitive to alterations due to some specific energy
level in the overall molecular network we call a cell. These mutations are driven by the
relevant chemical potential, stereochemistry, and Gibbs free energy. We argue that the
locations of the relevant genes in the chromosome and the 4D dynamics of the nucleome
may suggest a more holistic molecular and cellular approach to understanding CLL and,
therefore, new therapeutic strategies [59]. Building on this notion, the insights from the 4D
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Nucleome Network [59] elucidate the intricacies of genome organization in space and time.
The project underlines the critical role of the genome’s three-dimensional organization
in gene regulation. In the context of CLL, the spatial dynamics of chromatin can have a
profound impact on gene expression patterns, emphasizing the importance of the genome’s
spatial and temporal dynamics in understanding and potentially treating the disease [60].
Elucidating this idea further, the work conducted by Sawh et al. in 2022 revealed that the eu-
karyotic genome is a multilayered entity, exhibiting intricate organization levels that range
from nucleosomes to larger chromosomal scales [61]. These layers undergo significant
remodeling across different tissues and developmental stages in C. elegans. It is noteworthy
that advancements in C. elegans research, both imaging-based and sequencing-based, have
unveiled the influence of histone modifications, regulatory elements, and broader chromo-
some configurations in this 4D organization. Specific revelations, such as the physiological
implications of topologically associating domains and compartment variability during
initial developmental phases, underscore the depth of genome dynamics. These insights
provide compelling evidence that understanding such 4D genome organization nuances is
crucial for decoding complex diseases like CLL. Interestingly enough, none of the genes
described in Appendix A is in chromosome 13, which often has deletions in about 50% of
CLL patients [62]. In Appendix A, we support our argument for a larger view that CLL
genes are widely spread throughout the whole genome and different chromosomes.

In conclusion, our study challenges the conventional single-target paradigm in CLL
therapy, advocating for a higher-level, network-oriented strategy. The identification and
hierarchical ranking of 20-30 significant proteins, amidst the roughly 20,000 synthesized
by the human organism, represent a leap in signal detection and amplification [63]. This
nuanced profiling, achieved via a statistical thermodynamics approach, underscores the
potential of targeting a selective array of five or six network nodes. This selectivity is
crucial to mitigate the risk of adverse effects caused by overlapping off-target interactions
commonly seen with broader therapeutic targets. The proteins highlighted in our research,
notably within the Wnt signaling pathway, are not merely isolated entities but components
of a complex network that drives the CLL pathology. Therefore, our proposed method does
not end at the identification of these proteins but extends to rank-ordering them in terms
of therapeutic relevance. The next step for validating the findings involves experimental
assays using siRNA [64] or small-molecule inhibitors, which will provide the empirical
backbone for our theoretical model. Such an approach may revolutionize the current
treatment regimens by transitioning from a one-size-fits-all model to a more customized,
patient-specific strategy. This could be especially beneficial given the genetic variability
among CLL patients, as indicated by the inconsistent mutation patterns observed in whole-
genome sequencing. By incorporating the principles of systems biology and acknowledging
the network dynamics of protein interactions, we can begin to envision a more effective,
personalized therapeutic landscape for CLL. This, in turn, may pave the way for similar
strategies in other cancers, marking a paradigm shift in oncological treatment towards
precision medicine.
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Appendix A

Notes on the genomic location of key genes “involved” in CLL (from GeneCards.org)

BTK is found in the X chromosome.
Genomic Locations for BTK Gene

chrX:101,349,447-101,390,796
(GRCh38/hg38)

Size:

41,350 bases

Orientation:

Minus strand

chrX:100,604,435-100,641,212
(GRCh37/hg19)

Size:

36,778 bases

Orientation:

Minus strand

Genomic View for BTK Gene

Genes around BTK on UCSC Golden Path with GeneCards custom track.

Cytogenetic band:

Xq22.1 by HGNC
Xqg22.1 by Entrez Gene

Xq22.1 by Ensembl BTK Gene in genomic location: bands according to Ensemb], locations
according to GeneLoc (and/or Entrez Gene and/or Ensembl if different)
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NFKB1 is in chromosome 4
Genomic Locations for NFKB1 Gene

chr4:102,501,329-102,617,302
(GRCh38/hg38)

Size:

115,974 bases

Orientation:

Plus strand

chr4:103,422,486-103,538,459
(GRCh37/hg19)

Size:

115,974 bases

Orientation:

Plus strand

Genomic View for NFKB1 Gene
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NFKB2 is on chromosome 10

Genomic Locations for NFKB2 Gene
chr10:102,394,110-102,402,529

(GRCh38/hg38)
Size:

8420 bases
Orientation:
Plus strand

chr10:104,153,867-104,162,281
(GRCh37/hg19)

Size:

8415 bases

Orientation:

Plus strand

Genomic View for NFKB2 Gene

Genes around NFKB2 on UCSC Golden Path with GeneCards custom track.
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JAK1 is on chromosome 1
Genomic Locations for JAK1 Gene
chr1:64,833,223-65,067,754
(GRCh38/hg38)
Size:
234,532 bases
Orientation:
Minus strand
chr1:65,298,906-65,432,187
(GRCh37/hg19)
Size:
133,282 bases
Orientation:
Minus strand
Genomic View for JAK1 Gene
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JAK?2 is on chromosome 9

Genomic Locations for JAK2 Gene

chr9:4,984,390-5,128,183
(GRCh38/hg38)

Size:

143,794 bases
Orientation:

Plus strand

chr9:4,985,033-5,128,183
(GRCh37/hg19)

Size:

143,151 bases
Orientation:

Plus strand

Genomic View for JAK2 Gene

Genes around JAK2 on UCSC Golden Path with GeneCards custom track.
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JAKS3 is on chromosome 19
Genomic Locations for JAK3 Gene
Genomic Locations for JAK3 Gene
chr19:17,824,780-17,848,071
(GRCh38/hg38)
Size:
23,292 bases
Orientation:
Minus strand
chr19:17,935,589-17,958,880
(GRCh37/hg19)
Size:
23,292 bases
Orientation:
Minus strand
Genomic View for JAK3 Gene
Genes around JAK3 on UCSC Golden Path with GeneCards custom track.
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STAT?2 is on chromosome 12
Genomic Locations for STAT2 Gene
Genomic Locations for STAT2 Gene
chr12:56,341,597-56,360,253
(GRCh38/hg38)
Size:
18,657 bases
Orientation:
Minus strand
chr12:56,735,381-56,754,037
(GRCh37/hg19)
Size:
18,657 bases
Orientation:
Minus strand
Genomic View for STAT2 Gene
Genes around STAT2 on UCSC Golden Path with GeneCards custom track.
Chr 12
BHH g o N Y9 awe e BHB 400 d3WAAHB

STAT1 is on chromosome 2
Genomic Locations for STAT1 Gene

Genomic Locations for STAT1 Gene
chr2:190,964,358-191,020,960
(GRCh38/hg38)

Size:

56,603 bases

Orientation:

Minus strand

chr2:191,829,084-191,885,686
(GRCh37/hg19)

Size:

56,603 bases

Orientation:

Minus strand

Genomic View for STAT1 Gene
Genes around STAT1 on UCSC Golden Path with GeneCards custom track.
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STATS3 is on chromosome 17
Genomic Locations for STAT3 Gene

Genomic Locations for STAT3 Gene
chrl7:42,313,324-42,388,568
(GRCh38/hg38)

Size:

75,245 bases

Orientation:

Minus strand

chr17:40,465,342-40,540,586
(GRCh37/hg19)

Size:

75,245 bases

Orientation:

Minus strand

Genomic View for STAT3 Gene
Genes around STAT3 on UCSC Golden Path with GeneCards custom track.
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NOTCHI1 is on chromosome 9
Genomic Locations for NOTCH1 Gene
Genomic Locations for NOTCH1 Gene
chr9:136,494,433-136,546,048
(GRCh38/hg38)
Size:
51,616 bases
Orientation:
Minus strand
chr9:139,388,896-139,440,314
(GRCh37/hg19)
Size:
51,419 bases
Orientation:
Minus strand
Genomic View for NOTCH1 Gene
Genes around NOTCH1 on UCSC Golden Path with GeneCards custom track.
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BCL2 is on chromosome 18
Genomic Locations for BCL2 Gene

Genomic Locations for BCL2 Gene
chr18:63,123,346—63,320,128
(GRCh38/hg38)

Size:

196,783 bases

Orientation:

Minus strand

chr18:60,790,579-60,987,361
(GRCh37/hg19)

Size:

196,783 bases

Orientation:

Minus strand

Genomic View for BCL2 Gene
Genes around BCL2 on UCSC Golden Path with GeneCards custom track.

Chr 18
= 2 234 9 22 3 o 9 o F & S35 § # & g
o o [ R o o [ fa fa fal fay fany fany fany fany El'" o fan fany fany
=T I T e |
EEF2 is on chromosome 19
Genomic Locations for EEF2 Gene
Genomic Locations for EEF2 Gene
chr19:3,976,056-3,985,463
(GRCh38/hg38)
Size:
9408 bases
Orientation:
Minus strand
chr19:3,976,054-3,985,467
(GRCh37/hg19)
Size:
9414 bases
Orientation:
Minus strand
Genomic View for EEF2 Gene
Genes around EEF2 on UCSC Golden Path with GeneCards custom track.
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ABL1 is in chromosome 9
Genomic Locations for ABL1 Gene

Genomic Locations for ABL1 Gene

chr9:130,713,016-130,887,675
(GRCh38/hg38)

Size:

174,660 bases

Orientation:

Plus strand

chr9:133,589,268-133,763,062
(GRCh37/hg19)

Size:

173,795 bases

Orientation:

Plus strand

Genomic View for ABL1 Gene

Genes around ABL1 on UCSC Golden Path with GeneCards custom track.
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BCR3 (BCRP3) is in chromosome 22
Genomic Locations for BCRP3 Gene
Genomic Locations for BCRP3 Gene
chr22:24,632,915-24,653,360
(GRCh38/hg38)
Size:
20,446 bases
Orientation:
Plus strand
chr22:25,028,882-25,049,327
(GRCh37/hg19)
Size:
20,446 bases
Orientation:
Plus strand
Genomic View for BCRP3 Gene
Genes around BCRP3 on UCSC Golden Path with GeneCards custom track.
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SF3B1 is in chromosome 2
Genomic Locations for SE3B1 Gene

Genomic Locations for SF3B1 Gene
chr2:197,388,515-197,435,091
(GRCh38/hg38)

Size:

46,577 bases

Orientation:

Minus strand

chr2:198,254,508-198,299,815
(GRCh37/hg19)

Size:

45,308 bases

Orientation:

Minus strand

Genomic View for SF3B1 Gene
Genes around SF3B1 on UCSC Golden Path with GeneCards custom track.
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ZAP70 is on chromosome 2
Genomic Locations for ZAP70 Gene

Genomic Locations for ZAP70 Gene
chr2:97,713,560-97,744,327
(GRCh38/hg38)

Size:

30,768 bases

Orientation:

Plus strand

chr2:98,330,023-98,356,325
(GRCh37/hg19)

Size:

26,303 bases

Orientation:
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Genes around ZAP70 on UCSC Golden Path with GeneCards custom track.
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Genomic Locations for MYC Gene
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chr8:127,735,434-127,742,951

(GRCh38/hg38)
Size:

7518 bases
Orientation:
Plus strand

chr8:128,747,680-128,753,680

(GRCh37/hg19)
Size:

6001 bases
Orientation:
Plus strand

Genomic View for MYC Gene
Genes around MYC on UCSC Golden Path with GeneCards custom track.

Chr &
My o m oy H 88 9 o and 3 an aan g oo 3988 q
A S S B 3 43 5 dH 288 § 33 §“§oudd 8 38888 .
oo o o o o o o = = o o oo 2 o 2 o O = f= 2 o o o o = o
(B . | X1 T N 00O En W]
Appendix B. Union of the Published Gene List Reviewed in This Study
ABCA2 CDC26 FAM174B KCNK1 NPAS1 REPS1 TCF3
ABCA7 CDS1 FAM24A KIAA0984 NPR1 RFC5 TCF4
ABCE1 CDT1 FARP1 KIAA1009 NR2C2 RHOD TCF7
ABI3 CEBP8 FBN1 KIAA1529 NR3C2 RHOQ TCF7L1
ABRA CEBPA FBXW11 KIAA1545 NRIP1 RHOU TCF71L2
ACVR1 CEP68 FBXW2 KLF6 NSD1 RIMKLB TGFB1I1
ADAM17 CER1 FBXW4 KLHL23 NUDT1 RIPK5 TGFBR3
ADAM19 CHAF1A FGF4 KREMEN1 NUP107 RNFT2 TLE1
ADAM?29 CHDS8 FGL2 KREMEN2 NUP210 ROR1 TLE2
ADAMTS?7 CHPT1 FKBP4 KRT18 NUP62CL ROR2 TLE2
AES CLDN3 FLJ10357 KRT7 ONECUT1 RPP25 TLE3
AGPAT2 CLDN7 FLJ20125 KRT8 OR2F1 RPRC1 T™MC5
AGPAT4 CLEC2B FLJ20160 L3MBTL4 OR7E19P RRAGC TMEM126B
AKR1C2 CNBD1 FLJ20489 LAMAS P2RX1 RSPO4 TMEM132A
AKT1 CNOT1 FLJ20674 LDOC1 PAICS RUVBL1 TNFRSF7
ALDH1A2 COL7A1 FLJ23556 LEF1 PCDHGA1 RUVBL2 TNFSF11
ALLC CPM FLJ40759 LILRB3 PCDHGAT11 RYK TNFSF13
ANAPC5 CPNE7 FRAT1 LLGL2 PCDHGA3 SAP30 TNS3
ANKRD57 CPT1A FRAT2 LPL PCDHGC3 SEC11A TP73L
ANXA2 CPz FRMD4A LRCH4 PCP4 SEL1L TPCN1
ANXA3 CREB3 FRMPD1 LRP12 PDE11A SEMA4B TPST2
APC CREBBP FRZB LRP5 PDE4DIP SEMA4D TRAK2
APC2 CRHR1 FSCB LRP5L PEA15 SEMAS5A TRAPPC6A
APOB CRY1 FUT8 LRP6 PEX5 SENP2 TRERF1
APP CRYBB2P1 FZD1 LRRFIP2 PFTK1 SEP10 TRIM2
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APRT CSF1 FZD2 LSM4 PGLS SEPP1 TRIM43
ARHGAPS CSNK1A1 FZD3 LTK PHEX SERPINB2 TRIM9
ARHGEF17 CSNK1D FzZD4 LUM PIGC SERPINF1 TRSPAP1
ARSD CSNK1E FZD5 MAGED2 PIGF SEZ6L UCHL1
ASPA CSNK1G1 FZDé6 MAK PIN1 SEN UGCG
ASPSCR1 CSNK2A FzZD7 MAN2B1 PITX2 SFRP1 UHRF1
ATOX1 CSNK2A1 FZD8 MANEA PKP2 SFRP2 UNC93B1
ATP10B CSPG6 FzZD9 MAP3K5 PKP3 SFRP4 uUSP7
ATP13A1 CTAG2 GALNT2 MAP3K7IP1 PLAA SFRP5 VAMP5
ATP2A3 CTBP1 GAST MAP4K1 PLCXD2 SIGLECS VASH1
ATP6VOE CTBP2 GBF1 MAP7 PLD1 SIRPG VASP
AVP CTCF GEMIN4 MARCKS PLEKHG4 SIX6 VPS37B
AXIN1 CTNNB1 GGTLA4 MBOAT1 PNCK SKP2 WDFY4
AXIN2 CTNNBIP1 GHRHR MCM2 POLE2 SLA2 WDR62
B3GNT4 CXXC4 GINS2 MCMS3AP POLR2G SLC12A9 WIF1
B4GALT2 CYB5R1 GJB3 MCOLN3 PORCN SLC25A20 WIPI1
B4GALT6 DAAM1 GNGS8 MCP PPL SLC25A23 WISP1
BANF2 DCI GNGT2 MDFIC PPM1A SLC27A2 WNT1
BCAT1 DCLK2 GNPTAB ME2 PPMIL SLC9A3R1 WNT10A
BCL9 DDX23 GOT2 MED9 PPP2CA SMAD2 WNT11
BRD7 DEGS1 GPLD1 MGC9913 PPP2R1A SMAD3 WNT16
BTN3A3 DENND1C GPR177 MICAL1 PPP2R3A SMAD4 WNT2
BTRC DIP2C GSK3A MINK1 PPP2R5B SMARCA4 WNT2B
C100rf75 DIXDC1 GSK3B MKLN1 PPP4R2 SMPD1 WNT3
C100rf86 DKK1 Gene MMP14 PRELP SNAI2 WNT4
C120rf10 DKK2 HBP1 MMP2 PRICKLE1 SOSTDC1 WNT5A
Cl6orf24 DKK3 HDAC1 MRPL41 PRKCA SOX17 WNT5B
Cl160rf33 DKK4 HEG1 MRPS33 PRKCB SOX4 WNT6
Cl60rf45 DLEC1 HGF MTM1 PRKRIR SPARC WNT7A
C19orf21 DMD HIST1H1C MUC5B PRPF40B SPATA1 WNT7B
Clorf77 DOCK9 HLA-DQA1 MYC PRR4 SPG20 WNTSA
C200rf42 DSC1 HNF1A MYO15B PSD3 SPHK1 WNT9A
C200rf67 DSP HNRPLL MYO5C PSEN1 SPINT2 WSB2
C200rf74 DUS2L HOM-TES-103 MZF1 PSMD8 SRPK2 YOEL1
CALCOCO1 DVL1 HOMER3 NAPB PTCH1 SRPX ZAP70
CALD1 DVL2 HOXD3 NAV3 PTGER3 ST5 ZBTB33
CALU DVL3 HSP90B1 NBEAL2 PTGES3 SUPT3H ZCCHC11
CAPG6 DYNLL1 ICALL NBPF8 PTPLAD2 SUSD3 ZFHX1B
CARS2 EDG5 IGF1IR NDP PTPNG6 SYCP1 ZFP64
CASKIN2 EGR3 IGF2R NDUEFC2 PTPRG SYDE1 ZNF135
CBWD2 EHMT1 IL13RA2 NDUFV1 PYGO1 SYNC1 ZNF451
CBY1 ELF1 INVS NEBL PYGO2 SYT5 ZNF578
CCDC24 ENG IRAK2 NIPSNAP3B RAB26 TACSTD1 ZNF667
CCNB2 EP300 JAG2 NKD1 RAB7L1 TBC1D1 ZNF787
CCT4 EPHA3 JTV1 NKD2 RARA TBC1D22A
CCT7 EPS15L1 JUP NLK RBM35B TBC1D2B
CCT8 EXOSC1 KALRN NLRC3 RCC1 TBP
CD58 EXPH5 KCNJ16 NOP17 RCN1 TCEB3
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Appendix C. Integrative Analysis of CLL by t-SNE Visualization

LSNE2

,7@,,
°
®
° ~ g &2
°
Foog s . C
PE ]
H R 3
®
o
[}
° g éo
F 4
TN A
: 5:'3 % ® 8-
..)‘\"s‘,.. o 3 ?J 330
X E i p i
G ° ‘{ N 10-20
g2

Figure Al. t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis of CLL samples and
subgroups. The visualization displays a non-linear dimensionality reduction of the complex gene

expression data, with each point representing individual samples. The layout highlights the nuanced
relationships and 10 clusters labeled from A to ] within the CLL dataset, consisting of the 1001 patients,
uncovering uncaptured subtleties through the network analysis. Samples included in the dataset are

either diagnosed CLL patients (sick) or wild-type patients (normal) without CLL.

Cluster A encapsulates a significant cohort focusing on the Wnt signaling pathway,
a key player in CLL pathogenesis, with a total of 179 patients. Within this cluster,
21 are wild type, while 158 are CLL-patient samples, all derived from the GSE31048
dataset. This dataset offers a unique look at both normal and CLL-affected B cells,
allowing for a direct comparison of Wnt pathway gene expression and Wnt-regulated
gene expression. The marked difference in numbers between the normal (12 and
9, respectively) and sick (149 and 9, respectively) groups underscores the aberrant
expression within CLL-affected B cells, highlighting the pathway’s prominence in
these cellular states. The study’s in-depth focus on the Wnt pathway is well-founded,
as it is pivotal in cellular processes that are often disrupted in CLL, thus potentially
illuminating new therapeutic avenues.

Cluster B includes a smaller, yet focused subset of 42 patients, of which 12 are wild-type
and 30 are CLL patients. This cluster continues the examination of the Wnt pathway’s
role in CLL as part of the GSE31048 study, indicative of a unique or divergent role of
Wnt signaling in this subset. It is particularly noteworthy that this dataset includes
expression data from CLL B cells with and without Wnt3a treatment, providing
insights into the pathway’s functionality and potential for targeted therapies. The
comparative analysis of Wnt gene expression between the normal and CLL B cells
offers additional evidence for the pathway’s critical role in the disease process.
Cluster C, with 136 patients, 24 normal and 112 sick, merges data from two distinct
studies, GSE10139 and GSE50006, providing a broader scope by incorporating a
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genomic approach from GSE10139 to improve prognosis and therapeutic response
predictions, and juxtaposes this with expression data from CLL tumors and healthy
donor B cells from GSE50006. The inclusion of CLL-blood samples enriches the dataset,
illustrating the heterogeneity within CLL and potentially reflecting different disease
phases or subtypes. The blend of these datasets furnishes a more comprehensive
understanding of the disease, highlighting the heterogeneity of CLL and reinforcing
the necessity of personalized medicine approaches.

Cluster D presents a cohort of 152 patients, predominantly sick (144) with a small
representation of normal B cells (8), combining data from GSE10139 and GSE50006.
This distribution, primarily composed of CLL and CLL-blood samples, continues to
emphasize the genetic and expression-level diversity found in CLL, supporting the
need for an in-depth analysis to discern the nuances of the disease’s progression and
the potential response to treatments.

Cluster E is a homogeneous group consisting entirely of 100 sick patients from the
GSE49896 dataset. This study spotlights the microRNA-150"s influence on B-Cell
Receptor signaling by modulating GAB1 and FOXP1 gene expressions, which are
implicated in CLL. MicroRNAs are crucial post-transcriptional regulators, and their
role in CLL adds an additional layer to our understanding of the disease’s complexity
and potential intervention points.

In Cluster F, 130 CLL patients from the GSE39671 dataset were studied, all of whom
had undergone treatment. The data represent a temporal progression, with sampling
times to first treatment recorded, allowing for an exploration of the disease’s evolution
over time. The dataset’s analysis provides prognostic subnetworks which can help
predict disease progression and highlight the converging pathways in CLL, opening
new avenues for tailored treatments.

Cluster G, comprising 75 CLL patients from the GSE69034 study, delves into the gene
expression profiles linked with the MYD88 L265P mutations in conjunction with IGHV
mutation status. The presence of the MYD88 L265P mutation, a notable variant found
within the MYD88 gene that encodes a key adaptor protein in the Toll-like receptor
and IL-1 receptor pathways, has been tied to specific prognostic outcomes in CLL.
This mutation is known to activate downstream signaling pathways aberrantly, which
can contribute to the uncontrolled proliferation of B cells characteristic of CLL. The
dataset’s inclusion in the study facilitates a detailed investigation into the mutation’s
role and its pathway associations in CLL, offering a potential explanation for the
varying responses to treatment observed in patient populations. By analyzing the
gene expression patterns influenced by the MYD88 L265P mutation, alongside the
IGHV mutation status, a well-established prognostic marker in CLL, it unravels the
complex interplay between genetic aberrations and their impact on the disease’s
clinical course. The correlation between MYD88 L265P mutations and factors such as
treatment resistance, disease progression, and overall survival can be assessed. This
is particularly crucial, as the mutation’s impact on signaling pathways may suggest
new therapeutic targets or strategies for intervention. Groundbreaking biomarkers are
likely to be identified for early detection and prognosis by understanding the biological
context in which these mutations operate, while also highlighting the therapeutic
relevance of targeting the MYD88 pathway in certain subsets of CLL patients, thus
implying the importance of precision medicine in the management of CLL. Based
on the insights into the specific mutations driving the disease in individual patients,
therapies can be customized to target these genetic abnormalities more effectively. In
the case of MYDS88 L265P, its presence could signify a need for targeted inhibitors
that can mitigate its downstream effects, thereby introducing a new dimension to
personalized CLL treatment paradigms.

Cluster H is a cohort of 84 CLL patients from GSE28654, all carrying the [gVHMT
mutation and exhibiting negative ZAP-70 expression. The absence of ZAP-70 expres-
sion, a kinase linked to CLL, together with the mutational profile, provides a critical



Onco 2024, 4

188

connection for investigation. This relationship implicates the substantial impact of the
mutation on CLL’s clinical progression and pinpoints the need for a detailed genetic
analysis in crafting specialized treatments.

e In Cluster I, 28 sick patients from GSE28654 were categorized by the presence of the
IgVHUM mutation and positive ZAP-70 expression, helping us to understand the
disease’s heterogeneity, since ZAP-70 positivity is often linked with a more aggres-
sive CLL form. The combination of mutational status and ZAP-70 expression levels
provides valuable prognostic information.

O The expression of ZAP-70 in CLL and its relevance as a molecular marker is
particularly illuminating. For Cluster H, the collective profile of CLL patients
characterized by the I[gVHMT mutation yet displaying an absence of ZAP-
70 expression represents a subset where traditional prognostic markers may
predict a more favorable clinical course. In the broader landscape of our
findings, this cluster could suggest that ZAP-70’s negativity may reflect a less
aggressive form of CLL, where the malignant B cells might not engage in
the same signaling pathways that are characteristic of more virulent variants.
Consequently, these insights bolster the argument for personalized therapeutic
approaches, enabling clinicians to tailor treatments to the specific molecular
makeup presented by individual CLL cases. Conversely, patients in Cluster
I, characterized by the IgVHUM mutation concomitant with positive ZAP-
70 expression, suggest a more aggressive manifestation of the disease. This
association aligns with the understanding that ZAP-70 positivity mirrors the
behavior of unmutated IgVH status, commonly linked to a robust disease
progression and a less favorable response to conventional therapies. Here,
ZAP-70 serves not just as a prognostic marker but potentially as a therapeutic
target, whereby modulation of its expression or function could impact CLL cell
survival. This reiterates the substantial role that ZAP-70 plays in CLL. It acts as
a bifurcation point in the disease’s prognostic roadmap, where its expression
could either denote a need for more aggressive treatment or suggest a less
intensive therapeutic course. The interplay of ZAP-70 with IgVH mutation
status, as demonstrated in our clusters, provides a clearer understanding of
disease heterogeneity and patient stratification. The overall results of the study
thus advocate for the integration of ZAP-70 status into prognostic models
and therapeutic decision-making algorithms, emphasizing its contribution
not only to prognostication but potentially to the development of targeted
CLL therapies.

e  Cluster ], mirroring Cluster G, includes another set of 75 CLL patients from the
GSE69034 dataset, indicating the significant role of MYD88 L265P mutations in CLL,
providing a robust dataset for the exploration of mutation-associated gene expression
patterns and their prognostic significance.

The heterogeneity of gene mutations across CLL patients underscores the intricate
complexity of this malignancy, accentuating the necessity for individualized therapeutic
strategies. The disparities unearthed by t-SNE analysis manifest in the distinct molecular
signatures differentiating normal B cells from CLL-B cells, which reflect divergent evolu-
tionary trajectories within the disease’s progression. Notably, the aberrant expression of
Wnt-pathway genes in CLL cells, as revealed by our cluster analysis, pinpoints this path-
way’s pivotal role in CLL pathobiology. The presence of specific gene expressions within
clusters, particularly those highlighted by the t-SNE method (Clusters A and B), points to
the pathway’s disrupted regulation, which is suggestive of patient-specific disease mech-
anisms that contribute to CLL’s heterogeneity. Simultaneously, the funding emphasizes
that alterations in the Wnt signaling pathway are not universally present but vary among
patients, reinforcing the pathway’s contribution to the disease complexity. The therapeutic
potential of targeting Wnt-pathway proteins is corroborated by their identified roles in vital
cellular functions, with their significance accentuated by Betti number estimates, which
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propose these proteins as central players in CLL’s pathogenesis rather than inconsequential
elements. Such insights solidify the imperative for a more comprehensive, multi-scalar
study from cellular to genomic dimensions to forge ahead with personalized treatments

for CLL.
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